电弧炉谐波治理方法
谐波治理的基本方法

目前谐波治理的基本方法有以下三种,在治理过程中又可以采用变电所集中治理和非线性用电设备处分散治理两种方法。
按谁污染谁治理的原则,应该在非线性用电设备处分散治理。
但对于电脑,彩电,节能灯等民用设备,则只能进行集中治理。
1、减少非线性用电设备与电源间的电气距离。
也就是减少系统阻抗,换句话说就是提高供电电压等级。
例如,在丽水电业局的遂昌钢厂就取得了不错效果,该钢厂原是用35kV供电,由两个110kV变电所各架设一回35kV专线供电,而它的主要用电设备是电弧炉,虽然进行了五次、七次谐波治理,但在110kV的35kV母线上测得谐波分量仍接近或稍超国家标准。
但在丽水局在遂昌新建了一个220kV变电所而且离该钢厂仅4km左右,用5回35kV专线供电,使35kV母线的谐波分量控制在国家标准以内,此外该厂还使用了较大容量的同步发电机,使这些非线性负荷的电气距离大大下降,使该厂生产的谐波对电网的危害性下降,这种方法投资是最大的,往往需要和电网发展规划相协调。
2、谐波的隔离。
非线性用电设备产生的谐波,它不仅直接影响到本级电网,而且经过变压器后,还会影响到上几级电网。
如何把这些非线性用电设备产生的谐波不影响或少影响其他几级电网,这也是谐波治理的一个基本方法。
这一方法在电网中广泛采用,发电机发出的电能经过Y/△、Y0/△、Y0/Y等接线组别的变压器,把发电机产生的三次、九次等零序分量的谐波与上级电网隔离开来,因此在110kV以上高压电网上,三、九次谐波分量很小,几乎是零。
而10kV由于大多数配变为Y/Y0接线,35kV也有少量Y/Y0接线的直配变,因此在10kV和35kV系统中三、九次谐波分量会比高压电网大。
为了减少低压对10kV电网的影响,我局现在10kV配电系统中推广使用了D,yn11接线组别的配电变压器,有效的减少了三、九次谐波的影响。
3、安装滤波器。
目前对变电所侧和用户侧谐波治理的方法,多采用安装滤波器来减少谐波分量。
电力系统中谐波问题如何治理

电力系统中谐波问题如何治理在当今的电力系统中,谐波问题日益凸显,给电力设备的正常运行和电力质量带来了诸多挑战。
那么,究竟什么是谐波?它又是如何产生的?更重要的是,我们应该如何有效地治理它呢?首先,让我们来了解一下谐波的概念。
简单来说,谐波是指在电力系统中,电流或电压的频率不是基波频率(通常为 50Hz 或 60Hz)整数倍的分量。
这些谐波分量会导致电力系统中的电流和电压波形发生畸变,从而影响电力设备的性能和使用寿命。
谐波的产生原因是多种多样的。
其中,电力电子设备的广泛应用是主要原因之一。
例如,变频器、整流器、逆变器等在工作时会产生大量的谐波电流注入到电力系统中。
此外,电弧炉、电焊机等非线性负载也会产生谐波。
那么,谐波问题会给电力系统带来哪些危害呢?一方面,它会增加电力设备的损耗,导致设备发热、效率降低,缩短设备的使用寿命。
例如,变压器在谐波的作用下,铁芯损耗会显著增加,容易出现过热现象。
另一方面,谐波会影响电力系统的稳定性,可能导致继电保护装置误动作,影响电力系统的安全可靠运行。
同时,谐波还会对通信系统产生干扰,影响通信质量。
既然谐波问题如此严重,我们应该如何治理呢?目前,主要的治理方法可以分为无源滤波和有源滤波两大类。
无源滤波是一种传统的谐波治理方法,它通过电感、电容等无源元件组成滤波器,对特定频率的谐波进行滤波。
无源滤波器结构简单、成本较低,但存在一些局限性。
例如,它的滤波效果容易受到系统参数变化的影响,而且只能对固定频率的谐波进行有效滤波。
有源滤波则是一种较为先进的谐波治理技术。
它通过实时检测电力系统中的谐波电流,并产生与之大小相等、方向相反的补偿电流注入到系统中,从而实现谐波的动态补偿。
有源滤波器具有响应速度快、滤波效果好、能够适应系统参数变化等优点,但成本相对较高。
除了滤波技术,改善电力系统的设计和运行管理也是治理谐波的重要措施。
在电力系统规划和设计阶段,应合理选择电力设备,尽量减少非线性负载的接入。
谐波治理方案

电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。
首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。
我国对电能质量的三方面都有明确的标准和规范。
随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。
它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。
一、谐波治理谐波成因电网谐波来自于三个方面:1.发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
2.是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。
它的大小与磁路的结构形式、铁心的饱和程度有关。
铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
3.是用电设备产生的谐波:晶闸管整流设备。
由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。
谐波治理方案

谐波治理方案1. 引言谐波电流是电力系统中的一种常见问题,特别是在有非线性负载的情况下。
谐波会导致电网中的电压畸变、设备损坏以及其他负面影响。
因此,为了保障电力系统的正常运行和设备的安全运行,需要实施谐波治理措施。
本文将介绍一种谐波治理方案,以减少电力系统中的谐波电流。
方案包括谐波源的识别、谐波电流监测与分析、谐波滤波器的设计与应用等内容。
2. 谐波源的识别在电力系统中,谐波源可能来自于各种非线性负载,例如电弧炉、变频器、电子设备等。
通过谐波源的识别,可以确定谐波的产生位置和程度,从而为后续的治理措施提供依据。
识别谐波源的方法可以采取谐波电流监测仪器进行实时监测和分析,也可以通过分析电力系统中各个非线性负载的谐波特性来确定谐波源。
根据谐波源的识别结果,可以制定相应的谐波治理方案。
3. 谐波电流监测与分析对谐波电流进行监测和分析是实施谐波治理的重要步骤。
通过谐波电流监测,可以了解电力系统中谐波的产生和传播情况,确定谐波电流的频谱特性。
在监测期间,需要采集电力系统中各个节点的电流数据,并对其进行分析。
谐波电流分析可以采用频谱分析方法,通过对电流信号进行傅里叶变换,得到电流在不同频率下的谐波分量。
分析结果可以帮助确定主要的谐波成分和谐波级别,为后续的治理方案设计提供依据。
4. 谐波滤波器的设计与应用谐波滤波器是减少电力系统谐波的一种常用设备。
根据谐波分析结果,可以设计合适的谐波滤波器,并将其应用于电力系统中,以降低谐波电流水平。
根据谐波分析结果,可以确定谐波滤波器的额定电流和安装位置。
一般来说,谐波滤波器应该安装在负载侧,使其能够尽量接近谐波源,以最大限度地降低谐波电流。
在谐波滤波器的设计过程中,需要考虑到谐波滤波器的阻抗特性和谐波滤波器的使用寿命等因素。
合理设计和应用谐波滤波器可以有效地减少电力系统中的谐波电流。
5. 结论谐波电流是电力系统中的常见问题,为了保障电力系统的正常运行和设备的安全运行,需要实施谐波治理措施。
谐波治理的基本方法和措施_概述及解释说明

谐波治理的基本方法和措施概述及解释说明1. 引言1.1 概述谐波是指在电力系统或其他电气设备中频率为基波频率的整数倍的波动。
谐波问题已经成为现代电力系统和工业生产中普遍存在的一个难题,它会导致电能质量下降、设备寿命缩短、甚至引发系统故障等负面影响。
因此,探索谐波治理的基本方法和措施对于确保电网稳定运行和提高供电可靠性至关重要。
1.2 文章结构本文旨在对谐波治理的基本方法和措施进行概述并进行解释说明。
首先,在第2节中,我们将介绍谐波治理的概念及其基本方法。
然后,在第3节中,将详细讨论谐波治理方法的具体实施步骤,以帮助读者全面了解如何进行谐波治理。
接下来,在第4节中,我们将通过分析实例和进行案例研究来进一步加深对谐波治理的认识。
最后,在第5节中,我们将总结文章并展望未来谐波治理发展的趋势与挑战。
1.3 目的文章旨在向读者介绍谐波治理的基本方法和措施,并详细说明实施这些方法和措施的具体步骤。
通过对谐波问题的深入解析和案例研究,希望能提供给读者一些实用的指导和经验,以便在实际工程中有效地解决谐波问题。
此外,文章还将展望未来谐波治理发展的趋势,并指出可能面临的挑战,旨在激发学术界和工程界进一步研究与探索谐波治理领域。
2. 谐波治理的基本方法和措施2.1 谐波治理概述谐波是指电力系统中频率为基波频率整数倍的非线性电流或电压成分。
过多的谐波对电力设备和系统会造成损坏,因此需要采取一系列方法来进行谐波治理。
本节将介绍谐波治理的基本方法和措施。
2.2 方法一:滤波器应用滤波器是最常见也是最有效的谐波治理方法之一。
滤波器可以选择性地通过或阻挡特定频率的谐波成分,从而达到谐波抑制的效果。
常见的滤波器包括被动滤波器和主动滤波器。
被动滤波器是一种简单且经济实用的滤除谐波单元的方法。
它通常由电感、电容和电阻组成,并与系统并联或串联连接。
被动滤波器具有固定衰减特性,在设计时需要根据不同情况选择合适的参数。
主动滤波器则利用控制技术实现对特定频率的反相干扰信号,以达到抵消谐振效应的目标。
谐波产生的根本原因及治理对策

谐波产生的根本原因及治理对策谐波是指在电力系统中产生的频率为基波频率的整数倍的波动。
它是电力系统中普遍存在的一种现象,但过多的谐波会对电力系统的正常运行和设备的安全性产生很大影响,因此需要采取相应的治理对策来解决这个问题。
1.非线性负载:当电力系统中存在非线性负载时,如电弧炉、电焊机、电子设备等,其工作特性会产生谐波。
这是谐波产生的主要原因之一2.电力电子装置:现代电力系统中广泛使用的各种电力电子装置,如变频器、整流装置等,也会引入大量谐波。
3.潮流分布不均匀:当电力系统中的潮流分布不均匀时,也会导致谐波的生成和传播。
针对谐波的治理对策主要有以下几方面:1.使用滤波器:在电力系统中安装滤波器可以消除或降低谐波对系统的影响。
滤波器的选择要根据谐波的频率和大小来确定。
2.设计合理的系统:在电力系统的设计阶段,应考虑到非线性负载和电力电子装置可能带来的谐波问题,采取相应的额外措施来减少谐波的产生。
3.提高设备的抗谐波能力:针对电力系统中的关键设备,如变压器、电容器等,可以采用提高抗谐波能力的设计和制造技术,使其能够更好地耐受谐波的影响。
4.加强监测和控制:定期对电力系统进行谐波监测,及时发现和解决问题。
对于频繁发生谐波问题的系统,可以采用自动生成谐波的设备进行实时控制,以减小谐波的影响。
5.加强人员培训和管理:加强对电力系统人员的培训,提高其对谐波问题的认识和处理能力。
同时,建立健全的管理体系,制定相应的管理规范和操作程序,以确保谐波问题得到科学有效的控制。
总之,谐波问题存在于电力系统中,会对系统的正常运行和设备的安全性产生不利影响。
通过采取相应的治理对策,如使用滤波器、设计合理的系统、提高设备的抗谐波能力等,可以有效地解决谐波问题,确保电力系统的稳定和可靠运行。
同时,需要加强人员培训和管理,提高人员的谐波处理能力,确保谐波问题得到及时有效的解决。
电弧炉谐波的危害及治理措施探讨
上海交通大学 2 0 1 5( 0 7 ).
0 *
0 E V
3 ,
3 , }
增 容后的接线圈 ( 刘石 石骑为联 络通道 )
5 效 果
以上技 术措施 的实施 , 对石西 变3 5 k V系统谐波 电流 起到 了 一定的 抑制作用。 几次 实测, 均没有发现谐 波电流 超标 的现象 。 6 , 小 结 ( > . >上接第3 6 2 页) 电弧炉产生的谐 波, 对 电气设备的安全、 用户的连 续供 电等都有不 不稳 定岩 体均应橇挖 排除 。 开挖 自 上而下进行, 高 度较 大的边坡 , 分梯 利影响 , 供 电企 业必须从源头上抓谐波管 理。 对报装接电且含有非线性 负荷的用 户, 把抑制 和截堵 谐波工作放在设 计 中, 在进 行无功补 偿设计 段开 挖。 随着开挖高程下 降, 及时对坡 面进行测量 以防止偏离设计 线, 对 于边坡 开挖 露出的软 弱岩层和构 造破 时就 要考虑对 谐波的 治理 , 对 已投运 的非线 性用户, 要从技 术上采取切 避免在 形成 高边坡 后再 处理 。 碎带 区域 , 按 施工 图纸 和监 理工程 师的指 示进行 处理 。 边 坡的 支护在 实可行的措施抑 制谐波分量 。 分层开 挖过 程中逐 层进行 , 上 层的支护应保证 下一层的开挖能安全 顺利 进行。 在施 工期间直至 工程 验收 , 定 期对边坡 的稳定 进行检测 , 若出现 不稳定迹象 时, 及时 通知监 理工程师 , 并立即采取有效措 施确保边坡 稳 定。 爆破 施工采取微 差起爆 网络 , 控制单孔 药量 , 减少爆 破振动 对建基 面、 边坡 的影 响 , 爆破 层边坡 上松动石块, 采用人工撬 挖清除 。 6 . 结 语 通过 结合引水渡槽 工程施 工实例 , 着重阐述渡 槽的施 工技 术 和施 工工艺 , 对引水 渡槽从施工各 个环节来阐述了其施 工质量控制 , 以及所 采用的质量 控制方法、 手段及 监理效果 , 为 同行参 考。
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统性能的一个重要因素。
谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。
一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。
在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。
2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。
3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。
二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。
2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。
3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。
4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。
常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。
通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。
2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。
电力系统谐波治理的四种方法
电力系统谐波治理的四种方法电力系统中的谐波是指电网中除基波(50Hz或60Hz)外的各种频率的非线性电流和电压分量。
谐波会导致电网中设备的性能下降,甚至造成设备的故障。
因此,为了保证电力系统的正常运行和设备的安全使用,需要进行谐波治理。
下面介绍电力系统谐波治理的四种方法。
第一种方法是滤波器的应用。
滤波器是一种电子器件,可以通过选择性地通过或阻断特定频率的信号来消除谐波。
根据谐波的频率,可以选择合适的滤波器类型,例如LC滤波器、有源滤波器等。
滤波器通常与设备的电源连接,以便将谐波电流或电压从电网中衰减到可接受的水平。
第二种方法是降低谐波源的发生。
谐波是由非线性负载引起的,例如变频器、电弧炉等。
降低谐波源的发生可以通过选择低谐波的设备、改进设备的运行方式或采取适当的谐波抑制措施来实现。
例如,在选择变频器时,可以考虑具有低谐波输出的变频器,或者通过安装谐波抑制器来补偿谐波。
第三种方法是采用谐波干扰限制技术。
谐波可以通过电力系统中的传输线、变压器等元件传播到其他设备中,造成干扰。
因此,为了减少谐波的传播和干扰,可以采用一些限制技术,如使用低谐波设计的变压器、采用合适的线路参数等。
第四种方法是谐波监测和分析技术的应用。
谐波的监测和分析是谐波治理的重要步骤。
通过采集电网中的谐波数据,并利用相关的分析软件进行谐波分析,可以了解电网中的谐波水平和谐波源的特征,为谐波治理提供科学的依据和措施。
总之,电力系统谐波治理是保证电力系统正常运行和设备安全使用的重要措施。
通过滤波器的应用、降低谐波源的发生、采用谐波干扰限制技术和谐波监测分析技术的应用,可以有效地控制和消除电力系统中的谐波,提高电网的质量和可靠性。
浅析电弧炉炼钢中的谐波及抑制
设备管理与维修2019№7(下)浅析电弧炉炼钢中的谐波及抑制谭永彦(山东钢铁股份有限公司莱芜分公司特钢事业部,山东莱芜271104)摘要:钢铁是工业生产的重要支柱,受到市场需求的影响,各种炼钢技术应运而生,电弧炉炼钢是其中的代表之一。
在电弧炉炼钢过程中,谐波污染问题将可带来巨大的经济损失。
对电弧炉炼钢中的谐波进行分析,在阐述其产生、危害的基础上,探讨有效的抑制措施。
关键词:炼钢;电弧炉;谐波污染;抑制策略中图分类号:TP391文献标识码:BDOI :10.16621/ki.issn1001-0599.2019.07D.850引言当前的钢铁生产工艺,大体可以分为从废钢到钢铁的“短流程”工艺以及从矿石到钢铁的“长流程”。
其中,“长流程”工艺主要借助高炉、烧结炉以及转炉等设备,以焦炭以及铁矿石等为主要原料,进行钢铁生产活动;“短流程”工艺则主要依赖电弧炉、中频炉等设备,对废钢进行重熔精炼处理,达到钢铁生产的目的。
在“短流程”生产工艺中,电弧炉炼钢是应用广泛的技术。
电弧炉的大力发展始于上个世纪的80年代末90年代初,发展至今,电弧炉炼钢技术以及基于该技术的钢铁产量得到极大的提升。
1电弧炉炼钢概述电弧炉炼钢技术诞生于欧洲。
19世纪80年代,研究者们开始对以电为热源的炼钢炉的开发进行反复试验与研究。
1990年,工业生产的第一号电弧炉诞生,被命名为埃鲁式炉。
作为电弧炉炼钢技术的主要原材料,废钢的利用符合循环经济的发展需求,对“钢铁生产食物链”的成型亦具有极为重要的作用。
此外,采用电弧炉炼钢技术,不仅能够降低钢铁生产的能源消耗,还能减少污染物的排放,对环境的健康发展起到积极作用。
现代电弧炉炼钢过程见图1。
2电弧炉炼钢中的谐波在电弧炉炼钢过程中,电弧炉的电流含有不规则变化、快速的无功功率以及高次谐波,导致电流、电压冲激现象,引起供电电压与电流波形畸变。
由电流、电压冲激现象引起的设备事故并不少见,而电弧炉工作过程中经常处于起弧、灭弧状态,不仅增加用电设备损耗以及线损,还极大的降低电能质量,甚至对电网有巨大的冲击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电弧炉谐波治理方法
一、电弧炉工作原理及产生谐波的过程。
电弧炉一般是三相式(滤波器一般采用三相四线),通过专用电弧炉变压器供电,变压器高压侧通常为 6.3KV、10KV、35KV,也有110KV,另外还有400v,低压侧通常为一百多伏至一千多伏。
目前常用的电弧炉规格主要在2T至100T炉之间。
电弧炉冶炼基本分为两个阶段,熔化期和精炼期,熔化期由于存在大量固体未熔物,炉子状态不稳定,这时电流波形不规律,谐波含量大,主要是2、3、4、5、6、7等较为低次谐波,含有大量丰富间隙波并伴随电压波动和闪变,导致电网电压和电流的畸变。
精炼期电弧炉稳定,谐波含量不大。
二、电弧炉谐波治理的方法建议。
为了稳定电弧和限制短路电流,需要约等于变压器容量35%的电抗容量,串入变压器主回路中,电抗器的结构特点是:既使通过短路电流,铁芯也不发生磁饱和。
大型电弧炉变压器,本身具有满足需要的电抗值,不需外加电抗器;而小于10KVA的变压器,电抗不满足要求,需在一次侧外加电抗器。
如果治理目标是针对谐波的干扰,一般情况选择三相四线滤波器进行谐波治理;如果治理目标是针对电压波动和闪变以及三相电流不平衡,SVC静止型动态无功功率补偿装置目前是最好的方法。
因电弧炉是一种特殊的负载,所以很多时候都需要具体情况具体分析,如需了解方案设计可咨询领步电能质量,会给您最经济有效的治理方案。