液压系统设计
完整的液压系统设计毕业设计

完整的液压系统设计毕业设计1. 引言液压系统在工程领域中具有广泛的应用,特别是在机械制造、航空航天、汽车制造等领域中。
本文档旨在设计一个完整的液压系统作为毕业设计,并提供系统设计的详细说明。
2. 设计目标本设计的目标是创建一个可靠、高效的液压系统,满足以下需求:•传递大量的力和动力;•控制和调节工作负载;•提供良好的工作稳定性;•实现节能和环保。
3. 系统设计3.1 系统结构我们的液压系统将包含以下主要组件:1.液压泵:负责将液体加压并输送到液压马达或液压缸;2.液压马达或液压缸:负责将液压能转化为机械能,实现力的传递及工作载荷控制;3.液体储存装置:用于储存液体并平衡系统压力;4.液压阀门:用于控制液体流动和压力,实现系统工作的调节和控制;5.传感器和仪表:用于监测和测量液压系统的压力、流量、温度等参数。
3.2 液体选择在设计液压系统时,我们需要选择合适的液体作为工作介质。
一般情况下,液压系统常采用液体油作为工作介质,因为它具有良好的润滑性、稳定性和耐高温性能。
对于不同的应用场景,需要考虑液体的黏度、温度范围、氧化稳定性以及环境友好程度等因素。
3.3 液压元件选型为了实现液压系统的设计目标,我们需要对液压元件进行合理的选型。
液压泵、液压马达或液压缸、液压阀门等元件都有不同的类型和规格可供选择。
在选型过程中,需要考虑力的传递要求、流量和压力范围、工作稳定性以及适应特定工况的能力等因素。
3.4 系统控制在液压系统设计中,系统的控制是十分重要的。
通过合理的控制方法和策略,可以实现对液体流动、压力和工作负载的准确控制。
常用的液压系统控制方法有手动控制、自动控制和比例控制等。
根据具体需求,选择适合的控制方式可以提高系统的稳定性和性能。
4. 系统优化为了提高液压系统的工作效率和节能性,我们可以进行进一步的优化。
以下是一些常见的系统优化方法:•使用高效节能的液压泵和液压马达;•优化液体流动路径,减小能量损失;•采用高效的液压阀门和控制系统,减小能量损耗;•合理设计系统布局和管路,减小摩擦损失;•控制液压系统的工作温度,在适当的范围内减小能量损失。
液压系统设计标准

液压系统设计标准是指在设计和制造液压系统时,需要遵循的一系列规范和要求。
这些标准旨在确保液压系统的可靠性、安全性和性能。
以下是一些常见的液压系统设计标准:
1. ISO 4414:这是一个国际通用的液压传动和控制系统的设计标准。
它涵盖了液压系统的各个方面,包括基本参数、元件选择、系统布局、管道连接等。
2. ANSI/ASME B30.1:这是美国机械工程师协会(ASME)和美国国家标准协会(ANSI)共同制定的液压系统设计标准。
它主要针对美国的工业应用,但也得到了其他国家的广泛认可。
3. DIN 2434:这是德国的液压系统设计标准。
它与ISO 4414类似,但在某些细节上有所不同。
4. GB/T 3766-2001:这是中国的液压系统设计标准。
它参考了ISO 4414和其他国际标准,并结合了中国的实际应用情况。
5. API 618:这是美国石油学会(API)制定的关于石油和天然气行业的液压系统设计标准。
它主要针对石油和天然气开采、加工和输送过程中使用的液压系统。
在设计液压系统时,需要根据具体的应用场景和设备要求,选择合适的设计标准。
同时,还需要考虑到安全、环保和经济性等因素,以确保液压系统的高效运行。
液压系统设计计算

液压系统设计计算液压系统设计是指在机械设计中,通过使用液压技术来传递动力和控制目标的设计过程。
液压系统设计需要考虑多个因素,包括流体力学原理、液压元件的选择和配置、系统的工作参数等。
下面将介绍液压系统设计的一些基本计算。
首先,液压系统设计需要确定系统的工作参数,包括工作压力、流量和工作温度等。
工作压力是指系统中液体传递动力时所施加的压力,一般以帕斯卡为单位。
流量是指单位时间内通过液压系统的液体体积,一般以升/分钟为单位。
工作温度是指系统正常工作时液体的温度,一般以摄氏度为单位。
确定了工作参数后,液压系统设计还需要选择适当的液压元件。
液压元件包括液压泵、液压马达、液压阀等。
液压泵负责将机械能转换成液压能,并提供系统的流量和压力。
常用的液压泵有齿轮泵、柱塞泵和螺杆泵等。
液压马达则将液压能转换成机械能,常用的液压马达有齿轮马达、柱塞马达和液压缸等。
液压阀则用于控制液压系统的流量、压力和方向等。
常用的液压阀有溢流阀、换向阀和节流阀等。
功率(千瓦)=流量(升/分钟)x压力(帕)/600液压泵的选型还需要根据系统的工作压力和流量来确定。
一般来说,液压泵的压力和流量应该略大于系统的工作压力和流量,以确保系统正常工作。
液压泵的选择要考虑到工作环境的温度、液体的粘度和成本等因素。
液压缸的选择也需要进行一些计算。
输出力(牛顿)=压力(帕)x断面积(平方米)液压缸的选择要根据所需的输出力和工作压力来确定。
液压缸的密封性能和机械结构等因素也需要考虑。
另外,液压系统设计中还需要考虑管道的设计和安装。
管道的设计要根据系统的工作温度、压力和流量来确定。
管道的材料和尺寸选择要满足系统的需要,并保持良好的连接和密封性能。
综上所述,液压系统设计涉及到多个方面的计算和选择。
通过合理的设计和计算,可以确保液压系统的性能和可靠性。
因此,在液压系统的设计过程中,需要充分考虑各个因素,并进行适当的计算和分析。
液压驱动系统设计与控制

液压驱动系统设计与控制引言液压驱动系统是一种广泛应用于各个领域的动力传动装置,它可实现高扭矩、高功率输出以及精确的位置控制。
本文将探讨液压驱动系统设计与控制的原理和方法,讨论其在工程实践中的应用和挑战。
一、液压驱动系统设计1. 动力源选择液压系统的动力源通常为液压泵,其类型包括齿轮泵、叶片泵和柱塞泵等。
根据应用场景和性能要求,设计人员需综合考虑工作压力、流量要求以及能源消耗等因素选择合适的液压泵。
同时还需要注意泵的噪音、振动和寿命等方面的要求。
2. 液压元件选择液压驱动系统的核心是液压元件,如液压缸、液压阀和液压马达等。
设计人员需要根据系统工作需求选择合适的液压元件,并考虑到其额定工作压力、流量和驱动力等参数。
同时还需要充分考虑元件的可靠性、使用寿命和维修保养等因素。
3. 管路设计管路设计是液压系统设计中重要的一环,它直接关系到流体传递的可靠性和效率。
在设计管路时,需要注意管道的截面尺寸、长度、弯曲和连接方式等,以保证系统的正常运行和流体的稳定流动。
此外,还需注意避免管路中的漏油、渗漏和压力损失等问题。
二、液压驱动系统控制1. 控制方式选择液压驱动系统的控制方式通常分为手动控制和自动控制。
手动控制适用于简单的操作任务,如手动控制阀门或压力开关。
而自动控制则通过传感器和控制器等设备实现对液压系统的精确控制,包括位置、速度和压力等参数。
2. 控制策略液压驱动系统的控制策略包括开环控制和闭环控制。
开环控制基于预设条件进行操作,适用于一些简单的工作。
闭环控制通过传感器反馈信号不断调整输出信号,实现对系统参数的精确控制。
选择合适的控制策略可以提高系统的控制精度和性能。
3. 控制器设计液压驱动系统的控制器通常由传感器、执行器、计算机等装置组成。
控制器的设计需要考虑到控制算法的选择、信号采集和处理等方面。
合理选择控制器的参数和配置,优化控制器的动态响应特性,可以提高液压驱动系统的控制性能。
三、液压驱动系统应用与挑战1. 工程应用液压驱动系统广泛应用于各个领域,如工业生产线、建筑机械、航空航天等。
液压系统设计计算与应用实例

自动化焊接设备中液压驱动方案设计
焊接机器人
采用液压驱动可实现高精 度、高速度的焊接作业, 提高生产效率和焊接质量。
焊接变位机
通过液压缸和马达的驱动, 实现工件的快速翻转和精 确定位,方便焊接操作。
焊接夹具
利用液压缸的夹紧力,保 证工件在焊接过程中的稳 定性和精度。
总装线上举升、翻转机构实现方式
举升机构
环保型液压油
使用生物可降解液压油,减少 对环境的影响和污染。
能量回收技术
利用液压蓄能器等元件回收系 统中的能量,提高能量利用率 。
智能化节能控制系统
通过传感器和控制系统实时监 测和调整液压系统的运行状态
,实现智能化节能控制。
06 故障诊断与维护保养策略
常见故障类型及诊断方法
液压泵故障
检查泵的运转声音、温度和输出压力,判断 是否需要更换或维修。
定期清洗液压油箱和滤网,保持油液的清 洁度。
检查液压泵和马达
校验压力和流量
定期检查液压泵和马达的运转情况,及时 发现并处理异常。
定期校验系统的压力和流量,确保系统工作 正常。
应急处理措施和备件库存管理建议
应急处理措施
制定针对不同故障的应急处理预案, 包括临时替代方案、现场快速维修方 法等。
备件库存管理建议
液压油缸故障
检查油缸的密封件是否损坏,活塞杆是否弯 曲或磨损。
液压阀故障
观察阀的工作状态和油液流动情况,检查阀 芯是否卡滞或磨损。
液压管路故障
检查管路的连接是否松动或泄漏,判断是否 需要更换或紧固。
预防性维护保养计划制定
定期更换液压油
清洗液压油箱和滤网
根据设备使用情况和厂家建议,制定合理 的液压油更换周期。
液压系统设计

液压系统设计液压系统设计是指根据特定的需求和要求,规划和构建一个能够利用液体流体力学原理来传输能量和控制机械运动的系统。
液压系统设计通常包括液压传动装置的选择、液压元件的布置和连接、液压液的选用和系统控制的设计等方面。
以下将针对液压系统设计中的一些重要要素进行解释。
1. 液压传动装置的选择:在液压系统设计中,首先要根据需求选择合适的液压传动装置。
液压传动装置通常包括液压泵、液压马达和液压缸等。
液压泵负责将机械能转化为液压能,并将液压液推送到液压元件中;液压马达则将液压能转化为机械能,实现机械运动;液压缸则通过液压力推动活塞运动。
在选择液压传动装置时,需要考虑工作压力、流量需求、工作环境、可靠性和经济性等因素。
2. 液压元件的布置和连接:液压元件的布置和连接是液压系统设计中的重要环节。
液压元件包括液压阀、液压油箱、液压管路和液压过滤器等。
液压阀用于控制液压系统的流量、压力和方向等参数,以实现机械运动的控制。
液压油箱用于存储液压液,并通过液压泵将液压液送回液压系统。
液压管路则负责将液压液从液压泵传送到液压元件,并通过回路将液压液送回液压油箱。
液压过滤器则用于过滤液压液中的杂质和污染物,保持液压系统的正常运行。
3. 液压液的选用:在液压系统设计中,选择合适的液压液对系统的性能和可靠性至关重要。
液压液应具备良好的润滑性能、热稳定性、抗氧化性和抗腐蚀性,以确保液压元件的正常运行,并延长系统的使用寿命。
常见的液压液包括矿物油、合成液压油和生物液压油等。
选择液压液时,需要考虑工作温度、压力要求、环境因素和液压元件的材质等因素。
4. 系统控制的设计:液压系统的控制是液压系统设计中的另一个重要方面。
系统控制可以通过手动控制、自动控制和比例控制等方式实现。
手动控制包括使用手柄、脚踏板或开关等来控制液压系统的运行;自动控制可以通过传感器和控制器等设备来实现液压系统的自动化操作;比例控制则是根据输入信号的大小来控制液压系统的输出参数,以实现精确的控制。
液压系统设计毕业设计

液压系统设计毕业设计1. 引言液压系统是一种通过液体传递力量和控制信号的技术,广泛应用于各个领域,包括机械工程、航空航天工程、能源工程等。
本文旨在设计一个满足特定需求的液压系统,以应用于某工程项目的毕业设计。
本文将详细介绍液压系统的设计过程和原理,包括工作原理、组成部分、性能指标和系统布局等方面。
2. 工作原理液压系统的工作原理基于两个基本定律:压力定律和帕斯卡定律。
液压系统通过液体在封闭系统中传递力量和信号。
当液体被加压时,会产生静压力,这个压力会被传递到液体中的每一个部分。
液压系统主要由以下几个组件组成:•液压泵:将电动机或发动机的动力转化为液压能量,提供液压流体的流动。
•液压缸或液压马达:通过液压系统的力量来完成工作。
•油箱:存储液压油,保持液压系统的温度和压力稳定。
•阀门:控制液体的流动,包括方向阀、流量控制阀和压力控制阀等。
•导管和连接件:连接液压系统的各个部件,传递液体。
3. 性能指标设计液压系统时,需要考虑以下性能指标:•动力输出:液压系统需要能够提供足够的动力来执行所需的工作任务。
•响应时间:液压系统的响应时间应该尽可能短,以确保工作的准确性和效率。
•系统效率:液压系统的效率应高,以减少能量损失和热量产生。
•系统可靠性:液压系统需要具备一定的可靠性,以确保长时间运行的稳定性。
•安全性:液压系统在设计上需要满足工作环境的安全要求,以防止意外事故的发生。
4. 系统布局设计在设计液压系统的布局时,需要考虑以下因素:•功能需求:根据所需的工作任务确定液压系统的功能需求,包括液压泵的选型、液压缸的布置等。
•空间约束:根据工作场地的限制,确定液压系统的尺寸和布局。
•连接方式:选择合适的连接方式和连接件,确保液压系统的连接可靠性。
•管道布置:设计合理的管道布置,避免过长或过短的管道对系统性能产生影响。
•安全设备:根据安全要求,选择合适的安全设备,如压力开关、液压阀等。
5. 结论通过本文的液压系统设计,我们能够满足特定需求的液压系统的毕业设计要求。
液压系统设计规范要求

液压系统设计规范要求液压系统作为一种常见的动力传递和控制系统,在许多行业中被广泛应用。
为了确保液压系统的正常运行和安全性,设计规范要求起着至关重要的作用。
下面是一些常见的液压系统设计规范要求的简要介绍。
1.压力等级要求:液压系统的设计应满足特定工作条件下所需的压力等级要求。
设计时需要根据工作负荷、系统结构和液压元件的性能来确定所需的压力等级,并选择相应的液压元件。
2.流量要求:液压系统的设计应满足特定工作条件下所需的流量要求。
设计时需要根据工作负荷、作动元件的速度要求和液压元件的流量特性来确定所需的流量,并选择相应的液压元件。
3.控制精度要求:液压系统的设计应满足特定工作条件下所需的控制精度要求。
设计时需要考虑液压元件的动态响应特性、控制阀的调节性能和系统的压力稳定性来确定所需的控制精度,并选择相应的液压元件和控制阀。
4.安全性要求:液压系统的设计应满足特定工作条件下的安全性要求。
设计时需要考虑系统的压力安全阀、过载保护装置和泄漏检测装置等安全措施,并选择相应的安全元件和安全阀。
5.节能要求:液压系统的设计应满足节能要求,减少能源消耗和环境污染。
设计时需要考虑选择高效的液压元件、采用能量回收装置和优化系统结构等方式来提高系统的能源利用效率。
6.维护性要求:液压系统的设计应满足方便维护和维修的要求。
设计时需要考虑系统的易维护性和易维修性,选择易操作的液压元件和控制阀,合理布置管路和连接件,以便于检修和更换。
7.可靠性要求:液压系统的设计应满足可靠性要求,确保系统能够长时间、稳定地运行。
设计时需要考虑液压元件的寿命和可靠性,选择可靠性较高的液压元件和材料,并采取相应的措施来提高系统的可靠性。
8.环境适应性要求:液压系统的设计应满足特定工作环境的要求,如高温、低温、潮湿、腐蚀等。
设计时需要选择适应工作环境的液压元件和密封件,选用符合环保要求的液压油和材料。
总之,液压系统设计规范要求涉及压力等级、流量要求、控制精度、安全性、节能性、维护性、可靠性和环境适应性等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录任务书 (2)第一章工况分析 (3)第二章拟定液压系统原理图 (5)§2.1 确定供油方式 (5)§2.2 调速方式的选择 (5)§2.3 速度换接方式的选择 (5)§2.4 夹紧回路的选择 (5)第三章液压系统的计算和选择液压元件 (7)§3.1 液压缸主要尺寸的确定 (7)§3.2 确定液压泵的流量、压力和选择泵的规格 (8)§3.3 液压阀的选择 (10)§3.4 确定管道尺寸 (10)§3.5 液压邮箱容积的确定 (11)第四章液压系统的验算 (12)§4.1 压力损失的验算 (12)§4.2 系统温升的验算 (16)小结 (17)任务书一、设计课题设计一台专用铣床液压系统。
要求实现“夹紧——快进——工进——快退——原位停止——松开”的自动工作循环。
夹紧力为3500N工作缸的最大有效行程为400mm 、工作行程为200mm、工作台自重3000N,工件及液压夹具最大重量为1000N,采用平导轨和V形导轨,,其余参数如下:备注:进、回油管长各取1米。
二、设计计算内容1、设计计算液压系统包括液压系统的拟订,液压缸的设计,液压元件及电机的选择,液压站的设计。
2、编写设计计算说明书包括设计任务,设计计算过程,系统原理图(系统图,动作循环图,电磁铁动作表,液压元件一缆表)三、绘图工作内容1、液压系统原理图,2、集成块式(或叠加阀式)油路图3、工作油缸装配图第一章工况分析根据已知条件,绘制运动部件的速度循环图,如图1-1所示。
计算各阶段的外负载,如下:液压缸所受外负载F包括三种类型,即F=Fω+Ff +Fa式中Fω—工作负载,对于金属切削机床,既为活塞运动方向的切削力,为Fω=12000N;Fa—运动部件速度变化时的惯性负载;Ff—导轨摩擦阻力负载,启动时为静摩擦阻力,启动后为动摩擦力阻力,对于平导轨Ff可由下式求得Ff = f ( G + FRn);G—运动部件重力;G=3000+1000N=4000NFRn —垂直于导轨的工作负载,本设计中为FRn=2000N;f—导轨摩擦系数,在本设计中取静摩擦系数为0.2,动摩擦系数为0.1。
则求得Ffs= 0.2⨯(4000+2000)N = 1200N (1-2)Ffa=0.1⨯(4000+2000)N = 600N上式中Ffs 为经摩擦阻力,Ffa为东摩擦阻力。
Fa=gGt∆∆υ式中g—重力加速度;t∆—加速或减速时间,一般t∆= 0.01~0.5s,取t∆= 0.05s。
υ∆—t∆时间内的速度变化量。
在本设计中Fa =8.94000⨯6005.04⨯N = 544.22N根据上述计算结果,列出各工作阶段所受的外负载(见表1-1),并画出如图1-2所示的负载循环图。
图1-1 速度循环图图1-2 负载循环图第二章拟定液压系统原理图§2.1确定供油方式考虑到该机床在工作进给时负载较大,速度较低。
而在快进、快退时负载较小,速度较高。
从节省能量、减少发热考虑,泵源系统宜选用双泵供油或者变量泵供油。
本设计采用带压力反馈的限压式变量叶片泵。
§2.2调速方式的选择在中小型专用机床的液压系统中,进给速度的控制一般采用节流阀或者调速阀。
根据铣削类专用机床工作时对低速性能和速度负载特性都有一定技术要求的特点,决定采用限压式变量泵和调速阀组成的容积节流调速。
这种调速回路具有效率高、发热小和速度刚性好的特点,并且调速阀装在回油路上,具有承受负切削力的能力。
§2.3速度换接方式的选择本设计采用电磁阀的快慢速度换接回路,它的特点是结构简单、调节行程方便,阀的安装也容易。
§2.4夹紧回路的选择采用二位四通电磁阀来控制夹紧、松开换向动作时,为了避免工作时突然失电而松开,应采用失电夹紧方式。
考虑到夹紧时间可调节和当进油路压力瞬时下降时仍然能保持夹紧力,所以接入节流阀调速和单向阀保压。
在该回路中还装有减压阀,用来调节夹紧力的大小和保持夹紧力的稳定。
最后把所选择的液压回路组合起来,既可组成图1—3所示的液压系统原理图。
图1—3 液压系统原理图第三章 液压系统的计算和选择液压元件§3.1液压缸主要尺寸的确定。
(1)工作压力P 1的确定。
工作压力P 1可根据负载大小及其机器的类型来初步确定,参阅表2-1取液压缸工作压力为2.5MPa 。
(2)计算液压缸内径D 和活塞杆直径d 。
由负载图知最大负载F 为12600N ,按表2-2可取P 2为0.5MPa ,cm η为0.95,考虑到快退、快进速度相等,取d/D 为0.7。
将上述数据代入D =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--2121114D d P PP Fcm ηπ (2-3)可得 D=()[]⎭⎬⎫⎩⎨⎧--⨯⨯⨯⨯⨯267.015.25.0195.05.214.312600410 m = 8.29210-⨯m根据表2-4,将液压缸内径圆整为标准系列直径D = 80mm ;活塞杆直径d ,按d/D = 0.7及表2-5,活塞杆直径系列取d =56 mm 。
按工作要求夹紧力由两个夹紧缸提供,考虑到夹紧力的稳定,夹紧缸的工作压力应低于进给液压缸的工作压力,取油背压力为2MPa,回油背压力为零,cm η为0.95,则按式(2-3)可得D=95.010214.3175046⨯⨯⨯⨯ m = 3.42210-⨯m 按表2-4及表2-5液压缸和活塞杆的尺寸系列,取加紧液压缸的D 和d 分别为32mm 及22mm 。
按最低工进速度验算液压缸的最小稳定速度A min =minminυq = 41005.03⨯ cm 2= 12.5 cm 2式中min q 是由相关手册查得GE 系列调速阀AQF3-E10B 的最小稳定流量为0.05min /L 。
本设计中调速阀是安装在回油路上,故液压缸节流腔有效工作面积应选取液压缸有杆腔的实际面积,既A =4π()22d D - = 4π ⨯ ()226.58-cm 2 = 25.64 cm 2满足A> Amin,故液压缸能达到所需低速。
(3)计算在各工作阶段液压缸所需的流量q快进=4πd2快进υ=4π⨯2056.0min/43m⨯= min/85.9Lq工进=4πD2工进υ=4π⨯208.0min/13m⨯= min/03.5Lq快退=4π()22dD-快退υ=4π⨯()22056.008.0-min/43m⨯=min/25.10Lq夹=4πD夹2夹υ=4π⨯min/2.1032.032m⨯= min/96.0L§3.2确定液压泵的流量、压力和选择泵的规格(1)泵的工作压力的确定。
考虑到正常工作中进油路有一定的压力损失,所以泵的工作压力为Pp = P1+ ∑∆p式中Pp——液压泵最大工作压力;P1——执行元件最大工作压;∑∆p——进油管路中的压力损失,初算时简单系统可取0.2~0.5MPa,复杂系统取0.5~1.5 MPa,本设计取0.5 MPa。
Pp = P1+ ∑∆p= ()5.05.2+MPa = 3 MPa上述计算所得的Pp是系统的静态压力,考虑到系统在各种工况的过度阶段出现的动态压力往往超过静态压力。
另外考虑到一定的压力储备量,并确保泵的寿命,因此选泵的额定压力Pn 应满足Pn≥()6.1~25.1Pp。
中低压系统取最小值,高压系统取大值。
在本设计中Pn = 1.25 Pp= 3.75 MPa。
(2)泵的流量确定。
液压泵的最大流量应为qP ≥k L()max∑q式中qP——液压泵的最大流量;()max∑q——同时动作的各执行元件所需流量之和的最大值,本设计()max∑q= q快退=10.25 L/min。
k L ——系统泄露系数,一般取k L = 1.1 ~1.3,本设计取k L = 1.2。
q P = k L ()max ∑q = 1.2min /25.10L ⨯ = 12.3L/min(3)选择液压泵的规格。
根据以上算得的P p 和q P ,查找相关手册,选用YBX-25限压式变量叶片泵,该泵的基本参数为:每转排量q o = 16ML/r ,泵的额定压力P n = 6.3MPa ,电动机的转速n H = 740r/min ,容积效率为v η =0.85,总效率η = 0.7。
(4)与液压泵匹配的电动机的选定。
首先分别算出快进与工进两种不同工况时的功率,取两者较大值作为选择电动机规格的依据。
由于在慢进时泵输出的流量减少,泵的效率急剧下降,一般当流量在0.2~1L/min 范围内时,可取η = 0.03~0.14。
同时还应注意到,为了使所选择的电动机在经过泵的流量特性曲线最大功率点时不致停转,需进行验算,即n pB P q p 2≤η(1-6)式中 P n ——所选电动机额定功率; P B ——限压式变量泵的限压力; q P ——压力为P B 时,泵的输出流量。
首先计算快进的功率,快进的外负载为600N ,进油路的压力损失定为0.3MPa,由式(1-4)可得P p = ⎪⎪⎪⎪⎭⎫ ⎝⎛+⨯⨯-3.010056.0460062πMPa = 0.54MPa快进时所需电动机功率为P =ηpp q p =7.0601054.0⨯⨯KW = 0.13KW工进时所需电动机功率为P = 7.06003.53⨯⨯KW = 0.36KW查阅相关电动机类型标准,选用Y132S-1型电动机,其额定功率为2.2KW ,额定转速为750r/min 。
根据产品样本可查得YBX—16的流量压力特性曲线。
再由已知的快进时流量为12.3L/min,工进时的流量为5 L/min,压力为3MPa,得到泵的实际工作时的流量压力特性曲线,查得该曲线拐点处的流量为12.3 L/min,,压力为1.9MPa,该工作点处对应的功率为P =7.0603.129.1⨯⨯KW = 0.56KW所选电动机满足式(1-6),拐点处能正常工作。
§3.3液压阀的选择本液压系统可采用GE系统的阀。
根据所拟定的液压系统图,按通过各元件的最大流量来选择液压元件的规格。
选定的液压元件如下表1-2所示。
§3.4确定管道尺寸油管内劲尺寸一般可参照选用的液压元件接口尺寸而定,也可以按管路允许流速进行计算。
本系统主油路流量为差动时流量q=20 L/min,压油管允许流速取v=3m/s,则内径d为d= 4.6×vq= 4.6×320mm= 11.88mm若系统主油路流量按快退时取q=10.25L/min,则可算得油管内径 d =8.5mm 。
综合诸因素,现取油管的内劲d 为10mm 。
吸油管同样可按上式计算(q=12.3L/min ,v =,1.5m/s ),参照YBX-16变量泵吸油口连接尺寸,取吸油管内劲d 为25mm 。