质子交换膜燃料电池关键材料组

合集下载

质子交换膜燃料电池应用

质子交换膜燃料电池应用

质子交换膜燃料电池应用质子交换膜燃料电池(PEMFC)是一种电化学器件,其通过将氢气和氧气化学反应的产物(水)转化为电能来提供电力。

PEMFC具有高效、高能量密度、低排放、环保等优点,因此在近年来被广泛应用于汽车、船舶、军事装备和航空航天等领域。

PEMFC由质子交换膜、阳极和阴极三部分组成。

质子交换膜是PEMFC的核心部件,它连接了两个电极,在电极之间形成了离子通道,使氢气和氧气得以在电极上发生反应。

阳极上氢气被氧化成质子和电子,质子穿过质子交换膜到达阴极,而电子则通过外部电路流回到阴极。

在阴极上,质子和电子再次结合生成水。

与传统的燃料电池相比,PEMFC具有多种优势。

PEMFC具有高效的电化学反应速率,从而能够输出高功率密度。

由于采用了质子交换膜,PEMFC能够工作在低温下,响应速度更加迅速。

PEMFC不需要氧化剂补偿,不产生污染物和温室气体。

实际应用中,PEMFC作为汽车动力系统的代表已经开始取得了一定的进展。

由于PEMFC 具有高效的转换效率、良好的环保性和低噪音等特点,因此得到了相关领域的广泛认可。

PEMFC具有很高的初始功率,其加速能力和加速储备能力非常优秀,在城市道路上能够快速加速,因此在清洁能源领域具有广泛的应用前景。

PEMFC的实际应用仍然面临一些挑战,主要包括催化剂的高成本、寿命、稳定性和快速失活等问题。

氢气储存和氢气加注技术也需要得到进一步的完善。

使PEMFC的实际应用更加广泛和普及化需要各种领域的专家不断优化PEMFC的材料和技术,从而实现成本的降低和寿命的延长。

PEMFC作为清洁能源领域的重要技术之一,在未来几年内将得到不断的完善和发展,其在交通、军事、航空航天等领域的应用前景十分广阔。

PEMFC技术的发展需要通过材料、工艺等多个方面的改进来实现。

催化剂材料是影响PEMFC性能的关键因素之一。

目前,大多数PEMFC中使用的催化剂是铂及其合金,但铂是一种稀有金属,价格昂贵,制约了PEMFC的大规模商业化应用。

质子交换膜燃料电池材料的研究及应用

质子交换膜燃料电池材料的研究及应用

质子交换膜燃料电池材料的研究及应用随着人们对可再生能源和清洁能源的需求不断提高,燃料电池作为一种新型的能源转换设备也受到了广泛的关注。

质子交换膜燃料电池(PEMFC)是目前应用最为广泛的一种燃料电池,其原理是通过将氢气和氧气在催化剂的作用下反应,产生电能和水。

质子交换膜是PEMFC的核心材料,它直接影响燃料电池的性能和稳定性。

因此,研究和开发高性能、高稳定性的质子交换膜材料已成为PEMFC技术发展的关键。

一、质子交换膜的种类目前市场上比较常见的质子交换膜材料有:聚四氟乙烯(PTFE)、氟化磺酸聚合物(PFSA)、聚苯并咪唑(PBI)等。

其中,PFSA是目前应用最为广泛、性能最为优越的质子交换膜材料。

PFSA的共聚物结构中含有苯环,并且与磺酸化的氟碳化合物链相连,具有较好的热稳定性、耐久性和酸碱稳定性。

此外,还有一些新型的质子交换膜材料正在研发中,如磺化聚苯乙烯(SPS)、酸催化聚合物(ACP)、高分子/无机复合质子交换膜材料等。

二、质子交换膜的性能指标质子交换膜材料的性能指标主要包括:质子导电性、耐久性、化学稳定性、热稳定性、机械强度等。

其中,质子导电性是影响燃料电池性能的重要因素之一,质子交换膜的导电性能需要高,同时也需要具备良好的耐久性。

燃料电池在使用过程中,质子交换膜还需要具有良好的化学稳定性、热稳定性和机械强度等,以保证其长期运行稳定。

三、质子交换膜材料的研究进展随着质子交换膜材料的研发和制备技术的不断提高,各种新型质子交换膜材料已经出现。

其中,高分子共价网络(CPN)材料是一种非常有前景的质子交换膜材料。

CPN材料是将可溶性高分子与二胺在酸性介质中缩合形成的网状结构,具备优异的导电性和稳定性。

此外,金属有机骨架(MOF)复合质子交换膜材料也备受关注。

MOF具有极高的比表面积和孔隙结构,可以有效地提高质子交换膜材料的导电性能和稳定性。

四、质子交换膜燃料电池的应用前景质子交换膜燃料电池是一种非常环保、高效、低碳的能源转换设备,具备广泛的应用前景。

PEMFC——燃料电池课件.

PEMFC——燃料电池课件.

由图可知,构成 PEMFC 的关键材料与部件 为电催化剂、电极 ( 阴极与阳极 ) 、质子交换 膜和双极板。
PEMFC 中的电极反应类同于其他酸性电解质燃料电 池。阳极催化层中的氢气在催化剂作用下发生电极反 应: 阳极反应: H 2 2H 2e 该电极反应产生的电子经外电路到达阴极,氢离子则 经质子交换膜到达阴极。氧气与氢离子及电子在阴极 发生反应生成水。生成的水不稀释电解质,而是通过 电极随反应尾气排出。
2.电池组: 电池组的主体为MEA,双极板及相应 可兼作电流导出 板,为电池组的正极;另一端为阳单极板,也可兼作 电流导入板,为电池组的负极,与这两块导流板相邻 的是电池组端板,也称为夹板。在它上面除布有反应 气与冷却液进出通道外,周围还布置有一定数目的圆 孔,在组装电池时,圆孔内穿入螺杆,给电池组施加 一定的组装力。 若两块端板用金属(如不锈钢、铁板、超硬铝等)制作, 还需在导流板与端板之间加入由工程塑料制备的绝缘 板。
质子交换膜燃料电池
1 工作原理
质 子 交 换 膜 型 燃 料 电 池 (Proton exchange membrane fuel cells,PEMFC)以全氟磺酸型固体 聚合物为电解质,铂 / 炭或铂 - 钌 / 炭为电催化剂, 氢或净化重整气为燃料,空气或纯氧为氧化剂, 带有气体流动通道的石墨或表面改性的金属板为 双极板。 下图为PEMFC的工作原理示意图。
流场结够对 PEMFC 电池组至关重要,而且与反应 气纯度、电池系统的流程密切相关。 因此,在设计电池组结构时,需根据具体条件,如 反应气纯度、流程设计(如有无尾气回流,如有, 回流比是多少等)进行化工设计,各项参数均要达 到设计要求,并经单电池实验验证可行后方可确定。
电池组密封: 要求是按照设计的密封结构,在电池组组装力的 作用下,达到反应气、冷却液不外漏,燃料、氧 化剂和冷却液不互窜。

氢燃料电池质子交换膜

氢燃料电池质子交换膜

氢燃料电池质子交换膜
氢燃料电池中的质子交换膜(Proton Exchange Membrane,PEM)是电池的关键组件之一。

质子交换膜作为电池的电解质,主要用于将氢气的质子与氧气的电子分开,并允许质子在电极之间传递。

质子交换膜通常由质子导电的聚合物材料制成,最常用的质子交换膜材料是聚四氟乙烯(Polytetrafluoroethylene,PTFE)改性的聚合物膜。

这种膜具有良好的质子导电性能、较高的化学稳定性和耐高温性。

质子交换膜需要具备以下特点:
1. 良好的质子传导性能:质子交换膜应具有高的质子传导率,能够有效地将氢气的质子从负极传输到正极。

2. 优异的物理和化学稳定性:质子交换膜在氢氧电池工作环境中需要具备较高的耐酸碱性、耐高温和耐气体腐蚀性能,以确保电池的长期稳定运行。

3. 低阻抗:质子交换膜应尽可能降低电池的内阻,以提高电池的功率输出能力。

4. 兼容性:质子交换膜应与其他电池组件(电极、催化剂等)相容,以实现良好的电池性能和长寿命。

质子交换膜作为氢燃料电池的关键技术之一,其性能的提升可以显著改善电池的效率、寿命和可靠性,并推动氢能技术在可持续能源领域的应用。

质子交换膜燃料电池PPT课件

质子交换膜燃料电池PPT课件

05
PEMFC性能评价与测试方 法
PEMFC性能评价指标
输出功率密度
单位面积或单位体积电池的输出 功率,反映电池的能量转换效率

开路电压
电池在开路状态下的电压,与电 池内部的电化学反应有关。
电流密度
单位面积电池的输出电流,影响 电池的输出功率和效率。
温度特性
电池在不同温度下的性能表现, 包括启动、运行和关机过程中的 温度变化对电池性能的影响。
笔记本电脑、手机等
PEMFC应用领域及前景
固定式电源
家庭、数据中心等
降低成本
通过研发新材料和工艺,降低 PEMFC成本
PEMFC应用领域及前景
固定式电源
家庭、数据中心等
降低成本
通过研发新材料和工艺,降低 PEMFC成本
PEMFC应用领域及前景
提高耐久性
改进电池结构和材料,提高电池寿命 和稳定性
燃料电池类型及特点
碱性燃料电池(AFC)
采用氢氧化钾溶液作为电解质,具有高效率、低污染等优点,但需要纯净的氢气和 氧气作为燃料和氧化剂,且对二氧化碳敏感。
燃料电池类型及特点
碱性燃料电池(AFC)
采用氢氧化钾溶液作为电解质,具有高效率、低污染等优点,但需要纯净的氢气和 氧气作为燃料和氧化剂,且对二氧化碳敏感。
01
燃料电池概述
01
燃料电池概述
燃料电池定义与原理
燃料电池定义
燃料电池是一种将燃料和氧化剂的化学能直接转换成电能的发电装置。其基本原理是电解水的逆过程,通过向燃 料电池堆输入氢气和氧气(或空气),在催化剂的作用下,经过电化学反应生成水并对外输出电能。
燃料电池工作原理
燃料电池的核心部件是质子交换膜,它只允许质子通过而阻止电子和气体通过。在阳极,氢气在催化剂的作用下 分解成质子和电子,质子通过质子交换膜传递到阴极,而电子则通过外电路传递到阴极,形成电流。在阴极,氧 气与质子和电子结合生成水。

氢燃料电池堆结构

氢燃料电池堆结构

氢燃料电池堆结构氢燃料电池堆结构氢燃料电池堆是一种将氢气与氧气反应产生电能的装置,具有高效、清洁、环保等优点,因此在未来能源领域具有广阔的应用前景。

本文将详细介绍氢燃料电池堆的结构,包括其组成部分、工作原理和应用场景等方面。

一、组成部分1.1 电极板电极板是氢燃料电池堆中最重要的组成部分之一,其主要作用是承载反应物和产物,并使其在正常工作条件下进行反应。

通常情况下,电极板由金属材料制成,例如铜、镍、钛等。

1.2 质子交换膜质子交换膜是连接阳极和阴极的关键部件。

它可以使质子从阳极传递到阴极,并防止其他物质进入反应区域。

目前市场上常见的质子交换膜有聚合物膜和无机膜两种。

1.3 催化剂层催化剂层是将氢和氧转化为水的关键环节。

它由铂或其他金属催化剂和碳载体组成,其作用是加速氢和氧的反应速度。

1.4 冷却系统冷却系统是氢燃料电池堆中必不可少的部分。

它可以将产生的热量排出,使电池保持在适宜的工作温度范围内。

冷却系统通常由水或空气冷却器组成。

1.5 氢气供应系统氢气供应系统是将储存的氢输送到电极板上的管道和阀门等设备。

它负责将高压储存的氢输送到燃料电池堆中进行反应。

二、工作原理2.1 反应过程在正常工作状态下,氢通过管道进入阳极侧,同时空气进入阴极侧。

在阳极侧,质子交换膜将水分子分解成质子和电子。

质子通过膜进入阴极侧,而电子则通过外部电路流动到阴极侧。

在阴极侧,质子、电子和空气中的氧结合形成水,并释放出能量。

2.2 优点与传统化石燃料发电相比,燃料电池具有以下优点:(1)高效:燃料电池的能量转换效率可以达到40%以上,而传统化石燃料发电的能量转换效率只有30%左右。

(2)清洁:燃料电池产生的唯一废气为水蒸气,不会产生二氧化碳和其他有害气体。

(3)环保:燃料电池使用的是可再生能源,如太阳能、风能等。

三、应用场景3.1 汽车领域氢燃料电池在汽车领域具有广泛的应用前景。

由于其高效、环保等优点,越来越多的汽车制造商开始将其作为替代传统内燃机的动力源。

质子交换膜燃料电池的基本结构

质子交换膜燃料电池的基本结构

质子交换膜燃料电池的基本结构(一)如图1所示,质子交换膜燃料电池的基本结构主要由质子交换膜、催化剂层、扩散层、集流板(又称双极板)组成。

聚合物电解质膜被碳基催化剂所覆盖,催化剂直接与扩散层和电解质两者接触以求达到最大的相互作用面。

催化剂构成电极,在其之上直接为扩散层。

电解质、催化剂层和气体扩散层的组合被称为膜片-电极组件。

①质子交换膜质子交换膜(PEM)是质子交换膜燃料电池的核心部件,是一种厚度仅为50~180 um的薄膜片,其微观结构非常复杂。

它为质子传递提供通道,同时作为隔膜将阳极的燃料与阴极的氧化剂隔开,其性能好坏直接影响电池的性能和寿命。

它与一般化学电源中使用的隔膜有很大不同,它不只是一种隔离阴阳极反应气体的隔膜材料,还是电解质和电极活性物质(电催化剂)的基底,即兼有隔膜和电解质的作用;另外,PEM还是一种选择透过性膜,在一定的温度和湿度条件下具有可选择的透过性,在质子交换膜的高分子结构中,含有多种离子基团,它只容许氢离子(氢质子)透过,而不容许氢分子及其他离子透过。

(a) PEMFC的基本结构(b)质子交换膜燃料电池组的外观图1 质子交换膜燃料电池的基本结构质子交换膜燃料电池对于质子交换膜的要求非常高,质子交换膜必须具有良好的质子电导率、良好的热和化学稳定性、较低的气体渗透率,还要有适度的含水率,对电池工作过程中的氧化、还原和水解具有稳定性,并同时具有足够高的机械强度和结构强度,以及膜表面适合与催化剂结合的性能。

质子交换膜的物理、化学性质对燃料电池的性能具有极大的影响,对性能造成影响的质子交换膜的物理性质主要有:膜的厚度和单位面积质量、膜的抗拉强度、膜的含水率和膜的溶胀度。

质子交换膜的电化学性质主要表现在膜的导电性能(电阻率、面电阻,电导率)和选择通过性能(透过性参数P)上。

a.膜的厚度和单位面积质量。

膜的厚度和单位面积质量越低,膜的电阻越小,电池的工作电压和能量密度越大;但是如果厚度过低,会影响膜的抗控强度,甚至引起氢气的泄漏而导致电池的失效。

质子交换膜燃料电池双极板材料及制备综述

质子交换膜燃料电池双极板材料及制备综述

2021年第5期刘颖1,2赵洪辉1,2盛夏1,2潘兴龙1,2(1.中国第一汽车股份有限公司研发总院,长春130013;2.汽车振动噪声与安全控制综合技术国家重点实验室,长春130013)【摘要】质子交换膜燃料电池(PEMFC )的发展显示出了它成为清洁、高效和可靠电源的潜力。

双极板(BP )作为PEM⁃FC 的关键部件之一,具有提供电气连接、输送反应气体、消散反应热、去除副产物的作用,但也是制约PEMFC 成本的主要因素之一。

根据双极板材料的不同可以分为金属双极板、石墨双极板和复合材料双极板,本文综述了双极板材料(金属、无孔石墨和复合材料)及其制备工艺。

其中,金属双极板因其优异的机械和物理性能,与无孔石墨及复合材料相比具有较强的成本优势,在乘用车应用中备受关注,但其制造工艺和耐腐蚀性是金属双极板的主要关注点。

未来,开发出优良的耐蚀性和导电性涂层或新型的双极板金属材料将极大地促进PEMFC 在乘用车领域的应用。

主题词:质子交换膜燃料电池双极板石墨金属复合材料中图分类号:U469.72+2;U473.4文献标识码:ADOI:10.19822/ki.1671-6329.20200237Review on Materials and Preparation of Proton Exchange MembraneFuel Cell Bipolar PlatesLiu Ying 1,2,Zhao Honghui 1,2,Sheng Xia 1,2,Pan Xinglong 1,2(1.General Research and Development Institute,China FAW Corporation Limited,Changchun 130013;2.State KeyLaboratory of Comprehensive Technology on Automobile Vibration and Noise &Safety Control,Changchun 130013)【Abstract 】The development of Proton Exchange Membrane Fuel Cells (PEMFC)shows its potential to become aclean,efficient,and reliable power source.Bipolar Plates (BP),as one of the key components of PEMFC,provide electricalconnections,transport reaction gases,however,the functions of dissipating reaction heat and removing by-products are also the main factors restricting the cost of PEMFC.BP can be divided into metal BP,graphite BP and composite BP according to different materials.This article reviews BP materials (metal,non-porous graphite and composite materials)and theirpreparation methods.Among them,the metal BP has a strong cost advantage compared with non-porous graphite and composite materials due to its excellent mechanical and physical properties so that it has attracted much attention in passenger car applications.While the main focus of the polar plate is its manufacturing process and corrosion resistance.Inthe future,the development of excellent corrosion resistance and conductive coatings or new BP metal materials will greatly promote the application of PEMFC in the passenger car field.Key words:Proton Exchange Membrane Fuel Cell (PEMFC),Bipolar plates,Graphite,Metal,Composite material【欢迎引用】刘颖,赵洪辉,盛夏,等.质子交换膜燃料电池双极板材料及制备综述[J].汽车文摘,2021(5):48-54.【Cite this paper 】Liu Y,Zhao H,Sheng X,et al.Review on Materials and Preparation of Proton Exchange Membrane Fuel Cell BipolarPlates [J].Automotive Digest (Chinese),2021(5):48-54.质子交换膜燃料电池双极板材料及制备综述*1前言为了缓解由化石燃料燃烧导致的环境污染和温室效应的问题,急需新型清洁能源的开发[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档