【最新】深圳市宝安区七年级下册期中考试数学试卷(有答案)

合集下载

【3套打包】深圳大学附属中学七年级下册数学期中考试题

【3套打包】深圳大学附属中学七年级下册数学期中考试题

最新七年级下学期期中考试数学试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1. 下列各数中,是有理数的是()A. B. C. D.2. 下列语句中正确的是()A.-9的平方根是-3B.9的平方根是3C.9的立方根是D.9的算术平方根是33. 下列图形中,由AB//CD,能得到的是()A. B. C. D.4. 在平面直角坐标中,已知点P(-2,3),则点P在()A.第一象限B. 第二象限C. 第三象限D. 第四象限5. 如果是关于的二元一次方程,那么的值分别为()A. B. C. D.6. 线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A. (2,9)B. (5,3)C.(1,2)D.(-9,-4)7.如图,把一块三角板的直角顶点放在直尺的一边上,如果,那么为()A. B. C. D.8.某年级学生共有246人,其中男生人数比女生人数的2倍多2人,则下面所列的方程组中符合题意的是()A. B.C. D.9. 已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(-3,4)B. (3,4)C.(-4,3)D.(4,3)10.在平面直角坐标系中,对于平面内任一点,若规定以下三种变换:○1○2○3按照以上变换有:那么等于()A.(-5,-3)B. (5,3)C.(5,-3)D. (-5,3)二、填空题(本大题共6小题,每小题3分,共18分)11. 如图,直线两两相交,,,则=_________.12. 已知一个正数的两个平方根是和,则这个正数的值为______.13. 命题“两直线平行、同旁内角互补”中,题设是_________,结论是_______,此命题是_______命题.14. 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则=__________.15.在方程,当时,=_______.16.已知长方形ABCD中,AB=5,BC=8,并且AB//轴,若点A的坐标为(-2,4),则点C的坐标为_______.三、解答题(本大题共8题,共72分,解答应写出文字说明、证明过程或演算步骤.)17,计算:(1)(2)18.解下列方程组:(1)(2)19.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系,按要求解答下列问题:(1)写出△ABC三个顶点的坐标.(2)画出△ABC向右平移6个单位后的图形△.(3)求△ABC的面积.20.阅读理解填空,并在括号内填注理由.如图,已知AB//CD,M,N分别交AB,CD于点E,F,,求证:EP//FQ.证明:AB//CD(_________),(__________).又(_____________)(___________)即:EP//______.(________)21.已知:如图,,和互余,BE FD于G点,求证:AB//CD.22.已知方程组的解互为相反数,求的值,并求此方程组的解.23.某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价-进价),这两种服装的进价,标价如下表:(1)这两种服装各购进的件数.(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?24.如图1,在平面直角坐标系中,A(),C(),且满足,过C 作CB轴于B.(1)求△ABC的面积.(2)若过B作BD//AC交轴于D,且AE、DE分别平分、,如图2,求的度数.(3)在轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案1.D.2.D.3.B.4.B.5.D.6.C.7.B.8.B.9.C.10.B.11.140°;12.49;13.两条直线被第三条直线所截的同旁内角互补,着两条直线平行;14.110°;15.-4;16.(6,9)或(-10,9);17.(1)原式=-3;(2)x=12;18.(1)x=1,y=1;(2)x=2,y=3;19.解:(1)A (-1,8),B (-5,3),C (0,6);(2)画图略;(3)面积为6.5;20.解:已知;两直线平行,同位角相等;已知;同位角相等;∠MFQ ,QF ;同位角相等,两直线平行.21.证明:∵BE ⊥FD∴∠EGD=90°∴∠1+∠D=90°∵∠2+∠D=90°∴∠1=∠2∵∠C=∠1∴∠C=∠2∴AB//CD.22.解:由题意只可知,x+y=0.4m+0.4,因为x+y=0,所以m=-1.23.解:(1)设A 型购进x 件,B 型购进y 件⎩⎨⎧=+=+38006040600010060y x y x 最新七年级下学期期中考试数学试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1. 下列各数中,是有理数的是( ) A. B. C. D.2. 下列语句中正确的是( )A.-9的平方根是-3B.9的平方根是3C.9的立方根是D.9的算术平方根是33. 下列图形中,由AB//CD ,能得到的是( )A. B. C. D.4. 在平面直角坐标中,已知点P (-2,3),则点P 在( )A.第一象限B. 第二象限C. 第三象限D. 第四象限5. 如果是关于的二元一次方程,那么的值分别为( ) A. B. C. D.6. 线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A. (2,9)B. (5,3)C.(1,2)D.(-9,-4)7.如图,把一块三角板的直角顶点放在直尺的一边上,如果,那么为( ) A. B. C. D.8.某年级学生共有246人,其中男生人数比女生人数的2倍多2人,则下面所列的方程组中符合题意的是( ) A. B.C. D.9. 已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(-3,4)B. (3,4)C.(-4,3)D.(4,3)10.在平面直角坐标系中,对于平面内任一点,若规定以下三种变换:○1○2○3按照以上变换有:那么等于()A.(-5,-3)B. (5,3)C.(5,-3)D. (-5,3)二、填空题(本大题共6小题,每小题3分,共18分)11. 如图,直线两两相交,,,则=_________.12. 已知一个正数的两个平方根是和,则这个正数的值为______.13. 命题“两直线平行、同旁内角互补”中,题设是_________,结论是_______,此命题是_______命题.14. 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则=__________.15.在方程,当时,=_______.16.已知长方形ABCD中,AB=5,BC=8,并且AB//轴,若点A的坐标为(-2,4),则点C的坐标为_______.三、解答题(本大题共8题,共72分,解答应写出文字说明、证明过程或演算步骤.)17,计算:(1)(2)18.解下列方程组:(1)(2)19.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系,按要求解答下列问题:(1)写出△ABC三个顶点的坐标.(2)画出△ABC向右平移6个单位后的图形△.(3)求△ABC的面积.20.阅读理解填空,并在括号内填注理由.如图,已知AB//CD,M,N分别交AB,CD于点E,F,,求证:EP//FQ.证明:AB//CD(_________),(__________).又(_____________)(___________)即:EP//______.(________)21.已知:如图,,和互余,BE FD于G点,求证:AB//CD.22.已知方程组的解互为相反数,求的值,并求此方程组的解.23.某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价-进价),这两种服装的进价,标价如下表:(1)这两种服装各购进的件数.(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?24.如图1,在平面直角坐标系中,A(),C(),且满足,过C 作CB轴于B.(1)求△ABC的面积.(2)若过B作BD//AC交轴于D,且AE、DE分别平分、,如图2,求的度数.(3)在轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案1.D.2.D.3.B.4.B.5.D.6.C.7.B.8.B.9.C.10.B.11.140°;12.49;13.两条直线被第三条直线所截的同旁内角互补,着两条直线平行;14.110°;15.-4;16.(6,9)或(-10,9);17.(1)原式=-3;(2)x=12;18.(1)x=1,y=1;(2)x=2,y=3;19.解:(1)A (-1,8),B (-5,3),C (0,6);(2)画图略;(3)面积为6.5;20.解:已知;两直线平行,同位角相等;已知;同位角相等;∠MFQ ,QF ;同位角相等,两直线平行.21.证明:∵BE ⊥FD∴∠EGD=90°∴∠1+∠D=90°∵∠2+∠D=90°∴∠1=∠2∵∠C=∠1∴∠C=∠2∴AB//CD.22.解:由题意只可知,x+y=0.4m+0.4,因为x+y=0,所以m=-1.23.解:(1)设A 型购进x 件,B 型购进y 件⎩⎨⎧=+=+38006040600010060y x y x 最新人教版七年级(下)期中模拟数学试卷(含答案)人教版七年级下学期期中考试数学试题(完卷时间:120分钟 满分:100分)一、选择题(共10小题,每小题2分,满分20分)1. 观察下面图案在A 、B 、C 、D 四幅图案中,能通过图案平移得到的是( )第1题图A. B. C. D.2. 下列四个数中,无理数是( )A.41.0B.711 C.2- D.1.0- 3. 如图,在阴影区域内的点可以是( )A.()21,B.()23-,C.()23,-D.()23--, 4. 若b a <,则下列不等式中成立的是( )A.55+>+b aB.b a 55->-C.b a 33>D.33b a > 5. 下列台题中是假命题的是( )A.同旁内角互补,两直线平行B.在同一平面内,若直线b a ⊥,则a 与b 相交所成的角为直角C.如果两个角互补,那么这两个角是一个锐角,一个钝角D.平行于同一条直线的两条直线平行6. 满足02019>+x 的最小整数解是( )A. 2020-B. 2019-C. 2018-D. 2020 7. 已知a ,b 满足方程组⎩⎨⎧=-=+43125b a b a ,则b a +的值为( ) A. 4- B. 4 C. 2- D. 28. 如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A 与表示3的点重合,滚动一周后到达点B ,点B 表示的数是( )第3题图A.π2-B. π23-C. π23--D.π23+-9. 平面直角坐标系中,点()32,-A ,()41-,B ,经过点A 的直线y L //轴,若点C 为直线L 上的个动点,则当线段BC 的长度最小时,点C 的坐标为( )A.()41,B.()32--,C.()31,D.()42--, 10. 把m 12长的彩绳截成m 2或m 3的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A.1种B.2种C.3种D.4种二、填空题(共8小题,每小题3分,满分24分)11. 41的算术平方根为 . 12. 命题“对顶角相等”,写成“如果……,那么……”是 .13. 已知⎩⎨⎧=-=21y x 是二元一次方程1=+ky x 的一组解,则=k . 14. 如图,CD AB //,DE BC //,若 40=∠B ,则D ∠的度数是 .已知点()183--a a P ,,若点P 在y第14题图。

2020-2021深圳宝安区桥兴学校初一数学下期中试题及答案

2020-2021深圳宝安区桥兴学校初一数学下期中试题及答案

2020-2021深圳宝安区桥兴学校初一数学下期中试题及答案一、选择题1.无理数23的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.3.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1600名学生的体重是总体B.1600名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本4.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度5.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向左平移了a个单位长度,并且向下平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度6.下列说法正确的是()A.一个数的算术平方根一定是正数B.1的立方根是±1C.255=±D.2是4的平方根7.下列现象中是平移的是()A.将一张纸对折B.电梯的上下移动C.摩天轮的运动D.翻开书的封面8.如图,数轴上表示2、5的对应点分别为点C,B,点C是AB的中点,则点A表示的数是()A .5-B .25-C .45-D .52-9.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°10.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .411.如图,AB ∥CD ,EF 平分∠GED ,∠1=50°,则∠2=( )A .50°B .60°C .65°D .70° 12.在平面直角坐标系中,点P(1,-2)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题 13.比较大小:-________-3. 14.如图,把一长方形纸片ABCD 沿EF 折叠后ED 与BC 交于点G ,D 、C 分别在M ,N 的位置,若∠EFG=56°,则∠EGB =___________.15.不等式3342x x ->-的最大整数解是__________.16.如图,直线a 平移后得到直线b ,∠1=60°,∠B =130°,则∠2=________°.17.已知点P (x+3,x ﹣4)在x 轴上,则x 的值为_____________ .18.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.19.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____. 20.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.三、解答题21.如图,ABC V 的三个顶点的坐标分别是()()()2,33,1,5,2A B C ---,,将ABC V 先向右平移6个单位长度,再向下平移3个单位长度得到111A B C △.(1)在平面直角坐标系中,画出平移后的111A B C △;(2)求出111A B C △的面积;(3)点P 是x 轴上的一点,若11PA C V 的面积等于111A B C △的面积,求点P 的坐标.22.3127012100-23.已知方程组71ax by x y +=⎧⎨-=⎩和53ax by x y -=⎧⎨+=⎩的解相同,求a 和b 的值. 24.已知 2x -y 的平方根为±3,-4 是 3x +y 的一个平方根,求 x -y 的平方根. 25.先阅读,再解方程组.解方程组10,4()5x y x y y --=⎧⎨--=⎩①②时,可由①得1x y -=③,然后再将③代入②,得415y ⨯-=,解得1y =-,从而进一步得0,1.x y =⎧⎨=-⎩这种方法被称为“整体代入法”. 请用上述方法解方程组2320,23529.7x y x y y --=⎧⎪-+⎨+=⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,∴1.52<,∴34<<,故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.3.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.5.C解析:C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,图案向左平移了a个单位长度,并且向下平移了a个单位长度.故选:C.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.D解析:D【解析】【分析】根据平方根、算术平方根、立方根的定义,即可解答.A、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B、1的立方根是1,错误;C5,错误;D、2是4的平方根,正确;故选:D【点睛】本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.7.B解析:B【解析】【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误.故选B.【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.8.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.10.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.11.C解析:C【解析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理. 12.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.<【解析】【分析】由3<10<4可得到结果【详解】因为3<10<4|-10|>|-3|所以-10<-3故答案为:<【点睛】考核知识点:实数的大小比较估计无理数大小是关键解析:<【解析】【分析】由可得到结果.【详解】因为, |-|>|-3|所以-<-3.故答案为:<【点睛】考核知识点:实数的大小比较.估计无理数大小是关键.14.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF由AD∥BC 得∠EFG=∠DEF=56°进而求出∠DEG的度数再由AD∥BC求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应解析:112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF,由AD∥BC得∠EFG=∠DEF=56°,进而求出∠DEG的度数,再由AD∥BC,求出∠DEG=∠EGB.【详解】解:∵折叠,根据折叠前后对应的角相等∴∠DEF=∠GEF∵AD∥BC∴∠EFG=∠DEF=56°∴∠DEG=∠DEF+∠GEF=56°+56°=112°又∵AD∥BC∴∠EGB=∠DEG=112°.故答案为:112°【点睛】本题结合折叠考查了平行线的性质,熟记两直线平行时,内错角、同位角相等,同旁内角互补这个性质.15.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的解析:0【解析】【分析】据解不等式的一般步骤:移项,合并,系数化为1解答.【详解】解:移项得:-3x-4x>-2-3.合并同类项得:-7x>-5.化系数为1得:57x .故不等式的最大整数解是0.【点睛】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.16.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70 解析:【解析】【分析】【详解】解:过B作BD∥a,∵直线a平移后得到直线b,∴a∥b,∴BD∥b,∴∠4=∠2,∠3=∠1=60°,∴∠2=∠ABC-∠3=70°,故答案为:70.17.x=4【解析】【分析】【详解】解:∵点P(x+3x−4)在x轴上∴x−4=0解得:x=4故答案为:x=4解析:x=4【解析】【分析】【详解】解:∵点P(x+3,x−4)在x轴上,∴x−4=0,解得:x=4,故答案为:x=4.18.垂线段最短【解析】【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在解析:垂线段最短【解析】【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.19.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1) 解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.20.【解析】【分析】设代入原式化简即可得出结果【详解】原式故答案为:【点睛】本题考查了整式的混合运算设将式子进行合理变形是解题的关键 解析:12020【解析】【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 三、解答题21.(1)详见解析;(2)52;(3)()-1,0P 或()90,. 【解析】【分析】(1)根据点的平移规律确定平移后点的坐标,再将所得点顺次连接即可解答; (2)用割补法求解可得答案;(3)由(2)可知111A B C △的面积是52,所以11PA C V 的面积也是52,因为1P A 、都在x 轴上,所以直接以1PA 为底可得1PA 的长为5,再分P 在A 1的左侧和右侧两种情况讨论即可求出P 的坐标.【详解】解:∵()()()2,33,1,5,2A B C ---,向右平移6个单位长度,再向下平移3个单位长度, ()()()1114,0,3,2,1,1A B C ∴--,将这三个点描出并依次连接得到答案如图:;(2)用割补法可得:1111115231312122222△S =⨯-⨯⨯-⨯⨯-⨯⨯=A B C ; (3)由(2)可知111A B C △的面积是52, ∴11PA C V 的面积也是52, ∵1P A 、都在x 轴上,1151=22PA ∴⨯g , 解得1=5PA ,∵()140A ,,()-1,0P ∴或()90,.【点睛】本题考查的是作图中的平移变换,熟知图形平移不变性的性质是解答此题的关键.22.9-310【解析】【分析】根据立方根,二次根式的性质,绝对值的性质进行计算即可.【详解】原式=19-30=-31010-+【点睛】此题考查实数的运算,解题关键在于掌握运算法则. 23.31a b =⎧⎨=⎩【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【详解】解:依题意得13x y x y -=⎧⎨+=⎩:,解得21x y =⎧⎨=⎩:, 将其分别代入7ax by +=和5ax by -=组成一个二元一次方程组2725a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=⎩. 【点睛】本题考查了方程组的解的定义,正确根据定义转化成解方程组的问题是关键,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.24.±2【解析】【分析】根据题意可求出2x-y 及3x+y 的值,从而可得出x-y 的值,继而可求出x-y 的平方根.【详解】解:由题意得:2x-y=9,3x+y=16,解得:x=5,y=1,∴x-y=4,∴x-y 的平方根为=±2. 【点睛】本题主要考查了平方根的知识,难度不大,解题的关键是求x 、y 的值.25.7,4.x y =⎧⎨=⎩【解析】【分析】观察方程组的特点,把23x y -看作一个整体,得到232x y -=,将之代入②,进行消元,得到25297y ++=,解得4y =,进一步解得7x =,从而得解. 【详解】 解:2320,23529,7x y x y y --=⎧⎪⎨-++=⎪⎩①②由①,得232x y -=,③ 把③代入②,得25297y ++=,解得4y =. 把4y =代入③,得2342x -⨯=,解得7x =.故原方程组的解为7,4.x y =⎧⎨=⎩【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.。

2018-2019学年深圳市宝安区七年级下期中数学试卷含答案解析 (1)

2018-2019学年深圳市宝安区七年级下期中数学试卷含答案解析 (1)

2018-2019学年广东省深圳市宝安区七年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a3 2.(3分)下列各式中不能用平方差公式计算的是()A.(2x+y)(2x﹣y)B.(x﹣y)(y﹣x)C.(﹣x+y)(﹣x﹣y)D.(x+y)(﹣x+y)3.(3分)PM2.5是指大气中直径小于或等于2.5um(微米)的颗粒物,也称为可入肺颗粒物.2.5微米=0.000 002 5米,用科学记数法可表示为()米.A.2.5×106B.2.5×10﹣6C.2.5×107D.2.5×10﹣74.(3分)要使(x2+ax+1)(x﹣2)的结果中不含x2项,则a为()A.﹣2B.0C.1D.25.(3分)如图,已知:∠3=∠4,那么下列结论中,正确的是()A.∠C=∠D B.AD∥BC C.∠1=∠2D.AB∥CD6.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm7.(3分)如图,若AB∥DE,则∠B,∠C,∠D三者之间的关系是()A.∠B+∠C+∠D=180°B.∠B+∠C﹣∠D=180°C.∠B+∠D﹣∠C=180°D.∠C+∠D﹣∠B=180°8.(3分)下列叙述正确的是()①三角形的中线、角平分线都是射线②三角形的三条高线所在的直线交于一点③三角形的中线就是经过一边中点的线段④三角形的三条角平分线交于一点⑤三角形的中线将三角形分成面积相等的两个小三角形.A.②④⑤B.①②④C.②④D.④9.(3分)如图,在△ABC和△DEF中,已知∠B=∠DEF,AB=ED,加上该条件后仍无法证明△ABC≌△DEF的是()A.AC=DF B.BE=CF C.AC∥DF D.∠A=∠D 10.(3分)在△ABC中,AC边上的高画得正确的是()A.B.C.D.11.(3分)已知x=255,y=344,z=433,则x,y,z的大小关系为()A.x<z<y B.x<y<z C.y<z<x D.z<y<x 12.(3分)让我们按以下步骤计算第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,计算n32+1得a3;依此类推,则a2015=()A.26B.65C.122D.无法计算二、填空题(每小题3分,共12分)13.(3分)如果x2﹣px+25是一个完全平方式,那么p=.14.(3分)如果一个角的补角是120°,那么这个角的余角是.15.(3分)小军用100元去买单价为4元的笔记本,他买完笔记本之后剩余的钱y(元)与买这种笔记本数量x(本)之间的关系式为.16.(3分)如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.三、解答题(共52分)17.(16分)计算(1)a5•(﹣2a)3+a6•(﹣3a)2(2)(4a2﹣6ab+2a)÷2a(3)(a+b+c)(a﹣b+c)(4)20142﹣2013×2015(用整式乘法公式进行计算)18.(6分)先化简,再求值:[(2a﹣b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=﹣,b=1.19.(4分)妈妈在用洗衣机洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是分钟;(2)清洗时洗衣机中的水量是升;(3)洗衣机的清洗时间为分钟;(4)已知洗衣机的排水速度为每分钟19升,如果排水时间为2分钟,则排水结束时洗衣机中剩下的水量为升.20.(6分)完成下列推理过程已知:∠C+∠CBD=180°,∠ABD=85°,∠2=60°,求∠A的度数解:∵∠C+∠CBD=180°(已知)∴DB∥CE()∴∠1=()∵∠2=∠3()∴∠1=∠2=60°()又∵∠ABD=85°(已知)∴∠A=180°﹣∠ABD﹣∠1=(三角形三内角和为180°)21.(5分)如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.22.(6分)已知a+b=4,ab=2,求下列各式的值:(1)(a﹣b)2(2)a2+b2.23.(9分)如图1,点P、Q分别是等边△ABC边AB、BC上的点,其中AP=BQ.连接CP、AQ相交于点M,(1)求证:△ABQ≌△CAP;(2)求∠CMQ的度数;(3)如图2,若点P、Q在等边△ABC边AB、BC的延长线上,仍有AP=BQ,直线AQ、CP交点为M,则∠QMC的度数为多少?2016-2017学年广东省深圳市宝安区新华中学七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.2.【解答】解:原式=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2,故选:B.3.【解答】解:0.000 002 5米,用科学记数法可表示为2.5×10﹣6米,故选:B.4.【解答】解:原式=x3+(a﹣2)x2+(1﹣2a)x﹣2,由结果中不含x2项,得到a﹣2=0,解得:a=2,故选:D.5.【解答】解:∵∠3=∠4,∴AD∥BC,故选:B.6.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.7.【解答】解:如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠2=∠B,∠1=180°﹣∠D,∵∠C=∠1+∠2,∴∠C=180°﹣∠D+∠B,∴∠C+∠D=180°+∠B.故选:D.8.【解答】解:①三角形的角平分线和中线都是线段.故错误;②三角形的三条高线所在的直线交于一点,故正确;③三角形一边的中点与此边所对顶点的连线叫做三角形的中线,过三角形一边的中点的线段不一定是三角形的中线,故错误;④三角形的三条角平分线交于一点,故正确;⑤三角形的中线是三角形一顶点和对边中点的连线,根据等底同高的两个三角形面积相等,故正确;综上所述,正确的结论是②④⑤.故选:A.9.【解答】解:∠B=∠DEF,AB=ED,A、添加AC=DF不能证明△ABC≌△DEF,故此选项符合题意;B、添加BE=CF,得到BC=EF,可利用SAS证明△ABC≌△DEF,故此选项不符合题意;C、添加AC∥DF,可得∠ACB=∠F,即∠A=∠D,可利用ASA证明△ABC≌△DEF,故此选项不符合题意;D、添加∠A=∠D可利用ASA证明△ABC≌△DEF,故此选项不符合题意;故选:A.10.【解答】解:△ABC中,AC边上的高是自点B向AC所在直线作垂线,顶点B和垂足间的线段即为AC边上的高,符合高的定义的只有C选项,故选:C.11.【解答】解:x=255=(25)11=3211,y=344=(34)11=8111,z=433=(43)11=6411,则x<z<y.故选:A.12.【解答】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=122,a4=(1+2+2)2+1=26,…∴2015÷3=671…2,∴a2015=65,故选:B.二、填空题(每小题3分,共12分)13.【解答】解:∵(x±5)2=x2±10x+25,而x2﹣px+25是一个完全平方式,∴p=±10.故答案为±10.14.【解答】解:这个角为180°﹣120°=60°,这个角的余角为90°﹣60°=30°.故答案为:30°.15.【解答】解:依题意得,剩余的钱y(元)与买这种笔记本的本数x之间的关系为:y=100﹣4x.故答案为:y=100﹣4x.16.【解答】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.三、解答题(共52分)17.【解答】解:(1)原式=a5•(﹣8a3)+a6•9a2=﹣8a8+9a8=a8(2)原式=2a﹣3b+1(3)原式=(a+c+b)(a+c﹣b)=(a+c)2﹣b2=a2+2ac+c2﹣b2(4)原式=20142﹣(2014﹣1)(2014+1)=20142﹣20142+1=118.【解答】解:[(2a﹣b)2﹣(2a+b)(2a﹣b)]÷2b=[4a2﹣4ab+b2﹣4a2+b2]÷2b=[﹣4ab+2b2]÷2b=﹣2a+b,当a=﹣,b=1时,原式=1+1=2.19.【解答】解:(1)由图可知洗衣机的进水时间是4分钟.(2)清洗时洗衣机中的水量是40升.(3)洗衣机的清洗时间=15﹣4=11分钟.(4)∵排水的时间是2分钟,排水速度为每分钟19升∴排水结束时洗衣机中剩下的水量是40﹣2×19=2(升).故答案分别为4,40,11,2.20.【解答】解:∵∠C+∠CBD=180°(已知)∴DB∥CE(同旁内角互补、两直线平行)∴∠1=∠3(两直线平行、同位角相等)∵∠2=∠3(对顶角相等)∴∠1=∠2=60°(等量代换)又∵∠ABD=85°(已知)∴∠A=180°﹣∠ABD﹣∠1=35°(三角形三内角和为180°),故答案为:同旁内角互补、两直线平行;∠3;两直线平行、同位角相等;对顶角相等;等量代换;35°.21.【解答】解:∵CD是AB边上高,∴∠BDF=90°,∠ABE=∠BFC﹣∠BDF=113°﹣90°=23°,∵BE为角平分线,∴∠CBF=∠ABE=23°,∴∠BCF=180°﹣∠BFC﹣∠CBF=44°.22.【解答】解:当a+b=4,ab=2时,(1)原式=a2﹣2ab+b2=a2+2ab+b2﹣4ab=(a+b)2﹣4ab=16﹣4×2=8(2)原式=a2+b2+2ab﹣2ab=(a+b)2﹣2ab=16﹣4=1223.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC,∠B=∠P AC=60°,在△ABQ与△CAP中,,∴△ABQ≌△CAP;(2)∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠BAQ+∠CAM=60°,∴∠QMC=60°;(3)∠QMC的度数为120°,理由:∵△ABC是等边三角形,∴AB=AC,∠B=∠P AC=60°,在△ABQ与△CAP中,,∴△ABQ≌△CAP,∴∠APC=∠AQB,∠BAQ=∠ACP,∵∠BAC=∠ACB=60°,∴∠BCP=∠CAQ,∵∠CMQ=∠APC+∠BAQ=∠B﹣∠PCB=∠BAC+∠CAQ=120°.。

广东省深圳中学七年级下学期期中考试数学试题(解析版)

广东省深圳中学七年级下学期期中考试数学试题(解析版)

()
时间/时
0
4
8
12
16
4
5
6
8
A. 8 时到 12 时 B. 12 时到 16 时 C. 16 时到 20 时 D. 20 时到 24 时
【答案】D
【解析】解:A 选项,水位上升的速度为:(4 − 3) ÷ (12 − 8) = 0.25 米/时
B 选项,水位上升的速度为:(5 − 4) ÷ (16 − 12) = 0.25 米/时
广东省深圳中学七年级下学期期中考试数学试题
一、选择题(本大题共 12 小题,共 36.0 分)
1. 计算x3 ⋅ x2的结果是( )
A. x6
B. x5
C. x2
D. x
【答案】B 【解析】解:x3 ⋅ x2 = x3+2 = x5. 故选:B. 根据同底数幂相乘,底数不变,指数相加,即am ⋅ an = am+n,计算即可. 本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.
2. 如图点 P 是直线 a 外一点,PB ⊥ a,A、B、C、D 都在直线 a 上,下列线段中最短 的是( )
A. PA
B. PB
C. PC
D. PD
【答案】B
【解析】解:如图,PB 是点 P 到 a 的垂线段,
∴下列线段中最短的是 PB.
故选:B.
根据垂线段最短进行解答.
本题主要考查了垂线段最短的性质,需要熟记.
16. 已知 8 ⋅ (2m)n = 64,|n| = 1,则 m =______. 【答案】± 3 【解析】解:∵ |n| = 1, ∴ n =± 1, 当 n = 1 时,已知等式变形得:23+m = 26,即 3 + m = 6, 解得:m = 3; 当 n =− 1 时,已知等式变形得:23−m = 26,即 3 − m = 6, 解得:m =− 3, 综上,m =± 3, 故答案为:± 3 利用绝对值的代数意义求出 n 的值,代入计算即可求出 m 的值. 此题考查了幂的乘方与积的乘方,以及绝对值,熟练掌握运算法则是解本题的关键.

2022-2023学年广东省深圳中学初中部七年级(下)期中数学试卷-学生版

2022-2023学年广东省深圳中学初中部七年级(下)期中数学试卷-学生版

2022-2023学年深圳中学初中部七年级(下)期中数学试卷一、选择题:(每小题只有一个正确选项,每题3分,共30分)1.(3分)如图,已知直线a∥b,∠1=70°,则∠2等于()A.110°B.90°C.70°D.60°2.(3分)下列各组数不可能是一个三角形三边的边长的是()A.3,4,5B.1,3,4C.6,8,10D.3,3,33.(3分)下列运算正确的是()A.a+a2=a3B.a2•a3=a6C.(a4)3=a7D.a5÷a3=a2 4.(3分)蚕丝是大自然中的天然纤维,是中国古代文明产物之一,也成为散发着现代科学技术魅力的新材料.某蚕丝的直径大约是0.000016米,0.000016用科学记数法表示为()A.0.16×10﹣4B.1.6×10﹣4C.1.6×10﹣5D.16×10﹣4 5.(3分)要画一个面积为30cm2长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为()A.常量为30,变量为x、y B.常量为30、y,变量为xC.常量为30、x,变量为y D.常量为x、y,变量为306.(3分)下列各式中,可以运用平方差公式计算的是()A.(﹣a+c)(a﹣c)B.(﹣a﹣1)(﹣a+1)C.(x﹣2y)(2x+y)D.(﹣x﹣y)(x+y)7.(3分)下列说法不正确的是()A.同角的余角相等B.对顶角相等C.三角形三条高所在的直线一定交于一点,并且该点位于三角形内部D.平面内,过一点有且只有一条直线与已知直线垂直8.(3分)某地区用电量与应缴电费之间的关系如表:则下列叙述错误的是()用电量(千瓦•时)1 2 3 4 … 应缴电费(元) 0.55 1.10 1.65 2.20 …A .用电量每增加1千瓦•时,电费增加0.55元B .若用电量为8千瓦•时,则应缴电费4.4元C .若应缴电费为2.75元,则用电量为5千瓦•时D .若小明的应缴电费比小红多2元,则小明的用电量比小红的用电量多1.1千瓦•时9.(3分)如图,有正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +3b ),宽为(a +b )的大长方形,则需要C 类卡片张数为( )A .2B .3C .4D .510.(3分)已知a 1,a 2,…,a 2023均为正数,且满足E =(a 1+a 2+⋯+a 2022)(a 2+a 3+⋯+a 2022﹣a 2023),F =(a 1+a 2+⋯+a 2022﹣a 2023)(a 2+a 3+⋯+a 2022),则E ,F 之间的关系是( )A .E <FB .E =FC .E >FD .视a 1,a 2,…,a 2023具体取值而定二、填空题:(每题3分,共15分)11.(3分)如图,一条公路两次拐弯后,与原来的方向相同,第一次拐的角是130°,那么第二次拐的角是12.(3分)如图,AD 是△ABC 的中线,AE 是△ABD 的中线,若BE =3,则BC = .13.(3分)若a m=8,a n=2,则a(m﹣n)的值是.14.(3分)小刚计算一道整式乘法:(3x+a)(2x+3),得到的结果为6x2+bx﹣6,则a+b=.15.(3分)小明要到距家1680米的学校上学,一天,小明从家出发匀速步行去学校上学.10分钟后,小明爸爸发现小明忘带数学书,立即拿起数学书匀速骑车去追小明,5分钟后追上小明后以原速原路回家,小明拿到书后以原速的倍快步赶往学校,到达学校时小明爸爸也同时到家.若拿书时两人交流时间忽略不计,两人相距的路程y(米)与小明出发的时间x(分钟)之间的函数关系如图所示,则小明爸爸骑车的速度是米/分钟.三、解答题:(本题共7小题,其中第16题9分,第17题6分,第18题7分,第19题7分,第20题8分,第21题9分,第22题9分,共55分)16.(9分)计算:(1);(2)(﹣3xy)2•(﹣4xy3)÷(﹣12x2y);(3)(x﹣2)2﹣(x﹣2)(x+1).17.(6分)先化简,再求值:(2a+b)2﹣2(3ab+b2)+(2a+b)(﹣2a+b),其中a=1,b =﹣2.18.(7分)问题探究:尺规作图:作一个角等于已知角.如图①,已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.(1)作法:步骤1:如图②,以点为圆心,任意长为半径画弧,交OA、OB于点C、D;步骤2:作射线O′A′,以点O′为圆心,长为半径画弧,交O′A′于点C′;步骤3:以点C′为圆心,长为半径画弧,与步骤2中所画的弧相交于点D′;步骤4:过点D′画射线O′B′,则∠A′O′B′=∠AOB.根据以上作图和求证过程完成以上填空:(2)实践应用:如图4,点P为∠AOB的边OB上一点,①求作:过点P作∠CPB,且C在∠AOB内部,使得∠CPB=∠AOB;(要求保留作图痕迹)②直线CP和OA的位置关系是.19.(7分)如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完整.证明:∵EF∥AD,(已知)∴∠2=.()又∵∠1=∠2,(已知)∴∠1=,()∴,()∴∠DGA+∠BAC=180°.()20.(8分)如图,M,N两地相距50千米,甲、乙两人于某日下午从M地前往N地,图中的折线ABC和线段EF分别表示甲与乙所行驶的路程s和时间t的关系.根据图象回答下列问题:(1)图中自变量是,因变量是;(2)甲出发小时后,乙才开始出发;(3)甲在BC段路程中的平均速度是千米/小时;乙的平均速度是千米/小时;(4)图中D点表示;(5)根据图象上的数据,乙出发后经过小时就追上甲.21.(9分)【知识生成】通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a的正方形中剪掉一个边长为b的小正方形(a>b).把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a2﹣b2,图2中阴影部分面积可表示为(a+b)(a﹣b),因为两个图中的阴影部分面积是相同的,所以可得到等式:a2﹣b2=(a+b)(a﹣b).【拓展探究】图3是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1:,方法2:;(2)由(1)可得到一个关于(a+b)2、(a﹣b)2、ab的等量关系式是;(3)若a﹣b=5,ab=2,则(a+b)2=;【知识迁移】(4)如图5,正方形ABCD和正方形EFGH的边长分别为a,b(a>b),若a+b=6,ab =5,E是AB的中点,则图中的阴影部分面积的和是.22.(9分)【背景】在同一平面内,两条直线的位置关系有两种,分别是平行和相交,在相交这种位置关系中,包括垂直这种特殊位置关系.【应用】(1)如图1,PQ∥MN,A,B分别在PQ,MN上,AC平分∠P AB交MN于点C,D是直线MN上一点,AE平分∠BAD交MN于点E.①当D在点B的右侧,且∠ADC=30°,∠AEC=50°,求∠BAD和∠P AC的度数;②过点E作EF⊥AC,垂足为F,记∠AEF=x度,∠ADB=y度,直接写出y与x的关系式.【拓展】(2)中欧班列是高质量共建“一带一路”的互联互通大动脉,中欧班列为了安全起见在某段铁路两旁安置了A,B两座可旋转探照灯.如图2,假定主道路是平行的,即PQ∥MN,连结AB,且∠ABN=45°.灯A发出的射线AC自AQ顺时针旋转至AP便立即回转,灯B发出的射线BD自BM顺时针旋转至BN便立即回转,两灯不停交叉照射巡视.灯A转动的速度是3度/秒,灯B转动的速度是9度/秒.若它们同时开始转动,设转动时间为t秒,当灯A射线AC从AQ转至AP的过程中,AC与BD互相垂直时,请直接写出此时t的值.。

广东省深圳市七年级下学期数学期中考试试卷

广东省深圳市七年级下学期数学期中考试试卷

广东省深圳市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算正确的是A .B .C .D .2. (2分)水滴石穿:水珠不断滴在一块石头上,经过40年,石头上形成一个深为4.8cm的小洞,则平均每个月小洞增加的深度(单位:m,用科学记数法表示)为()A . 4.8×10-2mB . 1.2×10-4mC . 1×10-2mD . 1×10-4m3. (2分) (2018八上·广东期中) 以下列各组线段为边,不能组成三角形的是()A . 2cm,3cm,4cmB . 1cm,2cm,3cmC . 3cm,4cm,5cmD . 4cm,2cm,3cm4. (2分)(2014·崇左) 如图,直线AB∥CD,如果∠1=70°,那么∠BOF的度数是()A . 70°B . 100°C . 110°D . 120°5. (2分) (2019七上·江阴期中) 下列说法错误的有()①有理数包括正有理数和负有理数;②绝对值等于它本身的数是非负数;③若|b|=|﹣5|,则b=-5 ;④当b=2时,5﹣|2b﹣4|有最小值是5;⑤若、互为相反数,则;⑥ 是关于、的六次三项式.A . 2个B . 3个C . 4个D . 5个6. (2分) (2018八上·天台月考) 下列运算正确的是()A .B .C .D .7. (2分)在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是()A . ∠A=50°,∠B=70°B . ∠A=70°,∠B=40°C . ∠A=30°,∠B=90°D . ∠A=80°,∠B=60°8. (2分) (2019七下·泰兴期中) 方程2x﹣=0,3x+y=0,2x+xy=1,3x+y﹣2x=0,x2﹣x+1=0中,二元一次方程的个数是()A . 5个B . 4个C . 3个D . 2个9. (2分) (2019九上·东台期中) 如图一个扇形纸片的圆心角为90°,半径为4,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,则图中阴影部分的面积为()A .B .C .D .10. (2分) (2018八上·南山期末) 下列命题中是真命题的是()A . 无限小数是无理数B . 是最简二次根式C . 有两个角等于60。

【3套打包】深圳市七年级下册数学期中考试题(18)

七年级下学期期中考试数学试题【含答案】一、选择题(本大题15小题,每小题3分,满分45分;在每个小题给出代号为A 、B 、C 、D 四个结论,其中只有一个正确,把你认为正确的结论代号写在该题后的括号内) 1、下列方程中是一元一次方程的是( )A 、B 、C 、D 、2、下列解方程过程中,变形正确的是( ) A 、由5x ﹣1=3,得5x=3﹣1 B 、由+1=+12,得+1=+12C 、由,得D 、由﹣=1,得2x ﹣3x=13、在等式中,当时,;当时,,人教版七年级数学下册期中考试试题【含答案】一、选择题(每小题3分,共30分) 1.(3分)下列运算中,结果正确的是( ) A .2242a a a +=B .236(2)8a a -=-C .623()a a a -÷=-D .222()a b a b +=+2.(3分)将数据0.0000025用科学记数法表示为( )A .72510-⨯B .80.2510-⨯C .72.510-⨯D .62.510-⨯ 3.(3分)在ABC ∆中,如果290B C C ∠-∠=︒-∠,那么ABC ∆是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .锐角三角形或钝角三角形 4.(3分)下列运算不能运用平方差公式的是( ) A .(23)(23)m m +- B .(23)(23)m m -+- C .(23)(23)m m --- D .(23)(23)m m -+-- 5.(3分)如图,在ABC ∆中,D 是BC 延长线上一点,40B ∠=︒,120ACD ∠=︒,则A ∠等于( )A .60︒B .70︒C .80︒D .90︒6.(3分)如图所示,下列推理正确的个数有( ) ①若12∠=∠,则//AB CD②若//AD BC ,则3180A ∠+∠=︒ ③若180C CDA ∠+∠=︒,则//AD BC ④若//AB CD ,则34∠=∠.A .0个B .1个C .2个D .3个 7.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y 与火车进入隧道的时间x 之间的关系用图象描述正确的是( )A .B .C .D .8.(3分)下列乘法公式的运用,不正确的是( ) A .22(2)(2)4a b a b a b +-=- B .2(23)(32)94a a a -++=- C .22(32)4912x x x -=+- D .22(13)961x x x --=-+9.(3分)已知3a b +=,32ab =,则22a b +的值等于( ) A .8 B .7 C .12 D .6 10.(3分)小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程()s km 与所花时间()t min 之间的函数关系.下列说法错误的是( )A .他离家8km 共用了30minB .他等公交车时间为6minC .他步行的速度是100/m minD .公交车的速度是350/m min二、填空题:(每小题4分,共16分)11.(4分)计算:432222(62)(2)a b a b a b -÷-= .12.(4分)一个角与它的余角之差是20︒,则这个角的大小是 . 13.(4分)若2x y +=,226x y -=,则x y -= .14.(4分)若等腰三角形的两条边长分别为4cm 和9cm ,则等腰三角形的周长为 . 三、解答题:(共54分) 15.(20分)计算: (1)02221()(2)(2)(2)225--+-+-+- (2)223431()(8)()2x y xy x y --÷(3)(3)(1)(2)a a a a +---(4)用乘法公式计算:2201320142012-⨯16.(6分)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值. 17.(5分)如图,直线//AB CD ,BC 平分ABD ∠,154∠=︒,求2∠的度数.18.(5分)如图,已知AD ,AE 是ABC ∆的高和角平分线,44B ∠=︒,76C ∠=︒,求DAE ∠的度数.19.(8分)弹簧挂上物体后会伸长,(在弹性限度15kg 内)已知一弹簧的长度()y cm 与所挂物体的质量()x kg 之间的关系如下表:(2)如果物体的质量为(015)xkg x 剟,弹簧的长度为ycm ,根据上表写出y 与x 的关系式; (3)当物体的质量为8kg 时,求弹簧的长度.20.(10分)已知://AB CD ,点E 在直线AB 上,点F 在直线CD 上. (1)如图(1),12∠=∠,34∠=∠. ①若436∠=︒,求2∠的度数;②试判断EM 与FN 的位置关系,并说明理由; (2)如图(2),EG 平分MEF ∠,EH 平分AEM ∠,试探究GEH ∠与EFD ∠的数量关系,并说明理由.一、填空题(每小题4分,共20分)21.(4分)若23m =,48n =,则322m n -的值是 .22.(4分)若22916x mxy y ++是一个完全平方式,则m = .23.(4分)在ABC ∆中,AD 为BC 边上的高,55BAD ∠=︒,25CAD ∠=︒,则BAC ∠= . 24.(4分)如图,两个正方形边长分别为a 、b ,且满足10a b +=,12ab =,图中阴影部分的面积为 .25.(4分)如图,对面积为s 的ABC ∆逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点1A 、1B 、1C ,使得12A B AB =,12B C BC =,12C A CA =,顺次连接1A 、1B 、1C ,得到△111A B C ,记其面积为1S ;第二次操作,分别延长11A B 、11B C 、11C A 至点2A 、2B 、2C ,使得21112A B A B =,21112B C B C =,21112C A C A =顺次连接2A 、2B 、2C ,得到△222A B C ,记其面积为2S ;⋯;按此规律继续下去,可得到△n n n A B C ,则其面积n S = .二、解答题:(共30分) 26.(8分)已知a 、b 、c 为三角形的三边,||||||P a b c b a c a b c =+----+-+. (1)化简P ;(2)计算()P a b c -+.27.(10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的图象如图所示:(1)根据图象,分别写出1y 、2y 关于x 的关系式(需要写出自变量取值范围); (2)当两车相遇时,求x 的值;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.28.(12分)如图,已知直线12//l l ,点A 、B 在直线1l 上,点C 、D 在直线2l 上,点C 在点D 的右侧,80ADC ∠=︒,ABC n ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,直线BE 、DE 交于点E .(1)写出EDC ∠的度数 ;(2)试求BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,使点B 在点A 的右侧,其他条件不变,请画出图形并直接写出BED ∠的度数(用含n 的代数式表示).四川省成都市高新区2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.(3分)下列运算中,结果正确的是( ) A .2242a a a +=B .236(2)8a a -=-C .623()a a a -÷=-D .222()a b a b +=+【考点】4I :整式的混合运算 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、完全平方公式分别判断得出答案.【解答】解:A 、2222a a a +=,故此选项错误; B 、236(2)8a a -=-,正确; C 、624()a a a -÷=,故此选项错误;D 、222()2a b a ab b +=++,故此选项错误;故选:B .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键. 2.(3分)将数据0.0000025用科学记数法表示为( ) A .72510-⨯ B .80.2510-⨯ C .72.510-⨯D .62.510-⨯【考点】1J :科学记数法-表示较小的数【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:60.0000025 2.510-=⨯. 故选:D .【点评】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <…,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 3.(3分)在ABC ∆中,如果290B C C ∠-∠=︒-∠,那么ABC ∆是( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .锐角三角形或钝角三角形 【考点】7K :三角形内角和定理【分析】根据题意得出90B C ∠=∠+︒,进而得出是钝角三角形即可. 【解答】解:由290B C C ∠-∠=︒-∠可得:9090B C ∠=∠+︒>︒, 所以三角形是钝角三角形; 故选:B .【点评】此题考查三角形的内角和,关键是根据题意得出90B C ∠=∠+︒解答. 4.(3分)下列运算不能运用平方差公式的是( ) A .(23)(23)m m +- B .(23)(23)m m -+- C .(23)(23)m m --- D .(23)(23)m m -+-- 【考点】4C :完全平方公式;4F :平方差公式 【分析】依据平方差公式的特点进行判断即可. 【解答】解:A 、(23)(23)m m +-符合平方差公式;B 、2(23)(23)(23)(23)(23)m m m m m -+-=---=--,不符合平方差公式;C 、(23)(23)(23)(23)m m m m ---=-+-符合平方差公式;D 、(23)(23)m m -+--符合平方差公式.故选:B .【点评】本题主要考查的是平方差公式的认识,熟练掌握平方差公式是解题的关键. 5.(3分)如图,在ABC ∆中,D 是BC 延长线上一点,40B ∠=︒,120ACD ∠=︒,则A ∠等于( )A .60︒B .70︒C .80︒D .90︒ 【考点】8K :三角形的外角性质【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,知ACD A B ∠=∠+∠,从而求出A ∠的度数.【解答】解:ACD A B ∠=∠+∠, 1204080A ACD B ∴∠=∠-∠=︒-︒=︒. 故选:C .【点评】本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系. 6.(3分)如图所示,下列推理正确的个数有( ) ①若12∠=∠,则//AB CD②若//AD BC ,则3180A ∠+∠=︒ ③若180C CDA ∠+∠=︒,则//AD BC ④若//AB CD人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E. (1)∠EDC=3∠C ,求∠C 的度数; (2)求证:BE ∥CD.21,如图,AB=AD ,AC=AE ,BC=DE ,点E 在BC 上. (1)求证:△ABC ≌ △ADE (2)求证:△EAC ≌ △DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数(2)随看点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF时,求∠APC的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是:(2)根据(1)中的等式,解决如下问题:①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形A。

广东省深圳市七年级下学期期中数学试卷

广东省深圳市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2020七下·宁德期末) 下列各图中,∠1与∠2是对顶角的是()A .B .C .D .2. (2分)下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有()A . 4个B . 3个C . 2个D . 1个3. (2分)下列说法中正确的有()A . =±3B . 22的算术平方根是±2C . 64的立方根是±4D . 是5的一个平方根4. (2分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()A . 25°B . 30°C . 60°D . 65°5. (2分) (2019八上·顺德期末) 能判定直线a∥b的条件是()A . ∠1=58°,∠3=59°B . ∠2=118°,∠3=59°C . ∠2=118°,∠4=119°D . ∠1=61°,∠4=119°6. (2分) (2020七下·来宾期末) 如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A . 55°B . 50°C . 45”D . 40°7. (2分) (2020七下·吴兴期中) 如图,两个形状、大小完全相同的三角形ABC和三角形DEF重叠在一起,固定三角形ABC不动,将三角形DEF向右平移,当点E和点C重合时,停止移动,设DE交AC于G.给出下列结论:①四边形ABEG的面积与CGDF的面积相等;②AD∥EC,且AD=EC;③若BF=8cm,EC=2cm,那么三角形DEF向右平移了2cm,则上述说法正确的个数为()A . 0个B . 1个C . 2个D . 3个8. (2分) (2018八上·紫金期中) 在-1,0,四个数中,是无理数的是()A .B . 0C . 2D . -19. (2分)如下图所示,图中是沈阳市地图简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()A . D7,E6B . D6,E7C . E7,D6D . E6,D710. (2分) (2017七下·陆川期末) 如图,给出了过直线外一点画已知直线的平行线的方法,其依据是()A . 同位角相等,两直线平行B . 内错角相等,两直线平行C . 同旁内角互补,两直线平行D . 两直线平行,同位角相等11. (2分) (2018七上·竞秀期末) 已知|a﹣2|和(b+5)2互为相反数,则a+b的值为()A . 3B . ﹣3C . 7D . ﹣712. (2分)在平面直角坐标系中,(3,-2)在哪一个象限()A . 一B . 二C . 三D . 四13. (2分) (2017七下·枝江期中) 估计的值()A . 在3到4之间B . 在4到5之间C . 在5到6之间D . 在6到7之间14. (2分)将点P(m+2,2m+4)向右平移1个单位得到P′,且P′在Y轴上,那么P′坐标是()A . (-2,0)B . (0,-2)C . (1,0)D . (0,1)二、填空题:你能填得又对又快吗? (共5题;共6分)15. (2分) (2019八上·宝鸡月考) 的相反数是________,绝对值是________,16. (1分) (2020七下·北京期中) 如图,连接直线l外一点P与直线l上各点O,A1 , A2 , A3 ,…,其中PO⊥l,这些线段PO,PA1 , PA2 , PA3 ,…中,最短的线段是________.17. (1分)(2017·三门峡模拟) 如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ACD沿AD折叠,点C落在点C′,连结C′D交AB于点E,连结BC′.当△BC′D是直角三角形时,DE 的长为________.18. (1分) (2019七下·蔡甸期中) 计算的结果是________19. (1分)如图所示,是象棋棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4, -1)上,则“炮”所在的点的坐标是________三、解答题:一定要细心,你能行! (共6题;共44分)20. (5分)(2018·阳新模拟) |﹣ |﹣ +2018021. (6分) (2020七下·涿鹿期中) 如图,已知∠1+∠2﹦180°,∠3﹦∠B ,则DE∥BC ,下面是王华同学的推导过程,请你帮他在括号内填上推导依据或内容.证明:∵∠1+∠2﹦180(已知)∠1﹦∠4 (________)∴∠2﹢________﹦180°.∴EH∥AB(________)∴∠B﹦∠EHC(________)∵∠3﹦∠B(已知)∴∠3﹦∠EHC(________)∴ DE∥BC(________)22. (10分) (2016八下·鄄城期中) 如图,已知△abc的三个顶点的坐标分别为A(﹣6,4),B(﹣4,0),C(﹣2,2).(1)将△ABC向右平移5个单位得,得△A1B1C1 ,画出图形,并直接写出点A1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,得△A2B2C2 ,画出图形,并直接写出点B2的坐标.23. (5分) (2020八下·贵阳开学考) 如图,在四边形中,点分别在和上,已知, .求证:24. (3分) (2016八下·宝丰期中) 在直角坐标平面内,已点A(3,0)、B(﹣5,3),将点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点.(1)写出C点、D点的坐标:C________,D________;(2)把这些点按A﹣B﹣C﹣D﹣A顺次连接起来,这个图形的面积是________.25. (15分)(2020·遂宁) 如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E ,交AC于点F ,过点C作CG⊥AB交AB于点G ,交AE于点H ,过点E的弦EP交AB于点Q(EP 不是直径),点Q为弦EP的中点,连结BP , BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═ ,AC=15,求四边形CHQE的面积.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题:你能填得又对又快吗? (共5题;共6分)15-1、16-1、17-1、18-1、19-1、三、解答题:一定要细心,你能行! (共6题;共44分) 20-1、答案:略21-1、22-1、22-2、23-1、答案:略24-1、24-2、25-1、25-2、答案:略25-3、答案:略。

【3套打包】深圳市七年级下册数学期中考试题(22)

最新人教版七年级(下)期中模拟数学试卷(含答案)人教版七年级下学期期中考试数学试题(完卷时间:120分钟 满分:100分)一、选择题(共10小题,每小题2分,满分20分)1. 观察下面图案在A 、B 、C 、D 四幅图案中,能通过图案平移得到的是( )A. B. C. D.2. 下列四个数中,无理数是( )A.41.0 B.711 C.2- D.1.0- 3. 如图,在阴影区域内的点可以是( )A.()21,B.()23-,C.()23,-D.()23--, 4. 若b a <,则下列不等式中成立的是( )A.55+>+b aB.b a 55->-C.b a 33>D.33ba > 5. 下列台题中是假命题的是( )A.同旁内角互补,两直线平行B.在同一平面内,若直线b a ⊥,则a 与b 相交所成的角为直角C.如果两个角互补,那么这两个角是一个锐角,一个钝角D.平行于同一条直线的两条直线平行 6. 满足02019>+x 的最小整数解是( )A. 2020-B. 2019-C. 2018-D. 20207. 已知a ,b 满足方程组⎩⎨⎧=-=+43125b a b a ,则b a +的值为( )A. 4-B. 4C. 2-D. 28. 如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A 与表示3的点重合,滚动一周后到达点B ,点B 表示的数是( )第1题图第3题图A.π2-B. π23-C. π23--D.π23+-9. 平面直角坐标系中,点()32,-A ,()41-,B ,经过点A 的直线y L //轴,若点C 为直线L 上的个动点,则当线段BC 的长度最小时,点C 的坐标为( )A.()41,B.()32--,C.()31,D.()42--, 10. 把m 12长的彩绳截成m 2或m 3的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A.1种B.2种C.3种D.4种二、填空题(共8小题,每小题3分,满分24分)11. 41的算术平方根为 .12. 命题“对顶角相等”,写成“如果……,那么……”是 .13. 已知⎩⎨⎧=-=21y x 是二元一次方程1=+ky x 的一组解,则=k .14. 如图,CD AB //,DE BC //,若 40=∠B ,则D ∠的度数是 .已知点()183--a a P ,,若点P 在y七年级下学期期中考试数学试题(含答案)一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知二元一次方程3x ﹣y =1,当x =2时,y 等于( ) A .5B .﹣3C .﹣7D .72.(3分)下列运算的结果为a 6的是( ) A .a 3+a 3B .(a 3)3C .a 3•a 3D .a 12÷a 23.(3分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京召开,“一带”指的是“丝绸之路经济带”,“一路”指的是“21”.“一带一路”沿线大多是新兴经济体和发展中国家,经济总量约210 000亿美元,将“210 000亿”用科学记数法表示应为( ) A .21×104亿B .2.1×104亿C .2.1×105亿D .0.21×106亿4.(3分)如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC =100°,则∠BOD 的度数是( )A .20°B .40°C .50°D .80°5.(3分)用加减法解方程组时,如果消去y ,最简捷的方法是( )A .①×4﹣②×3B .①×4+②×3C .②×2﹣①D .②×2+①6.(3分)计算(﹣1)2017+(﹣)﹣3﹣(2017)0的结果是( )A .﹣10B .﹣8C .8D .﹣97.(3分)已知m +n =3,m ﹣n =2,那么m 2﹣n 2的值是( )第14题图A.6B.2C.7D.58.(3分)二元一次方程组的解是()A.B.C.D.9.(3分)如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4D.∠1=∠2 10.(3分)若(2a±3)2=4a2+(k﹣1)a+9,则k的值为()A.±12B.±11C.±13D.﹣11或13 11.(2分)下列语句中是真命题的有()个①一条直线的垂线有且只有一条②不相等的两个角一定不是对顶角③同位角相等④不在同一直线上的四个点最多可以画六条直线.A.1B.2C.3D.412.(2分)下列各式中,计算结果是x2+7x﹣18的是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)13.(2分)若方程中的x是y的4倍,则a等于()A.﹣7B.﹣3C.D.﹣14.(2分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.615.(2分)如图,正方形ABCD由四个矩形构成,根据图形,写出一个含有a和b的正确的等式是()A.(a+b)(a﹣b)=a2+b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)(a+b)=a2+b2+ab+ab16.(2分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=度.18.(3分)已知x、y满足方程组,则x﹣y的值为.19.(2分)计算(﹣0.125)2015×82014的结果是.20.(2分)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.(12分)解方程或计算(1)解方程组;(2);(3)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=;(4)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.22.(8分)题目:如图,直线a,b被直线所截,若∠1+∠7=180°,则a∥b.在下面说理过程中的括号里填写说理依据.方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3()∴a∥b()方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3()又∠7=∠6()∴∠3=∠6()∴a∥b()方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6()∠4+∠6=180°(平角定义)∴a∥b()23.(9分)请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.24.(9分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.25.(10分)用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?26.(10分)如图所示,已知AB∥CD,直线l分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=40°,求∠EGF的度数.27.(10分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)x2+4y2的值;(ii)求(x+2y)2的值.2017-2018学年河北省承德市兴隆县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:把x=2代入原方程,得到6﹣y=1,所以y=5.故选:A.2.【解答】解:A、a3+a3=2a3,故本选项错误;B、(a3)3=a9,故本选项错误;C、a3•a3=a6,故本选项正确;D、a12÷a2=a10,故本选项错误.故选:C.3.【解答】解:210 000亿=2.1×105亿.故选:C.4.【解答】解:∵∠EOC=100°且OA平分∠EOC,∴∠BOD=∠AOC=×100°=50°.故选:C.5.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.6.【解答】解:∵(﹣1)2017=﹣1,(﹣)﹣3=﹣8,(2017)0=1,∴(﹣1)2017+(﹣)﹣3﹣(2017)0=﹣1﹣8﹣1=﹣10.故选:A.7.【解答】解:∵m+n=3,m﹣n=2∴原式=(m+n)(m﹣n)=6故选:A.8.【解答】解:二元一次方程组,即,解得x=2.则y=﹣3.9.【解答】解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选:C.10.【解答】解:∵4a2+(k﹣1)a+9是一个关于a的完全平方式,∴(k﹣1)a=±2•2a•3,k=13或﹣11,故选:D.11.【解答】解:一条直线的垂线有无数条,①是假命题;不相等的两个角一定不是对顶角,②是真命题;两直线平行,同位角相等,③是假命题;不在同一直线上的四个点最多可以画六条直线是真命题,故选:B.12.【解答】解:A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选:D.13.【解答】解:∵x=4y,∴4y+4=y,解得y=﹣,∴x=4×(﹣)=﹣,∴a=[2×(﹣)﹣(﹣)]÷4=(﹣+)÷4=(﹣)÷4=﹣故选:D.14.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.15.【解答】解:由图象得出正方形的边长为(a+b),∴正方形的面积可以表示为(a+b)(a+b),∵正方形的面积也可以看成是两个小正方形和两个矩形的面积之和,∴正方形的面积也可以表示为a2+b2+ab+ab,∴(a+b)(a+b)=a2+b2+ab+ab,故选:D.16.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.【解答】解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.18.【解答】解:在方程组中,①﹣②得:x﹣y=1.故答案为:1.19.【解答】解:(﹣0.125)2015×82014=(﹣0.125)2014×82014×(﹣0.125)=[(﹣0.125)×(﹣8)]2014×(﹣0.125)=,故答案为:,20.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.【解答】解:(1),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(3)原式=x2﹣3x+2﹣x2﹣2x﹣1=﹣5x+1,当x=时,原式=﹣2.5+1=﹣1.5;(4)原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9,∵x2﹣4x﹣1=0,∴x2﹣4x=1,则原式=3+9=12.22.【解答】解:方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)∴a∥b(同位角相等,两直线平行)方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)又∠7=∠6(对顶角相等)∴∠3=∠6(等量代换)∴a∥b(内错角相等,两直线平行)方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6(对顶角相等)∠4+∠6=180°(平角定义)∴a∥b(同旁内角互补,两直线平行).故答案是:方法一:同角的补角相等;同位角相等,两直线平行;方法二:同角的补角相等;对顶角相等;等量代换;内错角相等,两直线平行;方法三:对顶角相等;同旁内角互补,两直线平行.23.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,即,②﹣①得:x=2,把x=2代入得:y=6.24.【解答】证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.25.【解答】解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,∴(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣40°=140°,∵EG平分∠BEF,∴∠BEG=∠BEF=70°,而AB∥CD,∴∠EGF=∠BEG=70°.27.【解答】解:(1)把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为;(2)(i)原方程组变形为,①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,(ii)由x2+4y2=17代入②得xy=2,∴(x+2y)2=x2+4y2+4xy=17+8=25.七年级下学期期中考试数学试题(含答案)一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)已知二元一次方程3x﹣y=1,当x=2时,y等于()A.5B.﹣3C.﹣7D.72.(3分)下列运算的结果为a6的是()A.a3+a3B.(a3)3C.a3•a3D.a12÷a23.(3分)“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京召开,“一带”指的是“丝绸之路经济带”,“一路”指的是“21”.“一带一路”沿线大多是新兴经济体和发展中国家,经济总量约210 000亿美元,将“210 000亿”用科学记数法表示应为()A.21×104亿B.2.1×104亿C.2.1×105亿D.0.21×106亿4.(3分)如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD 的度数是()A.20°B.40°C.50°D.80°5.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3B.①×4+②×3C.②×2﹣①D.②×2+①6.(3分)计算(﹣1)2017+(﹣)﹣3﹣(2017)0的结果是()A.﹣10B.﹣8C.8D.﹣97.(3分)已知m+n=3,m﹣n=2,那么m2﹣n2的值是()A.6B.2C.7D.58.(3分)二元一次方程组的解是()A.B.C.D.9.(3分)如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4D.∠1=∠2 10.(3分)若(2a±3)2=4a2+(k﹣1)a+9,则k的值为()A.±12B.±11C.±13D.﹣11或13 11.(2分)下列语句中是真命题的有()个①一条直线的垂线有且只有一条②不相等的两个角一定不是对顶角③同位角相等④不在同一直线上的四个点最多可以画六条直线.A.1B.2C.3D.412.(2分)下列各式中,计算结果是x2+7x﹣18的是()A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)13.(2分)若方程中的x是y的4倍,则a等于()A.﹣7B.﹣3C.D.﹣14.(2分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.615.(2分)如图,正方形ABCD由四个矩形构成,根据图形,写出一个含有a和b的正确的等式是()A.(a+b)(a﹣b)=a2+b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)(a+b)=a2+b2+ab+ab16.(2分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=度.18.(3分)已知x、y满足方程组,则x﹣y的值为.19.(2分)计算(﹣0.125)2015×82014的结果是.20.(2分)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.(12分)解方程或计算(1)解方程组;(2);(3)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=;(4)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.22.(8分)题目:如图,直线a,b被直线所截,若∠1+∠7=180°,则a∥b.在下面说理过程中的括号里填写说理依据.方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3()∴a∥b()方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3()又∠7=∠6()∴∠3=∠6()∴a∥b()方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6()∠4+∠6=180°(平角定义)∴a∥b()23.(9分)请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.24.(9分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.25.(10分)用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?26.(10分)如图所示,已知AB∥CD,直线l分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=40°,求∠EGF的度数.27.(10分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)x2+4y2的值;(ii)求(x+2y)2的值.2017-2018学年河北省承德市兴隆县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10每小题3分,11-16每小题3分,共42分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:把x=2代入原方程,得到6﹣y=1,所以y=5.故选:A.2.【解答】解:A、a3+a3=2a3,故本选项错误;B、(a3)3=a9,故本选项错误;C、a3•a3=a6,故本选项正确;D、a12÷a2=a10,故本选项错误.故选:C.3.【解答】解:210 000亿=2.1×105亿.故选:C.4.【解答】解:∵∠EOC=100°且OA平分∠EOC,∴∠BOD=∠AOC=×100°=50°.故选:C.5.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.6.【解答】解:∵(﹣1)2017=﹣1,(﹣)﹣3=﹣8,(2017)0=1,∴(﹣1)2017+(﹣)﹣3﹣(2017)0=﹣1﹣8﹣1=﹣10.故选:A.7.【解答】解:∵m+n=3,m﹣n=2∴原式=(m+n)(m﹣n)=6故选:A.8.【解答】解:二元一次方程组,即,解得x=2.则y=﹣3.9.【解答】解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选:C.10.【解答】解:∵4a2+(k﹣1)a+9是一个关于a的完全平方式,∴(k﹣1)a=±2•2a•3,k=13或﹣11,故选:D.11.【解答】解:一条直线的垂线有无数条,①是假命题;不相等的两个角一定不是对顶角,②是真命题;两直线平行,同位角相等,③是假命题;不在同一直线上的四个点最多可以画六条直线是真命题,故选:B.12.【解答】解:A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选:D.13.【解答】解:∵x=4y,∴4y+4=y,解得y=﹣,∴x=4×(﹣)=﹣,∴a=[2×(﹣)﹣(﹣)]÷4=(﹣+)÷4=(﹣)÷4=﹣故选:D.14.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.15.【解答】解:由图象得出正方形的边长为(a+b),∴正方形的面积可以表示为(a+b)(a+b),∵正方形的面积也可以看成是两个小正方形和两个矩形的面积之和,∴正方形的面积也可以表示为a2+b2+ab+ab,∴(a+b)(a+b)=a2+b2+ab+ab,故选:D.16.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.二、填空题(本大题共3个小题,17-18每小题3分,19、20每空2分,共10分17.【解答】解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.18.【解答】解:在方程组中,①﹣②得:x﹣y=1.故答案为:1.19.【解答】解:(﹣0.125)2015×82014=(﹣0.125)2014×82014×(﹣0.125)=[(﹣0.125)×(﹣8)]2014×(﹣0.125)=,故答案为:,20.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)21.【解答】解:(1),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(3)原式=x2﹣3x+2﹣x2﹣2x﹣1=﹣5x+1,当x=时,原式=﹣2.5+1=﹣1.5;(4)原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9,∵x2﹣4x﹣1=0,∴x2﹣4x=1,则原式=3+9=12.22.【解答】解:方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)∴a∥b(同位角相等,两直线平行)方法二:∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3(同角的补角相等)又∠7=∠6(对顶角相等)∴∠3=∠6(等量代换)∴a∥b(内错角相等,两直线平行)方法三:∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6(对顶角相等)∠4+∠6=180°(平角定义)∴a∥b(同旁内角互补,两直线平行).故答案是:方法一:同角的补角相等;同位角相等,两直线平行;方法二:同角的补角相等;对顶角相等;等量代换;内错角相等,两直线平行;方法三:对顶角相等;同旁内角互补,两直线平行.23.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,即,②﹣①得:x=2,把x=2代入得:y=6.24.【解答】证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.25.【解答】解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,∴(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣40°=140°,∵EG平分∠BEF,∴∠BEG=∠BEF=70°,而AB∥CD,∴∠EGF=∠BEG=70°.27.【解答】解:(1)把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为;(2)(i)原方程组变形为,①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,(ii)由x2+4y2=17代入②得xy=2,∴(x+2y)2=x2+4y2+4xy=17+8=25.。

2021-2022学年广东省深圳市宝安中学(集团)实验学校七年级(下)期中数学试卷 - 学生版

2021-2022学年广东省深圳市宝安中学(集团)实验学校七年级(下)期中数学试卷一、选择题。

(本大题共10题,每小题3分,共30分)1.(3分)2022﹣1等于()A.﹣2022B.C.D.20222.(3分)下列计算正确的是()A.2a⋅a2=3a3B.a8÷a2=a4C.a3⋅a2=a6D.(a3)2=a6 3.(3分)环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣64.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)“百日长跑”是一项非常有益身心的体育活动,体育老师一声令下,小雅立即开始慢慢加速,途中一直保持匀速,最后150米时奋力冲刺跑完全程,下列最符合小雅跑步时的速度y(单位:米/分)与时间x(单位:分)之间的大致图象的是()A.B.C.D.6.(3分)下列说法:①在同一平面内,不相交的两条直线叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1B.2C.3D.47.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a >0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm28.(3分)如图,下列结论中不正确的是()A.若AD∥BC,则∠1=∠B B.若∠1=∠2,则AD∥BCC.若∠2=∠C,则AE∥CD D.若AE∥CD,则∠1+∠3=180°9.(3分)如图,直线EF∥MN,点A,B分别是EF,MN上的动点,点G在MN上,∠ACB =m°,∠AGB和∠CBN的角平分线交于点D,若∠D=50°,则m的值为()A.70B.74C.76D.8010.(3分)如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②∠CAD+∠2=180°;③如果∠2=35°,则有BC∥AD;④∠4+∠2=75°.其中正确的序号是()A.①②③④B.①②④C.①②③D.①③④二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2019-2020学年广东省深圳市宝安区七年级(下)期中数学试卷 一、选择题(每小题3分,共36分) 1.(3分)下列计算正确的是( )

A.a3•a2=a6 B.a3﹣a2=a C.(﹣a3)2=a6 D.a6÷a2=a3 2.(3分)下列各式中不能用平方差公式计算的是( ) A.(2x+y)(2x﹣y) B.(x﹣y)(y﹣x) C.(﹣x+y)(﹣x﹣y) D.(x+y)(﹣x+y) 3.(3分)PM2.5是指大气中直径小于或等于2.5um(微米)的颗粒物,也称为可入肺颗粒物.2.5微米=0.000 002 5米,用科学记数法可表示为( )米. A.2.5×106 B.2.5×10﹣6 C.2.5×107 D.2.5×10﹣7 4.(3分)要使(x2+ax+1)(x﹣2)的结果中不含x2项,则a为( ) A.﹣2 B.0 C.1 D.2 5.(3分)如图,已知:∠3=∠4,那么下列结论中,正确的是( )

A.∠C=∠D B.AD∥BC C.∠1=∠2 D.AB∥CD 6.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( ) A.4cm B.5cm C.9cm D.13cm 7.(3分)如图,若AB∥DE,则∠B,∠C,∠D三者之间的关系是( )

A.∠B+∠C+∠D=180° B.∠B+∠C﹣∠D=180° C.∠B+∠D﹣∠C=180° D.∠C+∠D﹣∠B=180° 8.(3分)下列叙述正确的是( ) ①三角形的中线、角平分线都是射线 ②三角形的三条高线所在的直线交于一点 ③三角形的中线就是经过一边中点的线段 ④三角形的三条角平分线交于一点 ⑤三角形的中线将三角形分成面积相等的两个小三角形. 2

A.②④⑤ B.①②④ C.②④ D.④ 9.(3分)如图,在△ABC和△DEF中,已知∠B=∠DEF,AB=ED,加上该条件后仍无法证明△ABC≌△DEF的是( )

A.AC=DF B.BE=CF C.AC∥DF D.∠A=∠D 10.(3分)在△ABC中,AC边上的高画得正确的是( )

A. B. C. D. 11.(3分)已知x=255,y=344,z=433,则x,y,z的大小关系为( ) A.x<z<y B.x<y<z C.y<z<x D.z<y<x 12.(3分)让我们按以下步骤计算 第一步:取一个自然数n1=5,计算n12+1得a1; 第二步:算出a1的各位数字之和得n2,计算n22+1得a2; 第三步:算出a2的各位数字之和得n3,计算n32+1得a3; 依此类推,则a2015=( ) A.26 B.65 C.122 D.无法计算 二、填空题(每小题3分,共12分) 13.(3分)如果x2﹣px+25是一个完全平方式,那么p= .

14.(3分)如果一个角的补角是120°,那么这个角的余角是 . 15.(3分)小军用100元去买单价为4元的笔记本,他买完笔记本之后剩余的钱y(元)与买这种笔记本数量x(本)之间的关系式为 . 16.(3分)如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于 . 3

三、解答题(共52分) 17.(16分)计算

(1)a5•(﹣2a)3+a6•(﹣3a)2 (2)(4a2﹣6ab+2a)÷2a (3)(a+b+c)(a﹣b+c) (4)20142﹣2013×2015(用整式乘法公式进行计算)

18.(6分)先化简,再求值:[(2a﹣b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=﹣,b=1. 19.(4分)妈妈在用洗衣机洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题: (1)洗衣机的进水时间是 分钟; (2)清洗时洗衣机中的水量是 升; (3)洗衣机的清洗时间为 分钟; (4)已知洗衣机的排水速度为每分钟19升,如果排水时间为2分钟,则排水结束时洗衣机中剩下的水量为 升.

20.(6分)完成下列推理过程 已知:∠C+∠CBD=180°,∠ABD=85°,∠2=60°,求∠A的度数 解:∵∠C+∠CBD=180°(已知) ∴DB∥CE( ) ∴∠1= ( ) ∵∠2=∠3( ) ∴∠1=∠2=60° ( ) 又∵∠ABD=85°(已知) 4

∴∠A=180°﹣∠ABD﹣∠1= (三角形三内角和为180°) 21.(5分)如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数. 22.(6分)已知a+b=4,ab=2,求下列各式的值: (1)(a﹣b)2 (2)a2+b2. 23.(9分)如图1,点P、Q分别是等边△ABC边AB、BC上的点,其中AP=BQ.连接CP、AQ相交于点M,

(1)求证:△ABQ≌△CAP; (2)求∠CMQ的度数; (3)如图2,若点P、Q在等边△ABC边AB、BC的延长线上,仍有AP=BQ,直线AQ、CP交点为M,则∠QMC的度数为多少? 5

2019-2020学年广东省深圳市宝安区新华中学七年级(下)期中数学试卷 参考答案与试题解析 一、选择题(每小题3分,共36分) 1.【解答】解:A、a3•a2=a5,故此选项错误;

B、a3﹣a2,无法计算,故此选项错误;

C、(﹣a3)2=a6,正确;

D、a6÷a2=a4,故此选项错误;

故选:C. 2.【解答】解:原式=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2, 故选:B. 3.【解答】解:0.000 002 5米,用科学记数法可表示为2.5×10﹣6米, 故选:B. 4.【解答】解:原式=x3+(a﹣2)x2+(1﹣2a)x﹣2, 由结果中不含x2项,得到a﹣2=0, 解得:a=2, 故选:D. 5.【解答】解:∵∠3=∠4, ∴AD∥BC, 故选:B. 6.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求. 故选:C. 7.【解答】解:如图,过点C作CF∥AB, ∵AB∥DE, ∴AB∥CF∥DE, ∴∠2=∠B,∠1=180°﹣∠D, ∵∠C=∠1+∠2, ∴∠C=180°﹣∠D+∠B, ∴∠C+∠D=180°+∠B. 故选:D. 6

8.【解答】解:①三角形的角平分线和中线都是线段.故错误; ②三角形的三条高线所在的直线交于一点,故正确; ③三角形一边的中点与此边所对顶点的连线叫做三角形的中线,过三角形一边的中点的线段不一定是三角形的中线,故错误; ④三角形的三条角平分线交于一点,故正确; ⑤三角形的中线是三角形一顶点和对边中点的连线,根据等底同高的两个三角形面积相等,故正确; 综上所述,正确的结论是②④⑤. 故选:A. 9.【解答】解:∠B=∠DEF,AB=ED, A、添加AC=DF不能证明△ABC≌△DEF,故此选项符合题意;

B、添加BE=CF,得到BC=EF,可利用SAS证明△ABC≌△DEF,故此选项不符合题意;

C、添加AC∥DF,可得∠ACB=∠F,即∠A=∠D,可利用ASA证明△ABC≌△DEF,故此选项不符合题

意; D、添加∠A=∠D可利用ASA证明△ABC≌△DEF,故此选项不符合题意;

故选:A. 10.【解答】解:△ABC中,AC边上的高是自点B向AC所在直线作垂线,顶点B和垂足间的线段即为AC边上的高,

符合高的定义的只有C选项, 故选:C. 11.【解答】解:x=255=(25)11=3211, y=344=(34)11=8111,

z=433=(43)11=6411,

则x<z<y. 故选:A. 12.【解答】解:由题意可得, a1=52+1=26,

a2=(2+6)2+1=65,

a3=(6+5)2+1=122, 7

a4=(1+2+2)2+1=26,

… ∴2015÷3=671…2, ∴a2015=65, 故选:B. 二、填空题(每小题3分,共12分) 13.【解答】解:∵(x±5)2=x2±10x+25,

而x2﹣px+25是一个完全平方式, ∴p=±10. 故答案为±10. 14.【解答】解:这个角为180°﹣120°=60°, 这个角的余角为90°﹣60°=30°. 故答案为:30°. 15.【解答】解:依题意得,剩余的钱y(元)与买这种笔记本的本数x之间的关系为:y=100﹣4x. 故答案为:y=100﹣4x.

16.【解答】解:在△ABC和△AEF中,, ∴△ABC≌△AEF(SAS), ∴∠5=∠BCA, ∴∠1+∠5=∠1+∠BCA=90°,

在△ABD和△AEH中,, ∴△ABD≌△AEH(SAS), ∴∠4=∠BDA, ∴∠2+∠4=∠2+∠BDA=90°, ∵∠3=45°, ∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°. 故答案为:225°.

相关文档
最新文档