集合的概念及表示方法优秀课件
合集下载
人教B版必修第一册1.1.1集合及其表示方法课件(35张)

2.(1)已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的值为________. (2)已知集合 A 含有两个元素 a 和 a2,若 2∈A,则实数 a 的值为________. (3)已知集合 A 含有两个元素 a 和 a2,则实数 a 的取值范围为________.
【解析】(1)若 1∈A,则 a=1 或 a2=1,即 a=±1. 当 a=1 时,集合 A 有重复元素,不符合集合中元素的互异性,所以 a≠1; 当 a=-1 时,集合 A 含有两个元素 1,-1,符合集合中元素的互异性, 所以 a=-1. 答案:-1 (2)若 2∈A,则 a=2 或 a2=2,即 a=2 或 a= 2 或 a=- 2 . 答案:2 或 2 或- 2 (3)若 A 中有两个元素 a 和 a2,则由 a≠a2 解得 a≠0 且 a≠1. 答案:a≠0 且 a≠1
教材认知 掌握必备知识
一、集合与元素 1.集合:把一些能够_确__定__的__、_不__同__的__对象汇集在一起,这些对象组成一个集 合(简称为集). 2.元素:组成集合的每个_对__象__. 3.表示方法:集合通常用英文大写字母A,B,C,…表示,集合的元素通常 用英文小写字母a,b,c,…表示.
3.区间及其表示 (1)一般区间的表示. 设 a,b∈R,且 a<b,规定如下:
[a,b] (a,b)[a,b)
(a,b]
(2)特殊区间的表示.
【批注】1.用数轴表示区间时要特别注意端点是实心点还是空心点; 2.无穷大是一个符号,不是一个数,因而它不具备数的一些性质和运算法则,出现 此符号的一端时,该端必须是小括号.
[诊断]
1.下列说法:
①集合{x∈Z|x3=x}用列举法表示为{-1,0,1};
集合的概念及表示方法PPT课件

1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲 师资格考试,后即在该大学任讲师,1872年任副教授,1879年任教授。
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和 数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871 、1872年发表三篇关于三角级数的论文。在1872年的论文中提出了以基本序列 (即柯西序列)定义无理数的实数理论,并初步提出以高阶导出集的性质作为 对无穷集合的分类准则。函数论研究引起他进一步探索无穷集和超穷序数的兴 趣和要求。
有的性质
例如:book中的字母的集合表示为: {x|x是 book中的字母}
集合的表示方法
{x | x2 2 0}
﹨{ x | 10 x 20}
集合的表示方法
练习 (1) 用列举法表示下列集合 ① A { x N | 0 x 5} ② B { x | x2 5x 6 0}
{b,o,o,k} (×)
集合的表示方法
例1 用列举法表示下列集合:
一个集合中的元素
(1)小于10的所有自然数组成的集合; 的书写一般不考虑 顺序(集合中元素
(2)方程 x2 x 的所有实数根组成的集合; 的无序性).
(3)由1~20以内的所有质数组成的集合.
解:(1)A={0,1,2,3,4,5,6,7,8,9}. (2)B={0,1}. (3)C={2,3,5,7,11,13,17,19}.
解: ①{x|x=3n-2, n ∈ N*且n≤5}
②
{x|x=
n
n
2
, n ∈ N*且n≤5}
2.用列举法表示下列集合:
(1)A=﹛x∈N︱1
6
x∈Z﹜
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和 数学分析感兴趣。哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871 、1872年发表三篇关于三角级数的论文。在1872年的论文中提出了以基本序列 (即柯西序列)定义无理数的实数理论,并初步提出以高阶导出集的性质作为 对无穷集合的分类准则。函数论研究引起他进一步探索无穷集和超穷序数的兴 趣和要求。
有的性质
例如:book中的字母的集合表示为: {x|x是 book中的字母}
集合的表示方法
{x | x2 2 0}
﹨{ x | 10 x 20}
集合的表示方法
练习 (1) 用列举法表示下列集合 ① A { x N | 0 x 5} ② B { x | x2 5x 6 0}
{b,o,o,k} (×)
集合的表示方法
例1 用列举法表示下列集合:
一个集合中的元素
(1)小于10的所有自然数组成的集合; 的书写一般不考虑 顺序(集合中元素
(2)方程 x2 x 的所有实数根组成的集合; 的无序性).
(3)由1~20以内的所有质数组成的集合.
解:(1)A={0,1,2,3,4,5,6,7,8,9}. (2)B={0,1}. (3)C={2,3,5,7,11,13,17,19}.
解: ①{x|x=3n-2, n ∈ N*且n≤5}
②
{x|x=
n
n
2
, n ∈ N*且n≤5}
2.用列举法表示下列集合:
(1)A=﹛x∈N︱1
6
x∈Z﹜
集合的含义与表示说课稿公开课一等奖课件省赛课获奖课件

3.对的理解列举法
(1)元素间用分隔号“,”隔开;
(2)元素不重复;
(3)对于含较多元素的集合,如果构成该集合 的元素有明显规律,可用列举法,但是必须把 元素间的规律显示清晰后才干用省略号.
4.合理选用集合的表达办法
列举法与描述法各有优点,列举法能够看清集 合的元素,描述法能够看清集合元素的特性, 普通含有较多或无数多个元素时不适宜采用列 举法,由于不能将集合中的元素一一列举出来, 而没有列举出来的元素往往难以拟定.
[例5] 用适宜的办法表达下列集合: (1)24的正约数构成的集合; (2)不不大于3不大于10的整数构成的集合; (3)方程x2+ax+b=0的解集; (4)平面直角坐标系中第二象限的点集;
[分析] 首先搞清晰集合的元素是什么,然 后选用适宜的办法表达集合.
[解析] (1){1,2,3,4,6,8,12,24}; (2){不不大于3不大于10的整数}={x∈Z|3<
(2)不等式2x-1<5的自然数解构成的集 合.________
(3)古代我国的四大发明构成的集合.________
(4)A={x|0<x≤5且x∈N}.________
(5)B={x|x2-5x+6=0}.________
[解析] (1)6的正约数为1,2,3,6,故所求集合 为{1,2,3,6}
x=2, y=2.
∴D={(0,6),(1,5),(2,2)}.
(5)依题意,p+q=5,p∈N,q∈N*,则
p=0, q=5;
p=1, q=4;
p=2, q=3;
p=3, q=2;
p=4, q=1.
∵x 要满足条件 x=pq,∴E={0,14,23,32,4}.
(2)集合①{x|y=x2+1}的代表元素是x, ∵当x∈R时,y=x2+1故意义. ∴{x|y=x2+1}=R; 集合②{y|y=x2+1}的代表元素是y, 满足条件y=x2+1的y的取值范畴是y≥1, ∴{y|y=x2+1}={y|y≥1}.
高一数学必修1第一章课件:1.1.1集合的含义与表示 课件(36张)

(2)列举法和描述法
列举法
描述法
把集合的元一素一列举
用集合所含元素的
_____________出来,并用
共同特征
概念
_______________表示集合的
花括号“{ }”括起来表示集
方法
合的方法
一般
形式 {a1,a2,a3,…,an}
{x∈I|p(x)}
1.判断:(正确的打“√”,错误的打“×”) (1)你班所有的姓氏能组成集合.( √ ) (2)高一·二班“数学成绩好的同学”能组成集合.( × ) (3)一个集合中可以找到两个相同的元素.( × ) (4)集合{x|x>3}与集合{t|t>3}表示的是同一集合.(√ )
2.元素与集合的关系
关系
语言描述
记法
读法
属于 a是集合A中的元素 a∈A a属于集合A
不属于 a不是集合A中的元素 a∉A a不属于集合A
3.常用的数集及其记法
常用的 自然数 数集 集 记法 N
正整数集 N*或N+
有理数
整数集
实数集
集
Z
QR
4.集合的表示法 (1)自然语言法 用文字叙述的形式描述集合的方法.使用此方法要注意叙述 清楚,如由所有正方形构成的集合,就是自然语言表示的, 不能叙述成“正方形”.
4.当{a,0,-1}={4,b,0}时,a=___4_____,b= __-__1____.
集合的概念 判断下列各组对象能否组成一个集合: (1)新华中学高一年级全体学生; (2)我国的大河流; (3)不大于 3 的所有自然数;
(4)平面直角坐标系中,和原点距离等于 1 的点.
(链接教材P3思考) [解] (1)能,(1)中的对象是确定的;(2)不能,“大”无明确标 准;(3)能,不大于 3 的所有自然数有 0、1、2、3,其对象是 确定的;(4)能,在平面直角坐标系中任给一点,可明确地判 断是不是“和原点的距离等于 1”,故能组成一个集合.
1.1.2 集合的概念-集合的表示(课件)高一数学必修一 同步精讲 原创精品

有点”组成的集合.
{P│ =1}
2.集合{x∈N│1≤x≤5}可以用列举法表示为 {1,2,3,4,5} .
特别说明:
我们约定,如果从上下文来看,x∈R,x∈N等等是明确的, 那么x∈R,x∈N可以省略,只写其元素x.
比如A={x∈R│x<10 },可以写成{x│x<10 }.
4 有限集与无限集
A={y│y=x2+2x+3}
B={x│y=x2+2x+3}
学
思 想题
C={(x, y)│y=x2+2x+3} D={ y=x2+2x+3 }
之
其中与集合{y│y=x2+2}相等的有 1 个.
+
函 数 思 想 数 形
分
从元素入手分析,先定性:{y│y=x2+2}是数集,而集合C为点集, 集合D中元素为方程(或说函数式),故C、D排除;
析 再定量:{y│y=x2+2}={y│y≥2}; (函数图像上点的纵坐标的范围)
由y=x2+2x+3=(x+1)2+2≥2知 A={y│y=x2+2x+3}={y│y=x2+2},符合!
结
而B={x│y=x2+2x+3}=R≠{y│y≥2} (B为自变量的范围)
合
方
法 判断集合的关系,首先从元素的属性入手;元素同属性的情况下,
高中数学/人教A版/必修一
思维 素养
1 集合该如何表示?
看下列用文字语言给出的集合:
感 (1)A是由“方程 x2-3x+2=0 的所有实数根”组成的集合;
悟
与 (2)B是由“地球上的四大洋”组成的集合;
1.1集合的概念与表示课件

[跟进训练] 1.判断下列说法是否正确,并说明理由. (1)所有素数能组成一个集合. (2)数轴上的一些点能组成一个集合. (3)集合xx-12x+1=0,x∈R有三个元素. (4)集合x∈Rax=1,a∈R有且仅有一个元素.
[解] (1)正确,素数具有确定性. (2)不正确,“一些点”的标准不明确. (3)不正确,由于“1”是该方程二重根,且集合的元素具有互异 性,所以该集合有且仅有两个元素. (4)不正确,当a=0时,x∈Rax=1,a∈R=∅.
[(1)①②③④都正确,故选D.
(2)对a的可能取值逐个检验,a=2时,6-a=4∈A;a=4时,6
-a=2∈A;a=6时,6-a=0 A,所以a的取值集合是2,4.
(3)由4n+1=-7,得n=-2,即-7=4×
-2
+1,所以-
7∈A;由4n+1=3,得n=21,由于12 Z,所以3 A.]
课堂 小结 提素 养
1.下列给出的对象中,能构成集合的是( )
A.一切很大的数
B.好心人
C.营养丰富的食品
D.所有有理数
D [“很大”、“好心”、“丰富”等词所描述的对象没有确
定性,故选D.]
2.由英文单词“book”中的所有字母构成的集合中元素的个数是
() A.1
B.2
C.3
D.4
C [由集合元素的互异性可知,该集合中共有“b”、“o”、“k” 三个元素,故选C.]
∈__
__
(2)常用数集及表示符号
名称 自然数集 正__整__数__集__ 整数集 有__理__数__集__ 实数集 正实数集
符号 _N_
N+或N*
_Z_
Q
_R _
R+
3.集合的表示方法
集合的概念和表示法-PPT课件

2019/3/28
首页
上页
返回
下页
结束
铃
7
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 b、部分列举法:
列举集合的部分元素,其他元素可从列举的元
素 归纳出来 , 用省略号代替。 例如A表示“全体小写英文字母”的集合, 则 A={a, b, … , y, z} 注: 列举法仅适用于描述元素个数有限的集合 或 元素具有明显排列规律的集合。
2019/3/28
首页
上页
返回
下页
结束
铃
6
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 a、全部列举法: 以任意顺序写出集合的所有元素, 元素间用逗号 并将其放在花括号内。 隔开, 例如“所有小于5的正整数”, 这个集合的元素为 1, 2, 3, 4, 再没有别的元素了。 如果把这个集合命名为A, 就可记为 A={1, 2, 3, 4}
2019/3/28
首页
上页
返回
下页
结束
铃
3
离散数学 3.1 集合的概念及表示法
一、集合的基本概念
3、集合的分类
1) 有限集合 集合的元素个数是有限的。
2) 无限集合 集合的元素个数是无限的。
2019/3/28
首页
上页
返回
下页
结束
铃
4
离散数学 3.1 集合的概念及表示法
二、集合的表示法
1、符号表示法
2019/3/28
首页
上页
返回
下页
结束
铃
12
首页
上页
返回
下页
结束
铃
7
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 b、部分列举法:
列举集合的部分元素,其他元素可从列举的元
素 归纳出来 , 用省略号代替。 例如A表示“全体小写英文字母”的集合, 则 A={a, b, … , y, z} 注: 列举法仅适用于描述元素个数有限的集合 或 元素具有明显排列规律的集合。
2019/3/28
首页
上页
返回
下页
结束
铃
6
离散数学 3.1 集合的概念及表示法
二、集合的表示法
2、描述集合中元素的方法
1) 列举法 a、全部列举法: 以任意顺序写出集合的所有元素, 元素间用逗号 并将其放在花括号内。 隔开, 例如“所有小于5的正整数”, 这个集合的元素为 1, 2, 3, 4, 再没有别的元素了。 如果把这个集合命名为A, 就可记为 A={1, 2, 3, 4}
2019/3/28
首页
上页
返回
下页
结束
铃
3
离散数学 3.1 集合的概念及表示法
一、集合的基本概念
3、集合的分类
1) 有限集合 集合的元素个数是有限的。
2) 无限集合 集合的元素个数是无限的。
2019/3/28
首页
上页
返回
下页
结束
铃
4
离散数学 3.1 集合的概念及表示法
二、集合的表示法
1、符号表示法
2019/3/28
首页
上页
返回
下页
结束
铃
12
集合的概念及其表示一ppt课件

⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几 个)相同的元素就只能算一个,即集合中的元素是不重复出现的。 ⑶无序性-即集合中的元素没有次序之分.
判断下列各组对象能否描述为集合,若能,则用集合表 示出来,若不能,请说明理由。
(1)大于3小于11的偶数;(2)我国的小河流 (3)很小的有理数;(4)泸高校园的所有大树;
具体方法:在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个 集合中元素所具有的共同特征.
一般形式:x Ax 满 足 的 条 件
说明: 1、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 3、描述语言力求简明、准确; 4、多用于元素无限多个时。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
*有限集与无限集*
⑴ 有限集-------含有有限个元素的集合叫有限集 例如: A ={0,1,2,3,4,5,6,7,8,9}.
⑵ 无限集-----含有无限个元素的集合叫无限集
7.小结
• 集合的含义 • 元素与集合之间的关系 • 集合中元素的三个特征
(思考)本节课主要学研究哪些基本内容?集合 的三种表示方法各有怎样的优点?用其表示 集合各应注意什么?
• 记作:aA;
例如,A={能被3整除的整数}
当a6时,aA 当a7时,aA
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6.常用的数集及其记法
• 全体非负整数组成的集合称为自然数集,记为 N • 所有正整数组成的集合称为正整数集,记为 N*或N • 全体整数组成的集合称为整数集,记为 Z • 全体有理数组成的集合称为有理数集,记为 Q • 全体实数组成的集合称为实数集,记为 R
判断下列各组对象能否描述为集合,若能,则用集合表 示出来,若不能,请说明理由。
(1)大于3小于11的偶数;(2)我国的小河流 (3)很小的有理数;(4)泸高校园的所有大树;
具体方法:在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个 集合中元素所具有的共同特征.
一般形式:x Ax 满 足 的 条 件
说明: 1、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 3、描述语言力求简明、准确; 4、多用于元素无限多个时。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
*有限集与无限集*
⑴ 有限集-------含有有限个元素的集合叫有限集 例如: A ={0,1,2,3,4,5,6,7,8,9}.
⑵ 无限集-----含有无限个元素的集合叫无限集
7.小结
• 集合的含义 • 元素与集合之间的关系 • 集合中元素的三个特征
(思考)本节课主要学研究哪些基本内容?集合 的三种表示方法各有怎样的优点?用其表示 集合各应注意什么?
• 记作:aA;
例如,A={能被3整除的整数}
当a6时,aA 当a7时,aA
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6.常用的数集及其记法
• 全体非负整数组成的集合称为自然数集,记为 N • 所有正整数组成的集合称为正整数集,记为 N*或N • 全体整数组成的集合称为整数集,记为 Z • 全体有理数组成的集合称为有理数集,记为 Q • 全体实数组成的集合称为实数集,记为 R