集合的含义及其表示教案

合集下载

《集 合的含义与表示》 教学设计

《集 合的含义与表示》 教学设计

《集合的含义与表示》教学设计一、教学目标1、知识与技能目标理解集合的含义,知道集合中元素的特性。

掌握集合的表示方法,能够用列举法和描述法表示集合。

2、过程与方法目标通过对具体实例的分析,经历从具体到抽象、从特殊到一般的思维过程,提高学生的抽象概括能力。

引导学生在解决问题的过程中,体会分类讨论、等价转化等数学思想方法。

3、情感态度与价值观目标让学生感受集合在数学和生活中的广泛应用,激发学生学习数学的兴趣。

培养学生合作交流、积极探索的精神,增强学生的数学素养。

二、教学重难点1、教学重点集合的含义。

集合中元素的特性。

集合的表示方法。

2、教学难点对集合中元素的确定性、互异性、无序性的理解。

用描述法表示集合。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些生活中常见的集合的例子,如学校的班级、图书馆的书籍分类、超市的商品分类等,引导学生思考这些例子的共同特点,引出集合的概念。

2、讲解集合的含义给出集合的定义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

强调集合是一个整体,具有确定性、互异性和无序性。

(1)确定性:给定的集合,它的元素必须是确定的。

比如“个子高的同学”不能构成集合,因为“个子高”没有明确的标准。

(2)互异性:集合中的元素不能重复。

例如集合{1, 2, 2}是不正确的,应该写成{1, 2}。

(3)无序性:集合中的元素没有顺序之分。

比如{1, 2}和{2, 1}表示同一个集合。

3、集合与元素的关系介绍元素与集合的关系有“属于”(∈)和“不属于”(∉)两种。

举例说明:对于集合 A ={1, 2, 3},1∈A,4∉A。

4、集合的表示方法(1)列举法定义:把集合中的元素一一列举出来,写在大括号内。

举例:集合 A ={1, 2, 3},B ={a, b, c}。

(2)描述法定义:用确定的条件表示某些对象是否属于这个集合。

举例:集合 C ={x | x 是小于 5 的正整数},D ={x | x 是方程 x² 2x 3 = 0 的解}。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案集合的含义与表示教案(精选6篇)作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。

教案应该怎么写才好呢?以下是店铺为大家收集的集合的含义与表示教案,欢迎大家借鉴与参考,希望对大家有所帮助。

集合的含义与表示教案篇1教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2003的13年内所发射的所有人造卫星;⑶ 金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸ 所有的正方形;⑹ 黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4⑵(2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,…⑸ 1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案主题:集合的含义与表示教案目标:1. 理解集合的基本含义。

2. 掌握集合的表示方法。

3. 能够用集合的表示方法描述给定的情境。

4. 能够运用集合的基本操作解决问题。

教学重点:1. 集合的含义与基本操作。

2. 集合的表示方法。

教学难点:1. 运用集合的表示方法描述实际情境。

教学准备:1. PowerPoint课件。

2. 教学板书。

教学过程:Step 1:导入新知1. 教师出示一些实物,如水果、玩具等,引导学生思考这些实物有什么相同之处。

2. 引导学生总结归纳,提出“集合”的概念,解释集合的基本含义。

Step 2:集合的含义1. 引导学生研究集合的定义:集合是由一些元素组成的整体。

2. 通过实例让学生理解集合的概念,如{1, 2, 3}表示由1、2、3三个元素组成的集合。

Step 3:集合的表示方法1. 教师出示集合的符号表示方法,如用大括号{}括起来的元素列表。

2. 通过实例让学生掌握集合的符号表示方法,如{苹果, 香蕉, 梨子}表示由苹果、香蕉、梨子三个元素组成的集合。

3. 教师引导学生讨论集合中的元素是否有顺序之分,解释集合与序列的区别。

4. 教师出示集合的文字表示方法,如用描述性的句子来表示集合。

Step 4:集合的基本操作1. 教师引导学生了解集合的基本操作:包含关系、相等关系、子集关系。

2. 通过实例让学生掌握集合的基本操作,如集合A={1, 2, 3},集合B={1, 2},则A包含B,B是A的子集。

Step 5:运用集合的表示方法描述实际情境1. 教师设计一些情境,如描述班级同学的集合、描述某个地区的居民集合等。

2. 学生进行小组讨论,用集合的表示方法描述给定情境。

3. 学生报告讨论结果,集体分享。

Step 6:拓展应用1. 教师引导学生思考集合在数学中的应用,如数集、函数等。

2. 学生进行小组讨论,分享集合的拓展应用。

3. 教师总结讨论结果,提出个人思考问题。

Step 7:小结与评价1. 教师总结集合的基本含义与表示方法,并强调集合的基本操作。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案一、教学目标1. 了解集合的含义,理解集合中元素的特征。

2. 学会用列举法、描述法表示集合。

3. 能够运用集合的基本运算解决实际问题。

二、教学重点与难点1. 教学重点:集合的含义,列举法、描述法表示集合。

2. 教学难点:理解集合中元素的确定性、互异性、无序性。

三、教学准备1. 教学素材:黑板、PPT、教学卡片。

2. 教学工具:多媒体投影仪、笔记本电脑。

四、教学过程1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的含义:讲解集合的定义,强调集合中元素的确定性、互异性、无序性。

3. 表示集合的方法:(1)列举法:引导学生学会用列举法表示集合。

(2)描述法:引导学生学会用描述法表示集合。

4. 集合的基本运算:讲解并演示集合的并、交、差运算。

5. 课堂练习:布置练习题,让学生巩固所学知识。

五、课后作业1. 完成练习册上的相关题目。

2. 思考生活中的集合实例,总结集合的特点。

教学反思:本节课通过生活中的实例,引导学生了解集合的含义,学会用列举法、描述法表示集合。

在教学过程中,要注意强调集合中元素的确定性、互异性、无序性,帮助学生建立正确的集合观念。

通过课堂练习和课后作业,让学生巩固所学知识,提高运用集合解决实际问题的能力。

六、教学拓展1. 讲解集合的其他表示方法:数轴法、Venn图法。

2. 引导学生学会利用数轴、Venn图解决集合问题。

七、课堂小结1. 回顾本节课所学内容,总结集合的含义、表示方法及基本运算。

2. 强调集合中元素的确定性、互异性、无序性。

八、教学评价1. 课后收集学生的课堂练习和课后作业,评估学生对集合知识的掌握程度。

2. 在下一节课开始时,进行简要的知识点测试,了解学生对所学知识的巩固情况。

九、教学建议1. 针对不同学生的学习水平,适当调整教学难度,给予学困生更多的关心和帮助。

2. 鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,了解集合是由一些确定的、互不相同的对象组成的整体。

通过举例说明集合的表示方法,如用大括号{}括起来的一组元素。

1.2 集合的元素解释集合中的元素是指构成集合的各个对象。

强调元素的唯一性和确定性。

1.3 集合的表示方法介绍集合的表示方法,包括列举法和描述法。

举例说明如何用列举法表示集合,以及如何用描述法表示集合。

第二章:集合的运算2.1 集合的并集解释并集的定义,即两个集合中所有元素的集合。

引导学生了解并集的表示方法,如A∪B。

2.2 集合的交集解释交集的定义,即两个集合中共有元素的集合。

引导学生了解交集的表示方法,如A∩B。

2.3 集合的补集解释补集的定义,即在全集U中不属于集合A的元素的集合。

引导学生了解补集的表示方法,如A'。

第三章:集合的性质3.1 集合的互异性强调集合中元素的唯一性,即集合中的元素不重复。

通过举例说明如何判断集合中元素的互异性。

3.2 集合的确定性解释集合的确定性,即集合中的元素是明确指定的。

强调集合中的元素是确定的,不会有歧义。

3.3 集合的无序性解释集合的无序性,即集合中元素的顺序无关紧要。

强调集合中的元素无论顺序如何排列,其表示的集合是相同的。

第四章:集合的例子4.1 自然数集合介绍自然数集合N,包括0和所有正整数。

解释自然数集合的性质,如无限性和递增性。

4.2 整数集合介绍整数集合Z,包括所有正整数、0和所有负整数。

解释整数集合的性质,如无限性和对称性。

4.3 实数集合介绍实数集合R,包括所有有理数和无理数。

解释实数集合的性质,如无限性和连续性。

第五章:集合的应用5.1 集合在数学中的应用强调集合在数学中的基础作用,如解决方程、不等式等问题。

通过举例说明集合在数学中的应用。

5.2 集合在科学中的应用解释集合在科学中的作用,如分类和归纳。

举例说明集合在科学研究中的应用。

5.3 集合在生活中的应用强调集合在日常生活中的应用,如购物时的商品分类、旅行时的景点选择等。

集合的含义与表示教案

集合的含义与表示教案

§1.1.1集合的含义与表示教案一. 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 二. 教学重点.难点重点:集合的含义与表示方法. 难点:表示法的恰当选择.(1)集合 :一般地, 称为集合(简称为集). 叫作这个集合的元素. (2)集合中的元素的有哪些特征? (1)确定性:(2)互异性:,(3)无序性: 下列各组对象能确定一个集合吗?1.所有很大的实数2.好心的人 3 . 1,2,2,3,4,5.(3)元素与集合的关系:a 是集合A 的元素就说 ,记作 ,如果a 不是集合A 的元素就说 ,记作a A ∉(注意:元素和集合的关系只能是属于或者不属于)常见数集及记法:自然数集记作 ,Q 表示 集,整数集记作 ,正整数集记作 ,R 表示 . 1.用符合“∈”或“∉”填空:课本P5练习题1(4)集合的表示:集合通常用 字母表示,如A,B,C 等.元素通常用小写字母表示,如a,b,c 等.列举法:把 表示集合的方法,如方程方程2560x x -+=的解集可表示为 .正奇数组成的集合可表示为 .描述法:用 表示集合的方法.如不等式30x ->的所有解组成的集合可表示为:注意:你在表示集合时怎样去选择合适的方法?(4)集合的分类: 叫有限集, 叫无限集. 叫空集,空集记作 . 2.用适当的方法表示下列集合:大于-3小于2的整数组成的集合: ;方程x 2-2=0的解组成的集合: ;小于3的有理数组成的集合: ; 所有偶数组成的集合: . 区别∅,{∅},0,{0}的差异. 四. 练一练:(5分钟)2.设a,b 是非零实数,那么b baa+可能取的值组成集合的元素是 .3.由实数x,-x,|x |,332,x x -所组成的集合,最多含( )个元素4.下列结论不正确的是( ) A.O ∈N B. 2∉Q C.O ∉Q D.-1∈Z 5.下列结论中,不正确的是( ) A.若a ∈N ,则-a ∉N B.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R +,则Ra ∈+5、下列关系中正确的是( )A 、{}),(100∈ B 、{}),(101∈ C 、{}100,∈ D 、{}101,∉6、在数集{}x x x -2,2中,实数x 的取值范围是7、已知集合{}R x x ax x A ∈=--=,0122,若集合A 中至多有一个元素,求实数a 的取值范围。

集合的含义及表示教案

集合的含义及表示教案

1.1.1集合的含义及其表示(一)达高中:何汶娉教学目标:1.知识技能:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性. 了解有限集、无限集、空集概念,2.过程方法: 让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. 让学生通过观察、归纳、总结的过程,提高抽象概括能力。

3. 情感态度:使学生感受到学习集合的必要性,增强学习的积极性.教学重点:集合概念、性质;“∈”,“ ”的使用教学难点:集合概念的理解;课型:新授课教学手段:启发引导教学过程:一创设情境,引入课题1.通过预习,在初中学习中,我们接触过哪些集合?请举例说明。

2.提问:根据你对集合的理解,能在生活中举出几个集合的实例吗?生活实例如军训前学校通知:8月15日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

设计说明]顺应学生的认知规律,从他们熟悉的集合入手,消除学生学习新知识的恐惧感,同时,适时地引出,集合的含义究竟是什么呢?这就是本节课要解决的问题,恰当地引出课题——下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。

二研探新知,建构概念1.概念思考1:(1)1~20以内的所有质数;(2)绝对值小于3的整数;(3达高中高一7班的所有男同学;(4)平面上到定点O 的距离等于定长的所有的点.上述四例能否组成集合?并说出集合由什么组成。

板书:把研究的对象称为元素,通常用小写拉丁字母a ,b ,c ,…表示;把一些元素组成的总体叫做集合,简称集,通常用大写字母A ,B ,C ,…表示.[设计说明] 让小组讨论,代表发言,师生共同补充答案,目的是活跃课堂气氛,并轻松地概括出集合及其元素的含义。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案第一章:集合的基本概念1.1 集合的定义讲解集合的定义:集合是由明确的、相互区别的对象组成的整体。

强调集合中元素的性质:无序、互异性、确定性。

1.2 集合的表示方法讲解集合的表示方法:列举法和描述法。

示例解析:如何用列举法和描述法表示给定的集合。

1.3 集合之间的关系讲解集合之间的包含关系、不相交关系和并集等概念。

示例解析:如何表示两个集合的包含关系、不相交关系和并集。

第二章:集合的基本运算2.1 集合的交集讲解集合的交集概念:包含属于两个集合的所有元素的集合。

示例解析:如何计算两个集合的交集。

2.2 集合的并集讲解集合的并集概念:包含属于任意一个集合的所有元素的集合。

示例解析:如何计算两个集合的并集。

2.3 集合的补集讲解集合的补集概念:在全集相对于某个集合的补集中,不属于该集合的所有元素的集合。

示例解析:如何计算一个集合的补集。

第三章:集合的性质与运算规律3.1 集合的性质讲解集合的性质:确定性、互异性、无序性。

示例解析:如何判断给定的集合是否满足这些性质。

3.2 集合运算的规律讲解集合运算的规律:交换律、结合律、分配律等。

示例解析:如何应用这些运算规律解决实际问题。

3.3 集合的分类讲解集合的分类:有限集、无限集、可数集、不可数集等。

示例解析:如何判断给定的集合属于哪种分类。

第四章:数学归纳法4.1 数学归纳法的基本概念讲解数学归纳法的基本概念:数学归纳法是一种证明命题对所有自然数成立的证明方法。

示例解析:如何应用数学归纳法证明一个命题。

4.2 数学归纳法的步骤讲解数学归纳法的步骤:基础步骤、归纳步骤。

示例解析:如何按照这些步骤进行数学归纳法证明。

4.3 数学归纳法的应用讲解数学归纳法的应用:解决与自然数有关的命题。

示例解析:如何利用数学归纳法解决实际问题。

第五章:集合的应用5.1 集合在生活中的应用讲解集合在生活中的应用:例如,购物时的商品分类、朋友圈等。

示例解析:如何运用集合的概念解决生活中的实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的含义及其表示教案
教材分析:集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.
教学目标:
知识目标:
①通过实例了解集合的含义;
②知道常用数集及其专用记号;
③了解集合中元素的确定性、互异性、无序性;
④会用集合语言表示有关数学对象。

⑤能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

⑥培养学生抽象概括的能力。

能力目标:
①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。

因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力。

情感目标:
培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

教学重点:集合的含义与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学方法:学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

教学用具:多媒体
课时安排:1课时
教学过程:
一、引入新课
(情境设置):一位渔民非常喜欢数学,但他怎么也搞不明白集合的意义,于是他请教数学家:“尊敬的先生,请你告诉我,集合是什么?”因为集合是不加定义的概念,数学家很难回答这位渔民。

有一天,他来到渔民的船上,看到渔民撒下渔网,轻轻一拉,许多鱼虾在网中跳动。

数学家非常激动,高兴地告诉渔民:“这就是集合!”
你能理解数学家的这句话吗?
其实,数学家直观地描述了集合的概念,渔民撒下渔网一拉,一部分鱼虾就落在网中,于是把落在网中的所有鱼虾看成一个整体,就构成了一个集合。

二、新课教学
1、集合的概念
集合也可以简称集,是一个不加定义的原始概念。

一般地,“某些指定的对象的全体”叫做集合,集合常用大写字母A、B、C等表示。

例1、下列每组对象能否构成集合?
(1)2、4、6、8、10、12
(2)所有的直角三角形
(3)与一个角的两边距离相等的点的全体。

(4)满足x-3>2的全体实数
(5)本班全体男同学
(6)我国古代四大发明
(7)高一(1)班中个子较高的同学
(8)我们班的任课教师中身体较健康的老师
解析:根据集合的定义,能构成集合的对象一定是确定而明确的,不是似是而非、模棱两可的;而不能构成集合的那些对象没有明确的标准,如例子7中的个子较高的同学,到底多高算个子较高的同学标准不明确。

我们可以这样描述集合:一些能够确定的对象的全体就称为集合,而不能确定的对象的全体就不能构成集合。

明白了这一点,就不难得出答案。

答:(1)、(2)、(3)、(4)、(5)、(6)可以构成集合,(7)、(8)不能构成集合。

2、集合中的元素
集合中的每一个对象称为该集合的元素。

集合的元素常用小写的拉丁字母来表示。

一般用小写字母a、b、c等表示。

3.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是
A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的
个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊
集合时,通常按照习惯的由小到大的数轴顺序书写。

4.集合元素与集合的关系用“属于”和“不属于”表示;
(1)如果a是集合A的元素,就说a属于A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于A,记作a∉A
例2、指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市;(2)乌市第一中学高一(1)班全体学生;(3)较大的数
(4)young 中的字母;(5)大于100的数;(6)小于0的正数。

5.有限集、无限集和空集的概念:
含有有限个元素的集合叫做有限集。

含有无限个元素的集合叫做无限集。

不含任何元素的集合叫做空集,记作∅.空集是个特殊的集合,除了它
本身的实际意义外,在研究集合、集合的运算时,必须予以单独考虑.6.常用数集的记法:非负整数集(或自然数集),记作N,整数集,记。

作Z,有理数集,记作Q,实数集,记作R,正整数集,记作*
N或N
+ 7.集合的表示方法:集合的表示方法,常用的有列举法和描述法
(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;各元素之间用逗号分开。

(2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示
出来,写成{|()}
x p x的形式。

法。

用这种图可以形象的表示出集合之间的关系。

如:“book
构成一个集合
注意:何时用列举法?何时用描述法?
(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,
只能用列举法。

如:集合⎨x2,3x+2,5y3-x,x2+y2⎬
(2)有些集合的元素不能没有遗漏的一一列举出来,或者不便于、不需要一一列举出来,常用描述法。

如:集合⎨(x ,y )⎢y=x2+1⎬;集合⎨1000以内的质数⎬
8.两个集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等。

例3、用列举法和描述法表示方程2230x x --=的解集。

答案:列举法:{1,3}-描述法:2{|23,}x x x x x R =--∈
例4、下列各式中错误的是 ( )
(1){奇数}={|21,}x x k k Z =-∈ (2){|*,||5}{1,2,3,4}x x N x ∈<=
(3)1{(,)|}2
x y x y xy +=⎧⎨=-⎩ {(2,1),(1,2)}=-- (4)33N --∈ 答案:(4)
例5、 求不等式235x ->的解集
答案:{|4,}x x x R >∈
例1. 求方程2210x x ++=的所有实数解的集合。

答案:∅
例6、已知2{2,,},{2,2,}M a b N a b ==,且M N =,求,a b 的值
答案:0,1a b ==或11,42
a b == 三、课堂练习
(1)请学生各举一例有限集、无限集、空集。

(2)P 7练习3
(3)用列举法表示下列集合:
① {|x x 是15的正约数} ②{(,)|{1,2},{1,2}}x y x y ∈∈
③{(,)|2,24}x y x y x y +=-= ④ {|(1),}n x x n N =-∈
*⑤{(,)|3216,,}x y x y x N y N +=∈∈
答案:①{1,3,5,15}②{(1,1),(1,2),(2,1),(2,2)}③82{(,)}33
-④{1,1}-⑤
{(2,5),(4,2)}
(4)用描述法表示下列集合:
①{1,4,7,10,13}; ②{2,4,6,8,10}----- 答案:①{|13,1,2,3,4}x x k k =+=②{|2,1,2,3,4,5}x x k k =-=
四、总结归纳
1.集合的有关概念
2.集合的表示方法
3.常用数集的记法
五、布置作业
课本P 7 1、2、4、5 P
17 1、2。

相关文档
最新文档