第6章 神经网络——概念篇和实验篇

合集下载

神经网络第一讲课文档

神经网络第一讲课文档
• 神经元的基本工作机制
– 神经元有两种状态—兴奋和抑制(也不能认为神经元只能
表达或传递二值逻辑信号)
– 当神经元接收到其它神经元经由突触传来的激励信号时,多 个输入在神经元中以代数和的方式叠加。如果叠加总量超
过某个阈值,神经元就会被激发进入兴奋状态,发出 输出脉冲,并由轴突的突触传递给其它神经元。
• 脱机训练往往需要很长时间,为了获得最佳效果,常常要重复试 验多次。
• 网络收敛性的问题。
第10页,共30页。
1.3 人工神经网络的特点
– 总之,ANN是基于人类大脑的结构和功能建立起来的学 科,尽管它只是大脑的低级近似,但它的许多特点和人 类的智能特点类似,有着较强的识别能力和广泛的应用
前景。
第4页,共30页。
1.2 人工神经网络的发展
• 第一次高潮期 — 感知器模型和ANN – 1957年,计算机专家Frank Rosenblatt开始从事感知器
的研究,并制成硬件,通常被认为是最早的神经网络 模型。
– 1959年,两位电机工程师Bernard Widrow和Marcian Haff开发出一种叫作自适应线性单元的网络模型,并描
(阶跃,符号)
1 W *Pb0
Af(W *Pb) 0 W *Pb0
f
f
1
1
n
-1
n
-b
-1
无偏差阈值型激活函数
有偏差阈值型激活函数
第19页,共30页。
2.2 人工神经元模型
-线性函数
A f( W * P b ) W * P b
f
1
n
-1
无偏差线性激活函数
f
1
n
-b
-1
有偏差线性激活函数

神经网络的综述

神经网络的综述

1.绪论 (3)1.1 神经网络的提出与发展 (3)1.2神经网络的定义 (3)1.3神经网络的发展历程 (4)1.4 神经网络研究的意义 (6)2.BP神经网络 (7)2.1 BP神经网络介绍 (7)2.2 BP算法的研究现状 (7)2.3 BP网络的应用 (8)2.4基本结构与学习算法 (8)2.5 动作过程 (11)2.6 主要特点及参数优选 (13)3.BP网络在复合材料研究中的应用 (15)3.1 材料设计 (15)3.2 性能预测 (16)2.4损伤检测和预测 (17)2.5 结论 (17)致谢: (18)BP神经网络综述摘要:本文阐述了人工神经网络和神经网络控制的基本概念特点以及两者之间的关系,讨论了人工神经网络的两个主要研究方向神经网络的VC 维计算和神经网络的数据挖掘,着重介绍了人工神经网络的工作原理和神经网络控制技术的应用首先介绍了神经网络的发展历程,随后对BP神经网络的学习方法分为了导师知识学习训练和模式识别决策,并重点分析了导师知识学习训练的网络结构和学习算法,最后介绍了BP神经网络在性能预测中的应用。

关键词:人工神经网络;神经网络控制;应用;维;数据挖掘Abstract:It expounds the basic concepts, characteristics of the artificial neural network and neural network control and the relationship between them.It discusses two aspects: the Vapnik-Chervonenkis dimension calculation and the data mining in neural nets.And the basic principle of artificial neural networks and applications of neural network control technology are emphatically introduced. Key words:Artificial Neural Networks; Neural Network Control;this paper introduces the developing process of neural networks, and then it divides the learning methods of BP neural network into a inst ructor knowledge learning training and pattern recognition decisions, and focus on analysis of the network structure and learning algorith m of knowledge and learning mentors training .And finally it introduc es the applications of BP neural network in performance prediction.Application;Vapnik-Chervonenkis Mimension;Data Mining1.绪1.1 神经网络的提出与发展系统的复杂性与所要求的精确性之间存在尖锐的矛盾。

神经网络基本知识

神经网络基本知识

神经网络基本知识一、内容简述神经网络是机器学习的一个重要分支,是一种模拟生物神经网络结构和功能的计算模型。

它以其强大的学习能力和自适应能力广泛应用于多个领域,如图像识别、语音识别、自然语言处理等。

《神经网络基本知识》这篇文章将带领读者了解神经网络的基本概念、原理和应用。

1. 神经网络概述神经网络是一种模拟生物神经系统结构和功能的计算模型。

它由大量神经元相互连接构成,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。

神经网络的概念自上世纪五十年代提出以来,经历了漫长的发展历程,逐渐从简单的线性模型演变为复杂的多层非线性结构。

神经网络在人工智能领域发挥着核心作用,广泛应用于计算机视觉、语音识别、自然语言处理等领域。

神经网络的基本构成单元是神经元,每个神经元接收来自其他神经元的输入信号,通过特定的计算方式产生输出信号,并传递给其他神经元。

不同神经元之间的连接强度称为权重,通过训练过程不断调整和优化。

神经网络的训练过程主要是通过反向传播算法来实现的,通过计算输出层误差并反向传播到输入层,不断调整权重以减小误差。

神经网络具有强大的自适应能力和学习能力,能够处理复杂的模式识别和预测任务。

与传统的计算机程序相比,神经网络通过学习大量数据中的规律和特征,自动提取高级特征表示,避免了手动设计和选择特征的繁琐过程。

随着深度学习和大数据技术的不断发展,神经网络的应用前景将更加广阔。

神经网络是一种模拟生物神经系统功能的计算模型,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。

它在人工智能领域的应用已经取得了巨大的成功,并将在未来继续发挥重要作用。

2. 神经网络的历史背景与发展神经网络的历史可以追溯到上个世纪。

最初的神经网络概念起源于仿生学,模拟生物神经网络的结构和功能。

早期的神经网络研究主要集中在模式识别和机器学习的应用上。

随着计算机科学的快速发展,神经网络逐渐成为一个独立的研究领域。

在20世纪80年代和90年代,随着反向传播算法和卷积神经网络的提出,神经网络的性能得到了显著提升。

神经网络专题ppt课件

神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。

BP神经网络PPT全文

BP神经网络PPT全文
常要求激活函数是连续可微的
输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度

神经网络基本知识

神经网络基本知识

神经网络基本知识、BP神经网络一.概述1.1神经网络的定义人工神经网络(Artificial Neural Networks,简写为 ANNs)是由大量类似于生物神经元的处理单元相互连接而成的非线性复杂网络系统。

它是用一定的简单的数学模型来对生物神经网络结构进行描述,并在一定的算法指导下,使其能够在某种程度上模拟生物神经网络所具有的智能行为,解决传统算法所不能胜任的智能信息处理的问题。

它是巨量信息并行处理和大规模并行计算的基础,神经网络既是高度非线性动力学系统,又是自组织自适应系统,可用来描述认知、决策和控制的智能行为。

1.2 神经网络的发展历史对人工神经网络的研究始于 1943 年,经历 60 多年的发展,目前已经在许多工程研究领域得到了广泛应用。

但它并不是从一开始就倍受关注,它的发展道路曲折、几经兴衰,大致可以分为以下五个阶段:①奠基阶段:1943 年,由心理学家 McCulloch 和数学家 Pitts 合作,提出第一个神经计算模型,简称 M-P 模型,开创了神经网络研究这一革命性的思想。

②第一次高潮阶段:20 世纪 50 年代末 60 年代初,该阶段基本上确立了从系统的角度研究人工神经网络。

1957 年 Rosenblatt 提出的感知器(Perceptron)模型,可以通过监督学习建立模式判别能力。

③坚持阶段:随着神经网络研究的深入开展,人们遇到了来自认识、应用实现等方面的难题,一时难以解决。

神经网络的工作方式与当时占主要地位的、以数学离散符号推理为基本特征的人工智能大相径庭,但是更主要的原因是:当时的微电子技术无法为神经网络的研究提供有效的技术保证,使得在其后十几年内人们对神经网络的研究进入了一个低潮阶段。

④第二次高潮阶段:20 世纪 70 年代后期,由于神经网络研究者的突出成果,并且传统的人工智能理论和 Von.Neumann 型计算机在许多智能信息处理问题上遇到了挫折,而科学技术的发展又为人工神经网络的物质实现提供了基础,促使神经网络的研究进入了一个新的高潮阶段。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

实训神经网络实验报告

实训神经网络实验报告

一、实验背景随着人工智能技术的飞速发展,神经网络作为一种强大的机器学习模型,在各个领域得到了广泛应用。

为了更好地理解神经网络的原理和应用,我们进行了一系列的实训实验。

本报告将详细记录实验过程、结果和分析。

二、实验目的1. 理解神经网络的原理和结构。

2. 掌握神经网络的训练和测试方法。

3. 分析不同神经网络模型在特定任务上的性能差异。

三、实验内容1. 实验一:BP神经网络(1)实验目的:掌握BP神经网络的原理和实现方法,并在手写数字识别任务上应用。

(2)实验内容:- 使用Python编程实现BP神经网络。

- 使用MNIST数据集进行手写数字识别。

- 分析不同学习率、隐层神经元个数对网络性能的影响。

(3)实验结果:- 在MNIST数据集上,网络在训练集上的准确率达到98%以上。

- 通过调整学习率和隐层神经元个数,可以进一步提高网络性能。

2. 实验二:卷积神经网络(CNN)(1)实验目的:掌握CNN的原理和实现方法,并在图像分类任务上应用。

(2)实验内容:- 使用Python编程实现CNN。

- 使用CIFAR-10数据集进行图像分类。

- 分析不同卷积核大小、池化层大小对网络性能的影响。

(3)实验结果:- 在CIFAR-10数据集上,网络在训练集上的准确率达到80%以上。

- 通过调整卷积核大小和池化层大小,可以进一步提高网络性能。

3. 实验三:循环神经网络(RNN)(1)实验目的:掌握RNN的原理和实现方法,并在时间序列预测任务上应用。

(2)实验内容:- 使用Python编程实现RNN。

- 使用Stock数据集进行时间序列预测。

- 分析不同隐层神经元个数、学习率对网络性能的影响。

(3)实验结果:- 在Stock数据集上,网络在训练集上的预测准确率达到80%以上。

- 通过调整隐层神经元个数和学习率,可以进一步提高网络性能。

四、实验分析1. BP神经网络:BP神经网络是一种前向传播和反向传播相结合的神经网络,适用于回归和分类问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例6.2】
训练神经网络建立分类模型,能够识别购买BMW5的顾客性别 是“男”还是“女”。
神经网络分类模型的输出设置
• 目标——建立输出为性别值的神经网络分类模型识别顾客的性别。 • 方法——
1)设计有一个输出层节点的体系结构,设置1和0分别为男顾客和女顾 客的理想输出。在不能清晰分类的情况下,使用检验集数据来帮助;

图1飞蠓的触角长和翼长
• 思路:作一直线将两类飞蠓分开 • 例如;取 A =( 1.44 , 2.10 )和 B = (1.10 , 1.16) , 过A B两点作一条直线: • y= 1.47x - 0.017 • 其中X表示触角长;y表示翼长. • 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
1. 相似性学习(例 子学习) 2. 基于命令学习
强化学习是一种边获得样例边学习的方式,在获得样例之后更新自己的模型
6.1.2 神经网络的输入和输出数据格式
1、神经网络输入格式
– 落在[0,1]闭区间内的数值类型(归一化后的数据)。 – 实际应用中,需要将分类数据变换为[0,1]区间的数值数据。 – 两种方法——
2018年6月26日星期二
6.2.1 反向传播(Back Propagation)
• 分类结果 : (1.24 , 1.80) , (1.28 , 1.84) 属于 Af 类; (1.40,2.04)属于 Apf类.
图2 分类直线图
•缺陷:根据什么原则确定分类直线?
• 若取A=(1.46,2.10), B=(1.1,1.6)不变,则分类直线 变为 y=1.39x+0.071 分类结果变为: (1.24,1.80), (1.40,2.04) 属于Apf类; (1.28,1.84)属于Af类 • 哪一分类直线才是正确的呢? • 因此如何来确定这个判别直线是一个值得研究的 问题.一般地讲,应该充分利用已知的数据信息 来确定判别直线.
表6.1 “账户类型”属性的分类-数值变换
2018年6月26日星期二
常见的数据归一化方法
2018年6月26日星期二
6.1.2 神经网络的输入和输出数据格式
2、神经网络输出格式
– 神经网络的输出结点表示为[0,1]区间内的连续值。 – 如果神经网络是分类模型,需要对输出进行变换。
2018年6月26日星期二
• 问:如果抓到三只新的蚊子,它们的触角长和 翼长分别为(l.24,1.80); (l.28,1.84);(1.40, 2.04).问它们应分别属于哪一个种类? 解法一: • 把翼长作纵坐标,触角长作横坐标;那么每个 蚊子的翼长和触角决定了坐标平面的一个点.其 中 6个蚊子属于 APf类;用黑点“·”表示;9个 蚊子属 Af类;用小圆圈“。”表示. • 得到的结果见图1
【例6.3】
一个用于房屋估价的神经网络已经训练成功,该网络的输出数 据为0.18,需要根据该值还原房屋的真正的预估价格(房屋价 格范围限定在100到1000(单位:万元)之间)。
计算
• 问题——根据[0,1]区间内的神经网络输出的房屋预估价格和房屋 原始价格区间,计算房屋真正的预估价格。 • 解决方法——进行[0,1]区间数据归一化变换的逆变换。
第6章 神经网络
神经网络概述 神经网络训练 神经网络模型的优势和缺点
本章目标
• 了解神经网络基本概念

• •
了解神经网络的输入和输出数据的格式
了解激励函数 掌握反向传播学习方法

• •
了解自组织映射无指导聚类方法
学会应用Bp算法建立前馈神经网络 了解神经网络模型的优势和缺点
2018年6月26日星期二
所以,学习规则就是权值修正规则。
2.学习方法分类
从不同角度考虑,神经网络的学习方法有不同的
分类。表1列出了常见的几种分类情况。
神经网络学习
表1
外部影响
神经网络学习方法的常见分类
内部变化 算法性质 输入要求
1. 有监督学习 2. 强化学习 3. 无监督学习
1. 权值修正 1. 确定性学习 2. 拓扑变化 2. 随机性学习 3. 权值与拓扑 变化
2018年6月26日星期二
6.1.1神经网络模型
• 人脑神经网络: –人脑中约有140亿个神经细胞 –根据Stubbz的估计这些细胞被安排在约1000 个主要模块内,每个模块上有上百个神经网络, 每个网络约有10万个神经细胞。 • 如果将多个神经元按某种的拓扑结构连接起来,就 构成了神经网络。 根据连接的拓扑结构不同,神经网络可分为四大类: 分层前向网络、反馈前向网络、互连前向网络、广 泛互连网络。
f ( x)
1 1 e x
式6.8
x
2018年6月26日星期二
图6.2
S形函数
6.2 神经网络训练
常用学习算法
• 反向传播学习算法(Backpropagation Learning,BP) • 多种改进的BP算法 • 基于随机搜索策略的智能优化算法,包括遗传算法、 免疫算法和粒子群算法、混沌算法等。
– 必须输出[0,1]之间的值; – 在充分活跃时,将输出一个接近1的值。
• 常见的激励函数
– Sigmoid函数、阶跃函数、准线性函数和双曲正切函数等。 – Sigmoid函数最常用,也称S形函数。
1.200 1.000 0.800 0.600 0.400 0.200 0.000 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
6.1 神经网络概述
神经网络(Neural Networks,NN)
人工神经网络(Artificial Neural Network,ANN),即神经网 络(Neural Network,NN) 由大量处理单元(神经元Neurons)互连而成的网络,是对 人脑的抽象、简化和模拟(即智能化),模仿人脑信息处理的 功能。 涉及神经科学、数学、统计学、计算机科学 的一门学科。
• 方法一:将[0,1]区间分为大小相等的间隔,将间隔点上的取值作 为分类类型数据的数值表示。 • 方法二:对输入数据进行二进制编码,增加输入结点,用两个或 多个输入节点表示一个输入属性。
2018年6月26日星期二
【例6.1】
某投资公司的客户数据集中“账户类型”属性为分类类型属性, 它有四种取值,分别为“基本账户”、“一般账户”、“临时 账户”和“专用账户”。若将“账户类型”属性作为神经网络 的输入数据,就必须进行数据变换,使之成为[0,1]区间的数值 数据。
基本原理-网络模型
• 反馈前向网络:输出层上存在一个反馈回路,将信号反 馈到输入层。而网络本身还是前向型的。 反馈的结果形成封闭环路,具有反馈的单元称为隐单元, 其输出称为内部输出。
y1 y2 yn
x1
x2
xn
基本原理-网络模型
• 互连前向网络:外部看还是一个前向网络,内部有很多 自组织网络在层内互连着。
2)设计有两个输出层节点的体系结构:节点1和节点2。男性和女性顾 客的正确输出组合分别设置为[1,0]和[0,1]。不能清晰分类的情况下,使 用检验集数据来帮助。
• 问题解决——当未知实例x给出一个不确定的输出值v时,使用在v 处或附近聚类的大多数检验集实例所属的类别来分类x。
2018年6月26日星期二
同一层内单元的相互连接使它们之间有彼此牵制作用。
y1 y2 yn
x1
x2
xn
基本原理-网络模型
• 广泛互连网络:所有计算单元之间都有连接,即网络 中任意两个神经元之间都可以或可能是可达的。如: Hopfield网络 、玻尔茨曼机模型
神经网络(Neural Networks,NN)
• • • • 神经元(Neurodes)
b1 Vn1 V11 Vh1

V1i bi Vni Vhi
隐含层LB
V
输入层LA
a1

k 1
ah
k ah

an
a
a
k n
基本BP网络的拓扑结构
神经网络学习
• 学习 ( 亦称训练 ) 是神经网络的最重要特征之一。神经 网络能够通过学习,改变其内部状态,使输入—输出呈现 出某种规律性。
• 网络学习一般是利用一组称为样本的数据,作为网络的
originalVa lue newValue (oldMax oldMin ) oldMin
• 结果——0.18*(1000-100)+100=262(万元)
2018年6月26日星期二
6.1.3 激励函数
• 隐层和输出层节点的输入和输出之间具有的函数关系。
• 满足两个要求的多种函数可以作为激励函数
变换
• 目标——对“账户类型”属性进行落在[0,1]区间的分类-数值变换。 方法——使用方法一和方法二进行数据变换。 • 结果——如表6.1所示
序号 分类类型属性值 [0,1]区间数值型属性值(方法一) [0,1]区间数值型属性值(方法二) 1 2 3 4 基本账户 一般账户 临时账户 专用账户 0 0.33 0.67 1 [0,0] [0,1] [1,0] [1,1]
• 如下的情形已经不能用分类直线的办法:
• 新思路: 将问题看作一个系统,飞蠓的数据作为 输入,飞蠓的类型作为输出,研究输入与输出的 关系。
clk
c
k j
k cq
W11
c1 Wp1 … W1j cj Wpj Wij Wi1
… …
W1q cq
输出层LC
Wiq Wpq
W V1p bp Vhp V np
输入 ( 和输出 ), 网络按照一定的训练规则 ( 又称学习规 则或学习算法)自动调节神经元之间的连接强度或拓扑 结构 , 当网络的实际输出满足期望的要求 , 或者趋于稳 定时,则认为学习成功。
相关文档
最新文档