第一讲 燃气涡轮发动机概述

合集下载

航空燃气涡轮发动机概述

航空燃气涡轮发动机概述

航空燃气涡轮发动机概述航空燃气涡轮发动机是现代航空工业中最重要的动力装置之一、它具有高效率、高功率密度和高可靠性等优点,被广泛应用于各类飞机中。

本文将概述航空燃气涡轮发动机的工作原理、结构组成、分类、性能指标以及未来发展方向等内容。

航空燃气涡轮发动机的工作原理基于燃烧室内的燃气推动涡轮。

它由压气机、燃烧室和涡轮组成。

首先,压气机将空气压缩,提高其温度和压力。

然后,压缩空气进入燃烧室,与燃料混合并燃烧,产生高温高压的燃气。

最后,高压燃气通过涡轮使其旋转,产生推力,并从尾喷管排出。

可见,航空燃气涡轮发动机的工作原理是通过涡轮驱动压气机,提供压缩空气并将其推向尾喷管。

航空燃气涡轮发动机的结构组成包括压气机、燃烧室、涡轮、尾喷管和附属系统等。

压气机主要通过叶片的旋转将空气压缩,提高其温度和压力。

燃烧室用于将燃料与压缩空气混合并燃烧,产生高温高压的燃气。

涡轮通过燃气的膨胀驱动压气机,使其继续工作,并产生推力。

尾喷管用于将高压燃气排出,并产生反作用力。

附属系统包括供油系统、冷却系统和控制系统等,用于保证发动机的正常运行。

航空燃气涡轮发动机可以根据压气机的工作循环分类为单转子和双转子发动机。

单转子发动机只有一个压气机和一个涡轮,如连杆式发动机。

双转子发动机具有两个对称的压气机和涡轮,如军用飞机上常用的分段式发动机。

根据尾喷管的形式,航空燃气涡轮发动机还可分为直喷式和径向喷管式。

航空燃气涡轮发动机的性能指标主要包括推力、燃油消耗率、比功率、绕程推力比和起动性能等。

推力是发动机提供的推动力量,决定飞机的加速能力和最大速度。

燃油消耗率是单位推力下消耗的燃油量,直接影响飞机的航程和经济性。

比功率是单位发动机质量下产生的推力,用于衡量发动机的功率密度。

绕程推力比是发动机在巡航状态下产生的推力与起飞推力的比值,用于衡量发动机的高空巡航性能。

起动性能包括发动机的起动时间和起动能力,在冷启动和热启动时对飞机的起飞和复飞具有重要影响。

燃气涡轮发动机01-基础知识

燃气涡轮发动机01-基础知识
排出。离心式涡轮发动机的可靠性高,但效率相对较低。
混流式涡轮发动机
总结词
混流式涡轮发动机是一种结合了轴流式和离心式特点的燃气涡轮发动机,具有较高的效率和较广泛的适用范围。
详细描述
混流式涡轮发动机的结构介于轴流式和离心式之间,其压气机采用轴流式设计,而涡轮机则采用离心式设计。这 种设计使得混流式涡轮发动机在低速和高速飞行时都能保持良好的性能。此外,混流式涡轮发动机的适用范围较 广,可以用于多种不同类型的飞行器。
清洁发动机外部和内部的灰尘、污垢等,保持发动机的清洁度。
紧固件检查
检查并紧固发动机上的螺栓、螺母等紧固件,确保其牢固可靠。
定期保养与维修
01
02
03
油液更换
定期更换发动机的润滑油、 燃油等油液,保证发动机 的正常运转。
滤清器更换
定期更换空气滤清器、机 油滤清器等滤清器,防止 杂质进入发动机,影响其 正常运转。
管路是否漏油等。
05
燃气涡轮发动机的发展趋势与未 来展望
技术创新与改进
材料工艺
采用更先进的材料和制造工艺,提高燃气涡轮发动机的性能和耐 久性。
冷却技术
研究和发展更有效的冷却技术,以应对高温、高压的工作环境。
控制系统
改进和优化燃气涡轮发动机的控制系统,提高其稳定性和可靠性。
应用领域的拓展
航空领域
部件检查与更换
定期检查发动机的部件, 如轴承、密封圈等,如有 损坏或磨损严重应及时更 换。
常见故障诊断与排除
发动机过热
01
检查冷却系统是否正常工作,散热器是否清洁,风扇是否正常
运转等。
发动机振动过大
02
检查发动机安装是否牢固,轴承、齿轮等部件是否磨损严重,

1航空燃气涡轮发动机概述共97页PPT资料

1航空燃气涡轮发动机概述共97页PPT资料
去带动压气机。
喷管:使燃气继续膨胀, 加速, 提高燃气的速度。
一、涡轮喷气发动机的理想循环
布莱顿循环
布莱顿循环由绝热压缩过程 1-2、等压加热过程2-3、绝 热膨胀过程3-4和等压放热过 程4-1组成。由于这个循环在 等压加热,故也称为等压加 热循环。涡轮喷气发动机和 冲压喷气发动机的理想循环 就是布莱顿循环。
燃料使用效率高,噪声小,能获得较大加力比。
(3)涡轮螺旋浆发动机
涡轮螺旋桨发动机
由燃气涡轮发动机和螺旋桨组成,在它们之间还安 排了一个减速器
涡轮螺旋桨发动机的工作原理
螺旋桨产生拉力 气体流过发动机时产生反作用推力
在较低的飞行速度下,具有较高的推进效率, 所以 它在低亚音速飞行时的经济性较好
飞机动力装置
第三部分:燃气涡轮发动机 刘熊
第一章 航空燃气涡轮发动机概述
第一节 航空燃气涡轮发动机简介
燃气涡轮发动机的发展
喷气发动机的分类
发动机:将燃油燃烧释放出的热能转变为机 械能的装置
喷气发动机:把燃料的化学能转化为发动机 高速喷出燃气的动能,从而获得反作用力, 推进飞行器飞行的发动机。
喷入大气中的燃气与大气进行定压的放热过程。
0→2:绝热压缩 (进气道、压气机) 2→3:等压加热 (燃烧室) 3→5:绝热膨胀 (涡轮、喷管) 5→0:等压放热 (外界大气)
布莱顿循环
1kg工质所作的循环功(加热量与放热量之
略去压缩与膨胀过程中工质与各部件之间的热量交换, 忽 略实际过程中的摩擦, 假设在燃烧室中进行的燃油燃烧释 放出热能的化学反应过程为外部热源对工质加热的过程, 并且忽略由流动阻力和加热所引起的压力降低, 从而用定 压加热过程代替之

航空燃气涡轮发动机原理,王琴芳

航空燃气涡轮发动机原理,王琴芳

航空燃气涡轮发动机原理引言航空燃气涡轮发动机(Gas Turbine Engine)是一种利用燃烧产生的高温高压气体驱动涡轮,从而产生推力的发动机。

它广泛应用于现代航空领域,是飞机的主要动力装置之一。

本文将详细解释航空燃气涡轮发动机的基本原理,包括工作循环、组成部分以及运行过程。

工作循环航空燃气涡轮发动机的工作循环主要包括压缩、燃烧和膨胀三个过程。

1.压缩(Compression):在这个过程中,来自外部的空气经过进气口进入发动机,并经过多级压缩器(Compressor)进行压缩。

压缩器由多个转子和定子组成,通过旋转运动将空气逐渐压缩,并提高其温度和压力。

2.燃烧(Combustion):在这个过程中,经过压缩后的空气进入到燃烧室(Combustion Chamber),与喷入的燃料混合并点燃。

燃烧产生的高温高压气体通过喷嘴喷向涡轮(Turbine)。

3.膨胀(Expansion):在这个过程中,高温高压气体经过涡轮的作用,使其旋转并释放出能量。

涡轮与压缩机共用一根轴,因此涡轮的旋转也会带动压缩机的旋转。

同时,涡轮还通过输出轴将剩余的能量传递给飞机的推进系统,产生推力。

组成部分航空燃气涡轮发动机由多个组成部分构成,下面将对每个部分进行详细解释。

1.进气系统(Inlet System):进气系统负责将外界空气引入发动机内部,并通过滤清器去除杂质。

进气口通常位于飞机的前部,并采用特殊设计以确保稳定流量和适当压力。

2.压缩系统(Compression System):压缩系统由多级压缩器组成,其中的转子和定子通过旋转运动将空气逐渐压缩。

这样做不仅提高了空气的密度和温度,也为燃烧提供了必要的条件。

3.燃烧室(Combustion Chamber):燃烧室是将压缩空气与喷入的燃料混合并点燃的地方。

在燃烧过程中,释放出的能量会使气体温度和压力升高,为后续的膨胀提供动力。

4.涡轮(Turbine):涡轮是航空燃气涡轮发动机中最重要的组成部分之一。

燃气涡轮发动机1

燃气涡轮发动机1

激波损失:
气体经过激波时,速度和温度都发生突跃变化,粘性和导热作用很大。
在气体温度很高,激波很强的情况下,甚至气体的热力学平衡状态也会遭到破坏。这
种破坏过程是不可逆过程,按热力学第二定律,气体的熵增加,同时有很大一部分机
械能转化为热能,这就是所谓激波损失。在超声速流动中,一般总会产生激波。对于
作超声速运动的飞行器,激波的出现会引起很大的阻力;对于超声速风洞(见风洞)、
运动定律:牛顿三大定律 牛顿第一定律(惯性定律):任何一个物体在不受外力或
受平衡力的作用时(Fnet=0),总是保持静止状态或匀速直线运动状态 ,直到有作用在它上面的外力迫使它改变这种状态为止。
牛顿第二运动定律 :物体的加速度跟物体所受的合外力成
正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
不可压流中任意一点流体的静压与动压之和保持不变
5. 音速
音速与气体状态参数之间的关系:
a = kRT
a = dp / d
k :比热比; R :气体常数; T :气体静温; p :静压;
ῤ : 密度;
马赫数:流场中任一点处的流速v与该点处气体的音速a的比值,叫该点 处 气流的马赫数,用Ma表示,即
Ma = v/a 亚音速流动:Ma 《1.0 音速流动:Ma =1.0
进气道和压气机等内流设备,在气流由超声速降为亚声速时出现的激波,会降低风洞
和发动机的效率。所以,减弱激波强度以减小激波损失是实际工作中的一项重要课题。
基本分类:
激波就其形状来分有正激波、斜激波。在超声速来流中,尖头体头部通常形成附 体激波,在钝头体前部常形成脱体激波。
人们在实践中发现,在飞行速度达到音速的十分之九,即马赫数M0.9空中时速约 950公里时,局部气流的速度可能就达到音速,产生局部激波,从而使气动阻力剧 增。要进一步提高速度,就需要发动机有更大的推力。更严重的是,激波能使流经 机翼和机身表面的气流,变得非常紊乱,从而使飞机剧烈抖动,操纵十分困难。同 时,机翼会下沉、机头往下栽;如果这时飞机正在爬升,机身会突然自动上仰。这 些讨厌的症状,都可能导致飞机坠毁。这就是所谓“音障”问题。由于声波的传递 速度是有限的,移动中的声源便可追上自己发出的声波。当物体速度增加到与音速 相同时,声波开始在物体前面堆积。如果这个物体有足够的加速度,便能突破这个 不稳定的声波屏障,冲到声音的前面去.突破音障时,由于物体本身对空气的压缩无 法迅速传播,逐渐在物体的迎风面积累而终形成激波面,在激波面上声学能量高度 集中。这些能量传到人们耳朵里时,会让人感受到短暂而极其强烈的爆炸声,称为 音爆(Sonic Boom)。

第一讲 燃气涡轮发动机概述

第一讲 燃气涡轮发动机概述

推力18000-22000 kg 耗油率比小涡扇低1/3 授课人 贾斯法
高涵道比涡扇发动机特点
起飞推力大 耗油率低 噪声低
授课人 贾斯法
第一代宽体客机
B747
1970年
L1011 (1972) DC-10 (1971)
71
高涵道比涡扇发动机
已在现代民机上广泛采用 A300、A310、A320、A330、A340, B737、B747、B757、B767、B777, A3XX B747-500X、 B717、A318、湾流Ⅴ
授课人
贾斯法
51
F-22用发动机-F119-PW-100
总压比 35 涵道比 ~0.2 涡轮前燃气温度 ~1850~1950 K 3+6___1+1 反向转动的双转子 推力 157.5 kN 推重比 10.0
授课人 贾斯法
52
F119 与 F100 比较
级数 17---11 少 6 级 零件数少 40% 中间推力大 47% 可使战斗机超声速巡航 巡航耗油率低 11% 可靠性、维修性好
授课人
贾斯法
40
加力式涡轮风扇发动机扇发动机 F-4“鬼怪”式战斗机 用涡扇(斯贝MK202)换装涡喷(J79)后 飞机性能的改进 最大M数 由 2.2→2.4 最大航程 ↑54% 加速到M=2的时间 ↓1/3 爬升到12000m的时间 ↓20%
授课人 贾斯法
41
加力式涡轮风扇发动机
60年代后期采用高循环参数 总压比≈25、T3≈1600K 发展高性能核心机 研制成专为先进战斗机用的、推重比为8.0一 级8的发动机 F100-PW-100→F-15 (1974)
2006年3月
航空发动机结构设计

燃气涡轮发动机—搜狗百科

燃气涡轮发动机—搜狗百科

燃气涡轮发动机—搜狗百科燃烧室和涡轮不仅工作温度高,而且还承受燃气轮机在起动和停机时,因温度剧烈变化引起的热冲击,工作条件恶劣,故它们是决定燃气轮机寿命的关键部件。

为确保有足够的寿命,这两大部件中工作条件最差的零件如火焰筒和叶片等,须用镍基和钴基合金等高温材料制造,同时还须用空气冷却来降低工作温度。

对于一台燃气轮机来说,除了主要部件外还必须有完善的调节保安系统,此外还需要配备良好的附属系统和设备,包括:起动装置、燃料系统、润滑系统、空气滤清器、进气和排气消声器等。

燃气轮机有重型和轻型两类。

重型的零件较为厚重,大修周期长,寿命可达10万小时以上。

轻型的结构紧凑而轻,所用材料一般较好,其中以航机的结构为最紧凑、最轻,但寿命较短。

与活塞式内燃机和蒸汽动力装置相比较,燃气轮机的主要优点是小而轻。

单位功率的质量,重型燃气轮机一般为2~5千克/千瓦,而航机一般低于0.2千克/千瓦。

燃气轮机占地面积小,当用于车、船等运输机械时,既可节省空间,也可装备功率更大的燃气轮机以提高车、船速度。

燃气轮机的主要缺点是效率不够高,在部分负荷下效率下降快,空载时的燃料消耗量高。

不同的应用部门,对燃气轮机的要求和使用状况也不相同。

功率在10兆瓦以上的燃气轮机多数用于发电,而30~40兆瓦以上的几乎全部用于发电。

燃气轮机发电机组能在无外界电源的情况下迅速起动,机动性好,在电网中用它带动尖峰负荷和作为紧急备用,能较好地保障电网的安全运行,所以应用广泛。

在汽车(或拖车)电站和列车电站等移动电站中,燃气轮机因其轻小,应用也很广泛。

此外,还有不少利用燃气轮机的便携电源,功率最小的在10千瓦以下。

燃气轮机的未来发展趋势是提高效率、采用高温陶瓷材料、利用核能和发展燃煤技术。

提高效率的关键是提高燃气初温,即改进涡轮叶片的冷却技术,研制能耐更高温度的高温材料。

其次是提高压缩比,研制级数更少而压缩比更高的压气机。

再次是提高各个部件的效率。

高温陶瓷材料能在1360℃以上的高温下工作,用它来做涡轮叶片和燃烧室的火焰筒等高温零件时,就能在不用空气冷却的情况下大大提高燃气初温,从而较大地提高燃气轮机效率。

2024年航空燃气涡轮机培训资料

2024年航空燃气涡轮机培训资料

应急程序示意图
01 燃油泄漏
立即切断燃油供应,开启灭火器
02 燃气轮机失速问题
减小推力,控制飞机姿态
03
总结
航空燃气涡轮发动机的维护与故障排除是飞行安 全的重要环节,只有严格依照维护流程和故障排 除原则,以及严谨的紧急情况处理和安全意识培 训,才能确保飞机的安全飞行。
● 04
第四章 未来航空燃气涡轮发 动机技术发展趋势
● 06
第六章 总结与展望
技术总结
航空燃气涡轮发动 机技术的重要性
航空燃气涡轮机是飞机的 关键部件之一,直接影响 着飞行安全和效率。 其技术的发展水平直接关 系到飞机的性能和经济效 益。
发动机维护的要点
定期检查涡轮机叶片的磨 损情况,及时更换受损部 件。 保持涡轮机内部的清洁, 防止杂质对发动机性能造 成影响。

常用方法和 技巧
掌握故障排除的 有效方法和技巧
紧急情况处理
燃油泄漏
立即采取应急措施 隔离泄漏源头 通知地面人员
燃气轮机失速问题
稳定飞行姿态 尽快寻找原因 及时采取应对措施
安全意识培训
安全规定和 操作流程
严格遵守安全规 定,正确操作发
动机
紧急情况下 的应对措施
快速反应,按照 紧急处理流程执

● 03
第3章 航空燃气涡轮发动机 的维护与故障排除
维护流程
航空燃气涡轮发动机 的维护流程包括定期 检查和保养,确保发 动机处于良好状态, 以提高性能和延长使 用寿命。同时,故障 预防和处理也是维护 流程中重要的环节, 及时发现并解决潜在 问题,保障飞行安全。
故障排除原则
故障分类和 诊断
准确判断故障类 型,找到故障源
自动诊断故障,提高效率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃气涡轮发动机根据应用和构造不同,主要分为涡轮螺桨、涡轮轴、地面燃气轮机、涡轮喷气和涡轮风扇五种类型。涡轮螺桨发动机通过减速器带动螺旋桨产生推力,适用于低速运输机和轻型飞机。涡轮轴发动机则带有两级减速器,常用于直升飞机。地面燃气轮机主要应用于油田灭火和野外发电等ห้องสมุดไป่ตู้域。涡轮喷气发动机利用燃气膨胀作功驱动压气机,产生推力,但经济性较差。为改善这一缺点,涡轮风扇发动机应运而生,它将涡轮出来的燃气再流入一个涡轮驱动风扇,风扇出来的空气一部分流入压气机,一部分由外部流过,从而提高了推力和经济性。这种发动机自60年代初期研制成功后,很快被民航客机广泛采用。
相关文档
最新文档