高中数学集合的含义与表示教案

合集下载

高中数学集合含义教案

高中数学集合含义教案

高中数学集合含义教案
教学目标:
1. 知识目标:理解集合的概念和符号表示法,掌握集合的基本概念和运算规则。

2. 能力目标:能够应用集合的知识解决实际问题,提高逻辑思维能力和抽象化能力。

3. 情感目标:培养学生对数学知识的兴趣,增强数学学习的自信心和动力。

教学重难点:
1. 集合的定义和概念理解;
2. 集合的表示法和运算规则;
3. 集合运算的解题方法。

教学过程:
一、导入(5分钟)
教师通过观察现实生活中的集合的例子引入集合的概念,引导学生理解集合的含义和应用。

二、讲解(15分钟)
1. 集合的定义:集合是由若干个元素组成的整体;
2. 集合的表示法:用大括号{}表示,元素之间用逗号隔开;
3. 集合的基本运算:并集、交集、差集等;
4. 集合之间的关系:包含关系、相等关系等。

三、练习(20分钟)
1. 完成集合的表示练习;
2. 计算给定集合的并集、交集等;
3. 解答集合运算的应用题。

四、总结(5分钟)
通过对今天课堂内容的总结,强调集合的重要性和应用,引导学生深入理解和应用集合的
知识。

五、作业布置(5分钟)
布置作业:完成课堂练习题和课外拓展题,巩固集合运算的知识。

教学反思:
通过引入现实例子和丰富练习的方式,学生更容易理解集合的概念和运算规则,提高了学
生的学习兴趣和能力。

在今后的教学中,需要进一步引导学生应用集合知识解决实际问题,并注重激发学生的数学思维和创造力。

人教课标A版数学必修一1.1.1集合的含义与表示教案

人教课标A版数学必修一1.1.1集合的含义与表示教案

1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案集合的含义与表示教案(精选6篇)作为一位杰出的老师,常常要根据教学需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。

教案应该怎么写才好呢?以下是店铺为大家收集的集合的含义与表示教案,欢迎大家借鉴与参考,希望对大家有所帮助。

集合的含义与表示教案篇1教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2003的13年内所发射的所有人造卫星;⑶ 金星汽车厂2003年生产的所有汽车;⑷ 2004年1月1日之前与我国建立外交关系的所有国家;⑸ 所有的正方形;⑹ 黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4⑵(2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,…⑸ 1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。

集合的含义与表示教案

集合的含义与表示教案

集合的含义与表示教案一、教学目标1. 了解集合的含义,理解集合中元素的特征。

2. 学会用列举法、描述法表示集合。

3. 能够运用集合的基本运算解决实际问题。

二、教学重点与难点1. 教学重点:集合的含义,列举法、描述法表示集合。

2. 教学难点:理解集合中元素的确定性、互异性、无序性。

三、教学准备1. 教学素材:黑板、PPT、教学卡片。

2. 教学工具:多媒体投影仪、笔记本电脑。

四、教学过程1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的含义:讲解集合的定义,强调集合中元素的确定性、互异性、无序性。

3. 表示集合的方法:(1)列举法:引导学生学会用列举法表示集合。

(2)描述法:引导学生学会用描述法表示集合。

4. 集合的基本运算:讲解并演示集合的并、交、差运算。

5. 课堂练习:布置练习题,让学生巩固所学知识。

五、课后作业1. 完成练习册上的相关题目。

2. 思考生活中的集合实例,总结集合的特点。

教学反思:本节课通过生活中的实例,引导学生了解集合的含义,学会用列举法、描述法表示集合。

在教学过程中,要注意强调集合中元素的确定性、互异性、无序性,帮助学生建立正确的集合观念。

通过课堂练习和课后作业,让学生巩固所学知识,提高运用集合解决实际问题的能力。

六、教学拓展1. 讲解集合的其他表示方法:数轴法、Venn图法。

2. 引导学生学会利用数轴、Venn图解决集合问题。

七、课堂小结1. 回顾本节课所学内容,总结集合的含义、表示方法及基本运算。

2. 强调集合中元素的确定性、互异性、无序性。

八、教学评价1. 课后收集学生的课堂练习和课后作业,评估学生对集合知识的掌握程度。

2. 在下一节课开始时,进行简要的知识点测试,了解学生对所学知识的巩固情况。

九、教学建议1. 针对不同学生的学习水平,适当调整教学难度,给予学困生更多的关心和帮助。

2. 鼓励学生积极参与课堂讨论,提高学生的思维能力和解决问题的能力。

高中数学集合总结讲解教案

高中数学集合总结讲解教案

高中数学集合总结讲解教案一、知识背景:在数学中,集合是一个元素的集合,可以是数字、字母或者其他事物。

集合中的元素是互不相同的,用大括号{}表示。

二、教学目标:1. 了解集合的基本概念2. 掌握集合的表示方法3. 能够进行集合的运算4. 能够解决与集合相关的问题三、教学内容:1. 集合的基本概念- 集合:用大括号{}括起来的元素的集合- 元素:构成集合的每一个事物- 空集:不包含任何元素的集合,用符号∅表示- 包含关系:集合A包含在集合B中,记作A⊆B2. 集合的表示方法- 列举法:把集合中的元素一一列出来- 描述法:用条件描述集合中的元素的特征3. 集合的运算- 并集:集合A和集合B的并集,记作A∪B,包含在A或B中的元素- 交集:集合A和集合B的交集,记作A∩B,既包含在A中又包含在B中的元素- 差集:集合A和集合B的差集,记作A-B,只包含在A中而不在B中的元素4. 与集合相关的问题解决方法- 集合的等价关系:两个集合相等,当且仅当两个集合的元素完全相同- 集合的运算法则:并集、交集和差集的运算规则四、教学过程:1. 简单介绍集合的概念和表示方法,让学生理解集合是什么以及如何表示集合。

2. 分别讲解集合的并集、交集和差集的概念及运算方法,让学生能够灵活运用这些概念解决问题。

3. 给学生几个集合运算的练习题,让他们通过实际操作来理解并掌握集合的运算方法。

4. 结合实际问题,让学生解决与集合相关的练习题,培养他们的分析和解决问题的能力。

五、教学反馈:1. 在课堂上及时纠正学生的错误,帮助他们充分理解集合的概念和运算方法。

2. 鼓励学生积极参与课堂讨论,分享解题思路,促进学生之间的互动和合作。

3. 对学生的学习情况进行定期检查和总结,及时调整教学方法,帮助他们提高学习效果。

六、教学延伸:在学生掌握了集合的基本概念和运算方法之后,可以扩展相关的数学知识,如概率、逻辑等,帮助他们深入理解集合的应用和意义。

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

湖南省湘潭凤凰中学高中数学 集合的含义与表示教案 新人教A版必修

湖南省湘潭凤凰中学高中数学 集合的含义与表示教案 新人教A版必修

教案:湖南省湘潭凤凰中学高中数学集合的含义与表示教案新人教A版必修一、教学目标:1. 理解集合的含义,掌握集合的表示方法。

2. 能够运用集合的概念解决实际问题。

3. 培养学生逻辑思维能力和抽象思维能力。

二、教学重点:1. 集合的含义。

2. 集合的表示方法。

三、教学难点:1. 理解集合的含义。

2. 掌握集合的表示方法。

四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的含义与表示方法。

2. 通过实例分析,让学生感受集合在实际问题中的应用。

3. 利用小组讨论,培养学生的合作意识与沟通能力。

五、教学过程:1. 导入新课:利用多媒体展示一些生活中常见的集合,如学校里的班级、图书馆的书籍等,引导学生思考集合的概念。

2. 讲解集合的含义:讲解集合的定义,解释集合中的元素具有“确定性”、“互异性”和“无序性”的特点。

3. 讲解集合的表示方法:讲解集合的表示方法,包括列举法、描述法和图示法。

并通过实例展示各种表示方法的运用。

4. 应用练习:布置一些练习题,让学生运用集合的概念和表示方法解决实际问题。

5. 课堂小结:对本节课的内容进行总结,强调集合的含义和表示方法的重要性。

6. 课后作业:布置一些课后作业,巩固所学知识。

7. 课后反思:对本节课的教学进行反思,总结经验教训,为下一步教学做好准备。

六、教学目标:1. 能够理解集合间的基本关系,包括子集、真子集、非子集等。

2. 能够运用集合的关系判断题目,提高逻辑推理能力。

3. 培养学生运用数学语言表达问题,解决问题的能力。

七、教学重点:1. 集合间的基本关系。

2. 运用集合的关系判断题目。

八、教学难点:1. 理解集合间的基本关系。

2. 运用集合的关系判断题目。

九、教学方法:1. 采用案例分析法,通过具体的集合实例讲解集合间的基本关系。

2. 利用小组讨论法,让学生分组讨论集合间的关系,培养学生的合作意识与沟通能力。

3. 采用问答法,教师提问,学生回答,激发学生的思维,提高学生的逻辑推理能力。

集合的含义与表示优秀教案

集合的含义与表示优秀教案

篇一:《集合的含义与表示》教学设计《集合的含义与表示》教学设计一、教材分析1、教材的地位与作用剖析《集合与函数的概念》是高中数学必修1的第一章内容,是高中数学的基础,集合作为一种数学思想在其它一些章节中也都有渗透,因此学好这一章内容是十分关键的。

本章又是高中数学课程的起始章,内容有一定的抽象性,研究的方法也与初中数学不一样,因此设计好这一章内容的教学不但对学生的知识掌握情况而且对学生能否入门高中数学都是很重要的。

2、教学内容与学情剖析本教材对集合的定位是将集合作为一种语言来学习的,通过教学使学生感受到用集合语言来表示数学内容时的简洁性、准确性,并使学生能用集合语言简洁、准确地表示数学对象。

高一新生经历了初中的启发式学习,对一些具体的知识已有了一定的掌握,但对一些抽象的知识还不能完全明了如何来学,一些良好的数学素养还需要去形成,一些能力还需要去培养、提高。

3、教学目标与重、难点剖析鉴于以上分析,又结合《课程标准》的要求,我确定本节课的教学目标、教学重、难点如下:(1)教学目标知识技能目标:①了解。

(集合的含义)②理解。

(元素与集合的关系)③掌握。

(集合的表示方法)④培养。

(学生观察、类比、归纳、表达的能力)过程与方法目标:①体验从特殊到一般的学习规律;②渗透分类思想;情感与价什观目标:①通过教学,激发学生的学习兴趣,培养学生积极的学习态度;②通过教学,让学生体会集合的文化价值,感受数学问题探究的过程之美及数学思维的严谨之美;(2)教学重、难点重点:集合的基本概念与表示。

难点:用集合的两种常用表示法――列举法与描述法,正确表示一些简单的集合。

[难点突破:]对于难点,则是通过实例引导,启发学生分析、寻找概念区分点,尽而把握概念特点,从而达到准确表达等一系列活动来完成突破。

二、教法设计由于本节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学不仅使学生能学到知识,更能使学生掌握怎样来学到知识,从而实现培养学生学习能力的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、1、1集合的含义与表示
(教师叙述:在初中我们已经接触过一些集合,例如:自然数的集合,有理数的集合,不等式x-7<3的解集,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等,那么,我们能给集合一个什么样的叙述性概念呢?这就是我们今天所要学习的内容.请同学们首先看一下我们
今天这节课的学习目标,开始我们今天的学习.我们今天的学习目标一共有三个)
一、【学习目标】(约2分钟)
1、了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号;
2、深刻理解集合元素的确定性、互异性、无序性;并能够用其解决有关问题;
3、能选择集合不同的语言形式描述具体的问题;
(自学引导:下面我们进入这节课的学习,首先是自学内容,今天这节课分为五个自学内容,任务比较大,希望同学们能集中注意力.)
二、【自学内容和要求及自学过程】(总计约24分钟)
阅读教材第2页到第3页前两段,然后回答下列3个问题:(约5分钟)
(请同学们用两分钟的时间认真阅读教材,注意理解集合的含义)
<1>黄冈实验学校全体高一学生能否构成一个集合?
<2>高一的所有女生能否构成一个集合?
<3>剑桥英语词典的所有英语单词能否构成一个集合?其实,生活中有很多东西
能构成集合,我们生活中的很多东西都能构成集合,你能举出一些例子吗?
通过以上分析,你能给出集合的含义吗?
<1>能.<2>能.<3>我们把研究的对象统称为“元素”,那么把一些元素组
成的总体叫“集合”,简称“集”.
【教学效果】:此部分自学效果相当成功,学生们都能快速的理解教学内容
阅读教材第3页思考下面第1—3段,然后回答下列个问题:(约3分钟)
(自学引导:请同学们认真阅读,理解元素与集合的关系)
<4>如果用A表示黄冈实验学校全体高一学生组成的集合,用a表示黄冈实验学
校高一学生中的一位同学,b是高二年级的一位同学,那么a、b与集合A分
别有什么关系?由此可见元素与集合之间有什么关系?
a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有
两种:属于和不属于.用符号表示即为∈、∉.亦即A
a∉
∈;.
A
b
【注意】:我们一般用大写拉丁字母A、B、C、...表示集合,用小写拉丁字母a、
b、c、...表示元素
【教学效果】:自学效果明显,老师稍加点拨重复即可
阅读教材第第2页最后一段和第3页前两段,然后回答下列问题:(约6分钟)(自学引导:这部分的重点是集合的三个性质:确定性,互异性,无序性.在考试中,很多题目都是根据这三个性质而命题的,希望能引起同学们的高度重视)
<5>大于3小于11的偶数能否构成集合?(引申:你能说出它们的元素吗)
<6>我国的小河流能否构成集合?(引申:若不能,为什么?若能,你能说出它
的元素吗?)
<7>问题<5>、<6>说明集合中的元素具有什么性质?
<8>由实数31、23、34、31组成的集合有几个元素?(你能说出原因吗?)
<9>问题<8>说明集合中的元素具有什么性质?
<10>由实数31、23、34组成的集合记为M,由实数23、31、34组成的集合记为
N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?
<5>能;<6>不能;<7>确定性.给定的集合,它的元素必须是明确的,即
任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的
确定性;<8>3个;<9>互异性:一个给定集合的元素是互不相同的,即集
合中的元素是不重复出现的,这就是集合的互异性;<10>集合M和N相
同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的,可
以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的. 【教学效果】:老师需要注意的是对于无序性的强调与讲解.无序性是相对的,而不是绝对的.无序性是对于两个相等的集合元素的顺序比较二得来的,不是说从小到大排列就是有序,而其他的排列就是无需,这一点,第一需要老师讲清
楚,第二需要学生理解清楚
阅读课本第3页《数学中一些常用的数集及其记法》,完成任务:(约2分钟)(自学引导:这些符号是需要同学们记忆背诵的,以后题目中只要一出现这些符号,就需要知道它是表示什么集合.)
<11>快速写出常见数集的记号
N:非负整数集(或自然数集)(全体非负整数的集
:正整数集(非负整数集N内排除0的集合);Z:整数集(全合);N*或N
+
体整数的集合);Q:有理数集(全体有理数的集合);R;实数集(全体实
数的集合);
【教学效果】:这一部分学生都能快速的理解.需要注意的是让学生明白,这几个是专用的符号,不是我们规定一个大写字母表示一个集合就能通用的,这是需要学生们理解的
前面我们知道集合可以用大写字母和自然语言表示,那么阅读教材第3页到第4页,然后回答下列问题(约8分钟)
(自学引导:能真正的理解两种表示方法:列举法,描述法)
<12>除字母表示法和自然语言之外,还能用什么方法表示集合?
<13>集合共有几种表示法?
结论:<12>方法一(字母表示法):大写的英文字母表示集合,例如常见的数集N、Q,所有的正方形组成的集合记为A等等;方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方形”组成的集合等等.还可以用下列方法:列举法:把集合中的全部元素一一列举出来,并用大括号“{}”
括起来表示集合,这种表示集合的方法叫做列举法;描述法:在大括号
内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一
条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所
含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有
直角三角形的集合可以表示为{x|x是直角三角形},也可以写成{直角三
角形}.
<13>表示一个集合有四种方法:字母表示法、自然语言、列举法、描述法. 【注意】:一个集合的描述方法不单单是一种,有时候是可以用多种描述方法的,譬如方程x2-4=0的解组成的集合,可以用列举法:{2,-2};可以用描
述法:}0
x
x.
-
{2=
4
【教学效果】:对于列举法,一定要让同学们明白,列举法是对于集合元素较少或者元素排列有规律的集合而言的;而对于描述法,需要学生们注意的是点集和数集的代表元素是不同的.这一部分同学们的自学效果很好,对于点集和数集,在做练习三的时候,具体的讲了一下,学生们的反响也很不错
三、【巩固与练习】(总计约8分钟)
请同学们自学教材第3页例1,然后完成下面练习(约3分钟)
练习一:用列举法表示下列集合:
<1>所有绝对值等于8的数的集合A;
<2>所有绝对值小于8的整数的集合B.
请同学们自学教材第4页例2,然后完成下面练习(约3分钟)
练习二:分别用列举法和描述法描述方程x2-9=0的解组成的集合.
课堂练习(约2分钟):
练习三:浏览教材第5页练习题,然后找同学口答练习
,通常用列举法表示,否则用描述法表示. 【教学效果】通过练习,学生们都达到了预期的学习目标,反响强烈
四、【作业】
1、必做题:教材第11页习题1.1A组第1题(1)(3)(6);12页第3题(1)(3)
2、选做题:选作:教材第11页习题1.1A组第2题,12页第4题
五、【小结】
本节课我们学习了集合的初步知识.重点是函数的三大性质:确定性、无序性、互异性,和函数的四种表示方法:集合语言表示法、大写字母表示法、列举法、描述法等等.通过这一节课的学习,学生们达到了预期的学习目标,效果
很好
六、【教学反思】
本节课基本上每一个学生都达到了预期的学习目标,但是其中隐藏的知识盲点,还是有的,特别是集合的无序性,在以后的教学中一定要注意点明无序性是相对而言的,是对于两个相同的集合,不同的元素排列顺序而言的.通过这节课的实践,先学后教,能极大的提高学生的学习积极性.其实每个人都在说“先学后教,当堂训练”,但是每个人都做到了吗?其实做到的只是极少数的.我希望我的教案能给各位青年教师做一个示例,这些教学任务,通过学生们的自学,是能够完成的.
我们收的学生都是三流四流学生,往往通过一年的学习,学生的成绩大半能超过当地一高很多分,教学方法,其实是一个很重要的问题.
希望各位老师能和我交流学习,我的联系方式在页眉和页脚上.。

相关文档
最新文档