分分钟认识静电纺丝

合集下载

静电纺丝 凝胶-概述说明以及解释

静电纺丝 凝胶-概述说明以及解释

静电纺丝凝胶-概述说明以及解释1.引言1.1 概述静电纺丝是一种通过利用静电力将液体材料拉丝形成纤维的技术。

它被广泛用于纺织、医疗、能源、环境等领域,因其高效、简便的特点而备受关注。

静电纺丝的原理基于静电力的作用。

通过将液体材料注入到一个带正电荷的喷嘴中,通过高压电场的作用,使液体排列成一个带正电的液体柱。

由于带正电的喷嘴和地之间存在电荷差异,液体会被拉伸形成纤维状。

最终,在收集器上形成的纤维会自由落下并堆积形成凝胶状。

静电纺丝具有广泛的应用领域。

在纺织方面,它可以制造高强度、高透气性的纺织品,如纺织面料和滤料。

在医疗领域,静电纺丝技术可用于制造生物可降解的医用纤维,如人工血管和组织工程支架。

此外,静电纺丝还可以用于能源储存和转换领域,例如制备锂离子电池和柔性太阳能电池。

在环境方面,它被应用于大气污染的捕捉和水处理等领域。

然而,静电纺丝也存在一些缺点。

首先,该技术对原料的选择性较高,不同的材料可能需要不同的改善操作。

其次,在生产过程中,由于操作不当或环境因素的影响,纤维的直径和均一性可能会受到一定程度的影响。

此外,由于静电纺丝涉及高电压和高温,操作要求较高,需要专业知识和仪器设备的支持。

总之,静电纺丝作为一种有效的纤维制备技术,具有广泛的应用前景。

尽管存在一些挑战和限制,但通过进一步的研究和技术改进,相信静电纺丝将在未来得到更加广泛和深入的应用。

1.2 文章结构文章结构是写作过程中非常重要的一部分,它帮助读者更好地理解文章的整体架构和逻辑关系。

本文的结构主要分为引言、正文和结论三个部分。

首先,引言部分旨在给读者一个整体的概述。

在这部分中,我们将对静电纺丝进行简要介绍,并解释本文主要内容和目的。

接下来,正文部分是文章的核心部分,将具体阐述静电纺丝的原理、应用以及其优缺点。

在2.1节,我们将详细介绍静电纺丝的原理,包括静电纺丝的工作原理和原理解析。

2.2节将讨论静电纺丝在不同领域的应用,例如医学、纺织品和能源等方面。

静电纺丝技术制备纳米纤维的基本原理与应用

静电纺丝技术制备纳米纤维的基本原理与应用

静电纺丝技术制备纳米纤维的基本原理与应用静电纺丝技术是近年来较为成熟的纳米纤维制备技术之一,具有高效、简便、易操作等特点。

本文将介绍静电纺丝技术的基本原理,探讨其应用领域,并简单举例说明。

一、静电纺丝技术的基本原理静电纺丝技术是指将高分子溶液通过高压电场作用,形成纳米级的纤维。

其工作原理基于三个主要因素:高分子的表面张力、电荷密度和电场强度。

在电场的作用下,载有电荷的高分子溶液会形成电荷分布,随后在电场的作用下,溶液中的高分子链状分子朝向电极移动而形成了纳米级的纤维。

这些纳米纤维以径向跟随电场分布,并且由于高分子链间的极性相互作用力、表面张力等因素的固化作用下逐渐形成完整的纳米纤维膜。

二、静电纺丝技术的应用领域(一) 高分子工业静电纺丝技术在高分子工业上有着广泛的应用。

由于其纳米纤维的特殊性质,可以增强高分子材料的机械性能、光学性能、电学性能等特征。

高分子纳米纤维的应用范围涉及到纺织品、防辐射针织品、过滤器、滤清器、气凝胶、船用材料等。

(二) 食品科学静电纺丝技术在食品科学中也有着广泛的应用。

利用静电纺丝技术制备的纳米纤维对于食品中的油脂、营养成分、气味等具有吸附、封存、保护的效果。

同时,纳米纤维膜具有较高的透气性能和大表面积,可以被应用于保鲜、包装、防霉、防菌等方面。

(三) 医药领域静电纺丝技术在医药领域中的应用较为广泛。

制备高分子纳米纤维材料用于医疗设备的制造,例如口罩、医用手套、敷料等。

此外,静电纺丝在药物传输、生物识别、细胞培养、组织修复等方面也有着广泛的应用。

三、例子详解——静电纺丝技术制备抗菌口罩随着新型冠状病毒的传播,口罩成为了人们必备的生存物品。

传统的口罩材料往往有着较为严重的缺陷,无法对抗空气中的病原体产生作用,再加上长时间佩戴,出现细菌和真菌的滋生。

基于静电纺丝技术的口罩材料则可以有效地解决上述问题。

利用静电纺丝技术,制备的口罩材料具有高度的表面积,并且具有极佳的抗菌和透气性能。

静电纺丝技术

静电纺丝技术

静电纺丝技术静电纺丝技术是利用高压静电作用使聚合物溶液或熔体带电并发生形变,在喷头末端处形成悬垂的锥状液滴,当液滴表面静电斥力大于其表面张力时,液滴表面就会喷射出高速飞行的射流,并在较短的时间内经电场力拉伸、溶剂挥发、聚合物固化形成纤维。

所获得的静电纺纤维直径小、比表面积大,同时纤维膜还具有孔径小、孔隙率高、孔道连通性好等优势,在过滤、传感、医疗卫生以及自清洁等领域具有广泛的应用。

1静电纺丝的起源与发展静电纺丝起源于200多年前人们对静电雾化过程的研究。

1745年,Bose通过对毛细管末端的水表面施加高电势,发现其表面将会有微细射流喷出,从而形成高度分散的气溶胶,并得出该现象是由液体表面的机械压力与电场力失衡所引起的。

1882年,Rayleigh指出当带电液滴表面的电荷斥力超过其表面张力时,就会在其表面形成微小的射流,并对该现象进行理论分析总结,得到射流形成的临界条件。

1902年,Cooley与Morton申请了第一个利用电荷对不同挥发性液体进行分散的专利。

随后Zeleny研究了毛细管端口处液体在高压静电作用下的分裂现象,通过观察总结出几种不同的射流形成模型,认为当液滴内压力与外界施加压力相等时,液滴将处于不稳定状态。

基于上述的基础研究,1929年,Hagiwara公开了一种以人造蚕丝胶体溶液为原料,通过高压静电制备人造蚕丝的专利。

1934年,Formhals设计了一种利用静电斥力来生产聚合物纤维的装置并申请了专利,该专利首次详细介绍了聚合物在高压电场作用下形成射流的原因,这被认为是静电纺丝技术制备纤维的开端。

从此,静电纺丝技术成为了一种制备超细纤维的有效可行方法。

1966年,Simons发明了一种生产静电纺纤维的装置,获得了具有不同堆积形态的纤维膜。

20世纪60年代,Taylor在研究电场力诱导液滴分裂的过程中发现,随着电压升高,带电液体会在毛细管末端逐渐形成一个半球形状的悬垂液滴,当液滴表面电荷斥力与聚合物溶液表面张力达到平衡时,带电液滴会变成圆锥形;当电荷斥力超过表面张力时,就会从圆锥形聚合物液滴表面喷射出液体射流。

静电纺丝磷源

静电纺丝磷源

静电纺丝磷源
静电纺丝技术是一种制造纳米纤维的有效方法,而磷源在静电纺丝中起到至关重要的作用。

这是因为磷源通常与纺丝液中的其他成分结合,形成具有特定性能的纳米纤维。

首先,我们来了解一下什么是静电纺丝。

简单来说,静电纺丝就是利用静电场将纺丝液细化为纳米级别的纤维。

这些纤维可以用于各种领域,如生物医学、能源、过滤等。

而磷源,顾名思义,是含有磷元素的物质。

在静电纺丝过程中,磷源通常与其他纺丝液成分结合,形成含有磷元素的纳米纤维。

这些磷元素对于提高纤维的某些性能,如抗氧化性、阻燃性等,具有重要作用。

那么,为什么需要磷源呢?这是因为磷元素在某些材料中具有独特的性能,如提高材料的阻燃性、抗氧化性等。

通过在纺丝液中添加磷源,我们可以将这些性能赋予最终的纳米纤维。

那么,如何选择合适的磷源呢?这需要根据具体的纺丝需求和目标来确定。

一些常见的磷源包括无机磷化合物、有机磷化合物等。

这些磷源可以单独使用,也可以与其他纺丝液成分混合使用,以获得最佳的纤维性能。

总的来说,静电纺丝技术是一种具有广泛应用前景的纳米纤维制造方法。

而磷源作为其中的重要组成部分,对于提高纤维的性能具有重要作用。

通过选择合适的磷源,我们可以更好地利用静电纺丝技术制造出具有优异性能的纳米纤维,满足各种领域的需求。

同时,对于深入了解磷源在静电纺丝中的作用和机理,也将有助于推动这一领域的发展和进步。

静电纺丝资料

静电纺丝资料

1.静电纺丝的定义静电纺丝又称“电纺”, 是一种使带电荷的聚合物溶液或熔体在静电场中射流来制备聚合物超细纤维的加工方法。

在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。

在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷, 受到一个与表面张力方向相反的电场力。

当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”,而当电场强度增加至一个临界值时,电场力就会克服液体的表面张力,从“泰勒锥”中喷出。

在高速震荡中,喷射流被迅速拉细,溶剂也迅速挥发,最终形成直径在纳米级的纤维,并以随机的方式散落在收集装置上,形成无纺布。

2.静电纺丝的生物材料领域应用可行性由电纺丝纤维制得的无纺布具有孔隙率高、比表面积大、纤维精细程度与均一性高、长径比大等优点, 这些优点使其具备了现实的和潜在的众多应用价值。

由电纺法制备出的无纺布具有良好的生物相容性和结构相容性,可以在生物医学材料中广泛应用。

通过对材料加工过程的调控,可以实现电纺丝材料在结构、形貌、组分和功能上满足生物医用材料的要求。

3.用于组织工程支架制备的纺丝工艺①溶液浇铸成孔剂滤出法。

该法所用的成孔剂含量低,由于采用溶液浇铸于器皿中,从而导致成孔剂下沉,孔隙分布不均匀以及上下表面形态出现诧异。

②三维层化法。

通过制备多孔膜,然后再通过溶剂把各层粘接起来,从而形成三维的支架。

该法工艺复杂,而且在粘接过程中,粘接部分孔被封闭,从而形成界面,使材料内部形态不均匀。

③熔融加工法。

该法在聚合物的熔点以上,把成孔剂与聚合物共混挤人模具。

冷却得到预定形状的多孔支架。

该法的缺点是在挤出机里,由于熔体与成孔剂的密度相差较大,因而混合难以均匀。

而且部分聚合物,尤其是生物可降解的聚合物在熔融加工时,容易热降解。

④相分离法。

该法采用溶液混合物冷却到溶剂的熔点以下,从而产生相分离。

再通过真空干燥,从而得到多孔支架。

该法的缺点是所得的孔径一般在10μm 以下,而且控制较为困难。

静电纺丝资料

静电纺丝资料

1.静电纺丝的定义静电纺丝又称“电纺”, 是一种使带电荷的聚合物溶液或熔体在静电场中射流来制备聚合物超细纤维的加工方法。

在电纺丝过程中,喷射装置中装满了充电的聚合物溶液或熔融液。

在外加电场作用下,受表面张力作用而保持在喷嘴处的高分子液滴,在电场诱导下表面聚集电荷, 受到一个与表面张力方向相反的电场力。

当电场逐渐增强时,喷嘴处的液滴由球状被拉长为锥状,形成所谓的“泰勒锥”,而当电场强度增加至一个临界值时,电场力就会克服液体的表面张力,从“泰勒锥”中喷出。

在高速震荡中,喷射流被迅速拉细,溶剂也迅速挥发,最终形成直径在纳米级的纤维,并以随机的方式散落在收集装置上,形成无纺布。

2.静电纺丝的生物材料领域应用可行性由电纺丝纤维制得的无纺布具有孔隙率高、比表面积大、纤维精细程度与均一性高、长径比大等优点, 这些优点使其具备了现实的和潜在的众多应用价值。

由电纺法制备出的无纺布具有良好的生物相容性和结构相容性,可以在生物医学材料中广泛应用。

通过对材料加工过程的调控,可以实现电纺丝材料在结构、形貌、组分和功能上满足生物医用材料的要求。

3.用于组织工程支架制备的纺丝工艺①溶液浇铸成孔剂滤出法。

该法所用的成孔剂含量低,由于采用溶液浇铸于器皿中,从而导致成孔剂下沉,孔隙分布不均匀以及上下表面形态出现诧异。

②三维层化法。

通过制备多孔膜,然后再通过溶剂把各层粘接起来,从而形成三维的支架。

该法工艺复杂,而且在粘接过程中,粘接部分孔被封闭,从而形成界面,使材料内部形态不均匀。

③熔融加工法。

该法在聚合物的熔点以上,把成孔剂与聚合物共混挤人模具。

冷却得到预定形状的多孔支架。

该法的缺点是在挤出机里,由于熔体与成孔剂的密度相差较大,因而混合难以均匀。

而且部分聚合物,尤其是生物可降解的聚合物在熔融加工时,容易热降解。

④相分离法。

该法采用溶液混合物冷却到溶剂的熔点以下,从而产生相分离。

再通过真空干燥,从而得到多孔支架。

该法的缺点是所得的孔径一般在10μm 以下,而且控制较为困难。

静电纺丝的原理及应用

静电纺丝的原理及应用

静电纺丝的原理及应用静电纺丝就是高分子流体静电雾化的特殊形式,此时雾化分裂出的物质不是微小液滴,而是聚合物微小射流,可以运行相当长的距离,最终固化成纤维。

静电纺丝是一种特殊的纤维制造工艺,聚合物溶液或熔体在强电场中进行喷射纺丝。

在电场作用下,针头处的液滴会由球形变为圆锥形(即“泰勒锥”),并从圆锥尖端延展得到纤维细丝。

这种方式可以生产出纳米级直径的聚合物细丝。

原理将聚合物溶液或熔体带上几千至上万伏高压静电,带电的聚合物液滴在电场力的作用下在毛细管的Taylor锥顶点被加速。

当电场力足够大时,聚合物液滴克服表面张力形成喷射细流。

在细流喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成类似非织造布状的纤维毡。

装置静电纺丝的装置主要由推进泵、注射器、高压电源以及接收装置组成。

其中,高压电源的正极与负极分别与注射器针头和接收装置相连,而接收装置的形式也是多样化的,可以是静止的平面、高速转动的滚筒或者圆盘。

纺丝的参数设置、环境条件等对纺丝过程的影响至关重要。

影响因素静电纺丝法制备纳米纤维的影响因素很多,这些因素可分为溶液性质,如黏度、弹性、电导率和表面张力;控制变量,如毛细管中的静电压、毛细管口的电势和毛细管口与收集器之间的距离;环境参数,如溶液温度、纺丝环境中的空气湿度和温度、气流速度等。

溶液黏度对纤维性能的影响同轴静电纺丝同轴静电纺是在静电纺的基础上改造而来,其基本原理是在两个内径不同但同轴的毛细管中分别注入芯质和壳质溶液,二者在喷头末端汇合,在电场力的作用下固化成为复合纳米纤维。

同轴静电纺丝解决了纺丝时纺丝液必须是均一体系的缺陷,所制备的同轴纤维在均匀性、连续性上都优于其它方法得到的纤维。

采用同轴静电纺丝的方法可以制得中空纤维和纳米复合纤维等。

应用静电纺丝技术制备的纳米纤维,具有比表面积大、孔隙率高、尺寸容易控制、表面易功能化(如表面涂覆、表面改性)等特点,在许多领域都有重要的应用价值。

静电纺丝技术在构筑一维纳米结构材料领域已发挥了非常重要的作用,应用静电纺丝技术已经成功的制备出了结构多样的纳米纤维材料。

静电纺丝介绍

静电纺丝介绍

1.Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties 2. LiCoO2–MgOcoaxialfibers:coelectrospunfabrication,characterization Andelectrochemicalproperties 3.利用同轴静电纺丝制备介孔TiO2中空纤维 4. Coaxial Electrospinning of Self-HealingCoatings Park和Braun利用同轴纺丝将具有自修复功能的聚 合物二甲基硅氧烷(polydimethylsiloxane)包裹在 PVP中,制备了具有自修复功能的纤维。 5. Electrospinning of nanofiberswith coresheath,hollow,orporousstructures
Ag-ZnO Heterostructured Nanofibers
静电纺丝制备无机物无机物复合纳米纤维
主要研究方向:
1控控制在几纳米 2 纳米纤维形貌的调控 3制备出多孔聚合物纳米纤维 4实验室所用静电纺丝装置制备的纳 米纤维效率极低 5developing
my fantasitic ideas
溶剂参数
挥发性 导电性 增加导致纤维产生多孔结构 纤维直径下降
溶液参数
浓度(黏度) 表面张力 导电性
升高纤维直径上升(黏度过低,得到微球;黏度过高,不连续)
纤维直径上升,生成串珠结构概率增加
纤维直径下降,但纤维直径分布变宽
1. Ultra fine Fibers Electrospun from Biodegradable Polymers 2. Micr-and Nanostructured Surface Morphologyon Electrospun Polymer Fibers 3. Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate 过程控制参数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电纺丝即在高压静电下用聚合物溶液进行纺丝的过程。

静电纺丝可以制备直径在几十到几百纳米的纤维,产品具有较高的孔隙率和较大的比表面积,成分多样化,直径分布均匀,在生物医学、环境工程以及纺织等领域具有很高的应用价值。

原理
将聚合物溶液或熔体带上几千至上万伏高压静电,带电的聚合物液滴在电场力的作用下在毛细管的Taylor锥顶点被加速。

当电场力足够大时,聚合物液滴克服表面张力形成喷射细流。

在细流喷射过程中溶剂蒸发或固化,最终落在接收装置上,形成类似非织造布状的纤维毡。

装置
静电纺丝的装置主要由推进泵、注射器、高压电源以及接收装置组成。

其中,高压电源的正极与负极分别与注射器针头和接收装置相连,而接收装置的形式也是多样化的,可以是静止的平面、高速转动的滚筒或者圆盘。

纺丝的参数设置、环境条件等对纺丝过程的影响至关重要。

高聚物
目前静电纺丝技术已经可用于几十种不同的高分子聚合物,既包括聚酯、聚酰胺、聚乙烯醇、聚丙烯腈等柔性高聚物的静电纺丝,也包括聚氨酯弹性体的静电纺丝以及液晶态的刚性高分子聚对苯二甲酰对苯二胺等的静电纺丝。

影响因素
静电纺丝法制备纳米纤维的影响因素很多,这些因素可分为溶液性质,如黏度、弹性、电导率和表面张力;控制变量,如毛细管中的静电压、毛细管口的电势和毛细管口与收集器之间的距离;环境参数,如溶液温度、纺丝环境中的空气湿度和温度、气流速度等。

溶液黏度对纤维性能的影响
同轴静电纺丝
同轴静电纺是在静电纺的基础上改造而来,其基本原理是在两个内径不同但同轴的毛细管中分别注入芯质和壳质溶液,二者在喷头末端汇合,在电场力的作用下固化成为复合纳米纤维。

同轴静电纺丝解决了纺丝时纺丝液必须是均一体系的缺陷,所制备的同轴纤维在均匀性、连续性上都优于其它方法得到的纤维。

采用同轴静电纺丝的方法可以制得中空纤维和纳米复合纤维等。

应用
静电纺丝技术制备的纳米纤维,具有比表面积大、孔隙率高、尺寸容易控制、表面易功能化(如表面涂覆、表面改性)等特点,在许多领域都有重要的应用价值。

静电纺丝纳米纤维在过滤以及个体防护方面可以用于水处理、防护服、口罩等;在传感器领域可以用作电阻传感器、光学传感器等;在化工领域可以用于催化剂等;在生物医学领域可以用于伤口敷料、组织工程支架、药物载体等。

相关文档
最新文档