高中数学知识点总结归纳整理
高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。
高中数学知识点归纳

高中数学知识点归纳一、集合与函数概念。
1. 集合。
- 集合的定义:一些元素组成的总体。
- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。
- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。
- 真子集:A⊆ B且A≠ B,则A⊂neqq B。
- 集合相等:A = B当且仅当A⊆ B且B⊆ A。
- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。
- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。
二、基本初等函数(Ⅰ)1. 指数函数。
- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。
- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。
高中数学知识点总结全(最新)

高中数学知识点总结全(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是确定的、互不相同的对象的全体。
元素与集合的关系:属于(∈)、不属于(∉)。
集合的表示方法:列举法、描述法、图示法。
2. 集合的基本运算并集(∪):由两个集合的所有元素组成的集合。
交集(∩):由两个集合的共同元素组成的集合。
补集(C):全集中不属于某集合的元素组成的集合。
差集():由一个集合中不属于另一个集合的元素组成的集合。
3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
4. 函数的性质单调性:增函数、减函数。
奇偶性:奇函数、偶函数。
周期性:存在一个非零常数T,使得对于定义域内的任意x,都有f(x+T) = f(x)。
最值:最大值、最小值。
二、基本初等函数1. 一次函数定义:形如y = kx + b(k≠0)的函数。
图像:一条直线。
性质:单调性(k>0时增,k<0时减)、截距(b为y 轴截距)。
2. 二次函数定义:形如y = ax² + bx + c(a≠0)的函数。
图像:一条开口向上或向下的抛物线。
性质:顶点(b/2a, c b²/4a)、对称轴(x = b/2a)、单调性、最值。
3. 指数函数定义:形如y = a^x(a>0且a≠1)的函数。
图像:过点(0,1),当a>1时单调递增,当0<a<1时单调递减。
性质:无界性、单调性、特殊点。
4. 对数函数定义:形如y = log_a(x)(a>0且a≠1)的函数。
图像:过点(1,0),当a>1时单调递增,当0<a<1时单调递减。
性质:定义域(x>0)、单调性、特殊点。
5. 三角函数正弦函数:y = sin(x),周期为2π,图像为波形曲线。
最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。
掌握实数的分类和复数的基本概念。
1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。
包括因式分解、公式法解方程、分式方程的解法等。
1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。
理解不等式的性质和解不等式的一般步骤。
1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。
了解函数的极限和连续性概念。
1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。
掌握无穷等比数列的和的计算方法。
1.6 排列组合与概率排列、组合的基本概念和公式。
概率的定义、性质及计算方法。
理解条件概率和独立事件的概念。
二、几何与测量2.1 平面几何点、线、面的基本性质。
掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。
2.2 空间几何空间直线和平面的位置关系。
柱面、锥面、旋转体等常见立体图形的性质和计算。
2.3 解析几何坐标系的建立和应用。
通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。
2.4 三角学三角比的概念、三角函数的定义和性质。
掌握正弦定理、余弦定理及其在解三角形中的应用。
2.5 向量向量的基本概念、线性运算、数量积和向量积。
理解向量在几何和代数中的应用。
三、统计与概率3.1 统计基本概念数据的收集、整理和描述。
理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3.2 概率分布离散型随机变量和连续型随机变量的概念。
熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。
3.3 抽样与估计抽样方法、样本容量的确定。
参数估计的基本概念和方法,包括点估计和区间估计。
3.4 假设检验假设检验的基本思想和步骤。
理解显著性水平、第一类错误和第二类错误的概念。
高中数学知识点总结归纳(完整版)

高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是一门重要的学科,涵盖了许多不同的知识点和概念。
在高中数学学习过程中,学生需要掌握并理解这些知识点,并能够灵活运用于解决各种数学问题。
本文将对高中数学的各个知识点进行总结归纳,帮助学生们更好地理解和掌握数学。
1.代数部分1.1.一元一次方程与不等式1.1.1.一元一次方程的解法:通过加减法和乘除法得出变量的值。
1.1.2.一元一次不等式的解法:通过加减法,乘除法和绝对值法得出变量的范围。
1.2.二元一次方程组与不等式组1.2.1.二元一次方程组的解法:通过消元法、代入法或加减法得出未知数的值。
1.2.2.二元一次不等式组的解法:通过画图法或代入法,求出未知数的范围。
1.3.整式与分式1.3.1.整式的加减乘除运算:根据指数法则进行运算,化简表达式。
1.3.2.分式的加减乘除运算:进行通分、约分、再进行运算,化简表达式。
1.4.根式1.4.1.根式的化简:通过提取公因式或有理化分母等方法化简根式。
1.4.2.根式的运算:通过合并同类项或分解因式的方法进行根式的加减乘除运算。
1.5.二次函数1.5.1.二次函数的定义:y=ax²+bx+c (a≠0),其中a、b、c为常数。
1.5.2.二次函数的性质:顶点坐标、对称轴、开口方向、零点、图像变换等。
1.5.3.二次函数的图像:根据二次函数的性质画出函数图像,分析函数行为。
2.几何部分2.1.平面几何2.1.1.平面几何的基本概念:点、线、面、角、相似等概念的定义。
2.1.2.平面几何的性质:线段中点定理、垂直角定理、平行线性质等。
2.1.3.平面图形的面积与体积:长方形、正方形、三角形、梯形等图形的面积计算方法。
2.2.立体几何2.2.1.立体几何的基本概念:点、线、面、体、棱、顶点等概念的定义。
2.2.2.立体图形的体积与表面积:长方体、正方体、圆柱体、圆锥体等图形的体积和表面积计算方法。
高中数学知识点全总结(精选10篇)

高中数学知识点全总结(精选10篇)第一篇:代数与函数代数与函数是高中数学的重要基础内容,包括多项式、因式分解、分式方程等知识点。
代数与函数的学习对于理解和应用其他数学知识具有重要的作用。
第二篇:几何几何是高中数学不可或缺的一部分,包括平面几何、立体几何、三角形及其性质、相似三角形等知识点。
几何的学习能够培养学生的空间想象力和推理能力。
第三篇:概率与统计概率与统计是高中数学的实用内容,包括事件的概率、统计图表的分析与应用等知识点。
概率与统计的学习对于培养学生的数据分析能力具有重要的意义。
第四篇:数列与数学归纳法数列与数学归纳法是高中数学中的重要知识点,包括等差数列、等比数列、递推公式的求解等内容。
数列与数学归纳法的学习对于培养学生的逻辑思维和数学推理能力具有重要作用。
第五篇:函数与导数函数与导数是高中数学中的重要内容,包括函数的性质、导数的定义与求解等知识点。
函数与导数的学习对于培养学生的数学建模能力和问题解决能力具有重要作用。
第六篇:三角函数三角函数是高中数学中常见且重要的内容,包括三角函数的定义、性质、图像与应用等知识点。
三角函数的学习对于理解三角关系、解决相关问题具有重要意义。
第七篇:立体几何立体几何是高中数学中的重要内容,包括立体的表面积与体积的计算、空间几何体的相交与相切等知识点。
立体几何的学习对于培养学生的空间想象力和几何思维具有重要作用。
第八篇:平面向量平面向量是高中数学中的一项重要内容,包括向量的定义、运算、共线与垂直等知识点。
平面向量的学习对于培养学生的几何直观和向量运算能力具有重要作用。
第九篇:三角变换三角变换是高中数学中常见的内容,包括三角函数的基础知识、三角函数的图像变换等。
三角变换的学习对于理解函数的图像与性质具有重要的帮助。
第十篇:数学推理与证明数学推理与证明是高中数学中的重要内容,包括逻辑推理、数学证明的方法与技巧等知识点。
数学推理与证明的学习对于培养学生的严密思维和推理能力具有重要作用。
高中数学知识点总结完整版

高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
高中数学知识点公式全部总结

高中数学知识点公式全部总结一、代数1. 集合与函数- 集合的表示与运算:列举法、描述法,交集、并集、补集。
- 函数的概念:定义域、值域、单调性、奇偶性。
- 函数的运算:加法、减法、乘法、除法、复合函数。
2. 代数式- 整式与分式:单项式、多项式、因式分解、分式的加减乘除。
- 二次根式:开方、根式的乘除、有理化因式。
3. 一元一次方程与不等式- 方程的解法:移项、合并同类项、系数化为1。
- 不等式的解法:移项、合并同类项、分数的交叉相乘。
4. 一元二次方程- 标准形式、配方法、公式法、因式分解法。
- 根的判别式:Δ = b² - 4ac。
5. 多项式函数- 多项式的图像:零点、极值点、对称轴。
- 多项式的因式分解:提公因式、分组分解、十字相乘。
二、几何1. 平面几何- 点、线、面的基本性质。
- 三角形:边角关系、内角和定理、海伦公式。
- 四边形:平行四边形、矩形、菱形、正方形的性质。
- 圆的性质:圆心角、弦、切线、割线、圆周角。
2. 立体几何- 空间图形的表面积与体积计算。
- 棱柱、棱锥、圆柱、圆锥、球的性质与计算。
3. 解析几何- 坐标系:直角坐标系、极坐标系。
- 直线与圆的方程:点斜式、两点式、一般式、圆的标准式。
- 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。
三、概率与统计1. 概率- 随机事件的概率:古典概型、几何概型。
- 条件概率与独立事件。
- 贝叶斯定理。
2. 统计- 数据的收集与整理:频数分布、直方图。
- 统计量:平均数、中位数、众数、方差、标准差。
- 线性回归与相关系数。
四、数学归纳法- 证明方法:直接证明、间接证明。
- 数学归纳法的步骤:基础情况、归纳步骤。
五、数列1. 等差数列与等比数列- 通项公式、求和公式。
- 等差数列与等比数列的性质。
2. 级数- 等差级数与等比级数的求和。
- 无穷级数的概念:收敛与发散。
六、微积分初步1. 极限- 极限的概念:数列极限、函数极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二·空间几何体1.1空间几何体的结构棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等表示:用各顶点字母,如四棱台ABCD —A'B'C'D'几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。
圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
1.2空间几何体的三视图和直观图1.中心投影与平行投影中心投影:把光由一点向外散射形成的投影叫做中心投影。
平行投影:在一束平行光照射下形成的投影叫做平行投影。
2.三视图正视图:从前往后侧视图:从左往右俯视图:从上往下画三视图的原则:长对齐、高对齐、宽相等3.直观图:斜二测画法斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。
1.3空间几何体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh=柱2V Sh r h π==圆柱13V Sh =锥 h r V 231π=圆锥'1()3V S S h =台 '2211()()33V S S h r rR R h π=+=++圆台球体的表面积和体积公式:V 球=343R π; S 球面=24R π·空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)应用:判断直线是否在平面内用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂ 公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面; 两平行直线确定一平面。
公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a 。
符号语言:,P A B A B l P l ∈⇒=∈ 作用:①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理4:平行于同一条直线的两条直线互相平行空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:直线a 、b 是异面直线,经过空间任意一点O ,分别引直线a ’∥a ,b ’∥b ,则把直线a ’和b ’所成的锐角(或直角)叫做异面直线a 和b 所成的角。
两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O 是任取的,而和点O 的位置无关。
②求异面直线所成角步骤:A 、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B 、证明作出的角即为所求角 C 、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
三种位置关系的符号表示:a ⊂α a ∩α=A a ∥α(8)平面与平面之间的位置关系:平行——没有公共点;α∥β相交——有一条公共直线。
α∩β=b空间中的平行问题直线和平面平行:直线l 与平面α没有公共点,则称直线l 与平面α平行,记作α//l 两个平面平行:没有公共点的两个平面叫做平行平面。
(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行⇒线面平行b a α////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平 面和这个平面相交,那么这条直线和交线平行。
线面平行⇒线线平行(2)平面与平面平行的判定及其性质 两个平面平行的判定定理:①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行线面平行⇒面面平行②如果两个平面同垂直于一条直线,那么这两个平面平行平行于同一个平面的两个平面平行两个平面平行的性质定理(1)如果两个平面平行,那么在一个平面内的所有直线都平行于另一个平面βα//且α⊂a β//a ⇒ (面面平行→线面平行)(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行b a b a ////⇒⎪⎩⎪⎨⎧==βγαγβα a βαβαβα//⇒⎩⎨⎧⊥⊥l l b a b a a ////⇒⎪⎩⎪⎨⎧=⊂βαβα //////,a b a b P a b ββαβα⎧⎪⎪⇒⎨=⎪⎪⊂⎩γαγββα//////⇒⎩⎨⎧(面面平行→线线平行)(3)如果两个平行平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为 0。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
④范围:0,2π⎡⎤⎢⎥⎣⎦(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为 0。
②平面的垂线与平面所成的角:规定为 90。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
④范围:0,2π⎡⎤⎢⎥⎣⎦(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角 ④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角范围:[]0,πβαβα⊥⇒⊥l l 且//空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)线线垂直定义: 直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α互相垂直.该直线叫做平面的垂线,该平面叫做这条直线的垂面线面垂直的性质:b a b a ⊥⇒⎩⎨⎧⊂⊥αα;线面垂直的判定定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线 垂直于这个平面αα⊥⇒⎪⎪⎩⎪⎪⎨⎧⊂=⊥⊥a c b O c b c a b a , ; 注意点: 定理中的“两条相交直线”这一条件不可忽视;推论: 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面⎭⎬⎫a ∥b a ⊥α⇒b ⊥α线面垂直的性质定理(1)垂直于同一个平面的两条直线平行//a a b b αα⊥⎫⇒⎬⊥⎭. (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
//a b b a αα⎫⇒⊥⎬⊥⎭三垂线定理: 平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直三垂线定理的逆定理: 平面内的一条直线,如果和这个平面的一条斜线垂直,那么,它也和这条斜线的射影垂直 (3)面面垂直定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直b a a a b αβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭.·直线与方程(1)直线的倾斜角:对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时,所转的最小正角叫做直线的倾斜角 直线的倾斜角取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。