高考数学分类理科版之回归分析与独立性检验及解析

合集下载

考点11 回归分析与独立性检验(学生版)

考点11  回归分析与独立性检验(学生版)

考点11 回归分析与独立性检验概率与统计,是历年高考的必考点,尤其是新高考改革后,各卷都有考查,其主要考查内容有:数字特征与概率的计算问题、随机变量的均值与方差、回归分析与独立性检验、二项分布及其应用等。

例如:2021年全国高考乙卷(文)、(理)[17],2022年全国新高考卷Ⅱ[19],2022年全国乙卷(文)、(理)[19],2022年全国甲卷(文)[17],2022年北京高考[18]等都对数字特征与概率的计算问题进行了考查。

〔1〕回归分析的实际应用1.求回归直线方程(线性回归方程)的一般步骤 (1)画散点图; (2)求回归直线方程; (3)用回归直线方程进行预报。

2.利用回归方程进行预测,把回归直线方程看作一次函数,求函数值。

3.利用回归直线判断正、负相关,决定正相关还是负相关的是系数bˆ。

4.回归方程的拟合效果,可以利用相关系数判断,当||r 越趋近于1时,两变量的线性相关性越强。

〔2〕独立性检验的实际应用 1.独立性检验的一般步骤(1)根据样本数据列出2×2列联表;(2)计算随机变量2K 的观测值k ,查表确定临界值0k ;(3)如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过()02k K P ≥;否则,就认为在犯错误的概率不超过()02k K P ≥的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y有关系”。

2.独立性检验的应用可以利用独立性检验来推断两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。

具体做法是: (1)根据实际问题需要的可信程度(或容许犯错误概率的上界)确定临界值0k ; (2)利用公式,由观测数据计算得到随机变量2K 的观测值k ;(3)如果0k k ≥,就说有()()%100102⨯≥-k K P 的把握认为“X 与Y 有关系”(或说在犯错误的概率不超过()2k K P ≥的前提下认为“X 与Y 有关系”),否则就说样本观测数据没有提供“X 与Y 有关系”的充分证据(或说在犯错误的概率不超过()02k K P ≥的前提下不能认为“X 与Y 有关系”)。

高考总复习数学(理科)基础知识反馈卡 9.11回归分析与独立性检验 Word版含解析

高考总复习数学(理科)基础知识反馈卡 9.11回归分析与独立性检验 Word版含解析

基础知识反馈卡·9.11时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.下面是2×2则表中a ,b 的值分别为A .94,72 B .52,50C .52,74D .74,522.下列两个变量之间的关系是相关关系的是( )A .正方体的棱长和体积B .角的弧度数和它的正弦值C .速度一定的路程和时间D .日照时间与水稻的亩产量3.回归方程为y ^=1.5x -15,则( )A.y =1.5x -15 B .15是回归系数aC .1.5是回归系数aD .x =10时,y =04.工人月工资y (单位:元)与劳动生产率x (单位:千元)变化的回归直线方程为y ^=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资为130元B .劳动生产率提高1000元时,则工资提高80元C .劳动生产率提高1000元时,则工资提高130元D .当月工资为210元时,劳动生产率为2000元5.回归直线方程必定过点( )A .(0,1)B .(x ,0)C .(0,y )D .(x ,y )6.相关变量x 、y经回归分析可得y 与x 线性相关,并由最小二乘法求得线性回归方程为y ^=1.1x +a ^,则a^等于( )A .0.1B .0.2C .0.3D .0.4二、填空题(每小题5分,共15分)7.已知施化肥量x 与水稻产量y 的试验数据如下表,则变量x 与变量y 是________相关(8.),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.9.某班班主任对全班30名男生进行了“认为作业量多少”的调查,数据如下表:不超过________.三、解答题(共15分)10.)之间有如下对应数据:(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为10万元时,销售额多大?基础知识反馈卡·9.11 1.C 2.D 3.A 4.C 5.D 6.C 7.正 8.0.254 9.0.05010.解:(1)根据表中所列数据可得散点图如图DJ9:图DJ9 (2)x =2+4+5+6+85=5,y =30+40+60+50+705=50, 又已知521ii x =∑=145,51i i i x y =∑=1380. 于是可得:b ^=51522155ii i i i x y x y xx ==--∑∑=1380-5×5×50145-5×5×5=6.5, a ^=y -b ^x =50-6.5×5=17.5,因此,所求线性回归方程为y ^=6.5x +17.5.(3)根据上面求得的线性回归方程,当广告费支出为10万元时,y =6.5×10+17.5=82.5(万元).即这种产品的销售额大约为82.5万元.。

高考数学复习考点知识与题型专题讲解18--- 回归分析、独立性检验(解析版)

高考数学复习考点知识与题型专题讲解18--- 回归分析、独立性检验(解析版)

高考数学复习考点知识与题型专题讲解专题18 回归分析、独立性检验1.有关独立性检验的问题,解题思路如下:(1)利用频率估计概率;(2)根据题意,求得2K的值,对照临界值得结果.2.对于非线性回归方程及其应用,考查将非线性回归问题转化为线性回归问题求解,在解题的过程中,要注重回归方程的公式的正确计算,注意所给数据的正确应用.2倍.1 / 31(1)求表中a,b的值,并补全表中所缺数据;(2)运用独立性检验思想,判断是否有99.5%的把握认为中学生使用手机对学习有影响?参考数据:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【试题来源】三省三校“3 3 3”2021届高考备考诊断性联考卷(二)【答案】(1)28,14,ab=⎧⎨=⎩,表格答案见解析;(2)有99.5%的把握认为中学生使用手机对学习有影响.【分析】(1)由题意可得122680,2a ba b+++=⎧⎨=⎩从而可求出,a b的值,进而可填出列联表;(2)直接利用公式()()()()()22n ad bcKa b c d a c b d-=++++求解,然后根据临界值表得结论【解析】(1)由己知得122680,2a ba b+++=⎧⎨=⎩解得28,14,ab=⎧⎨=⎩补全表中所缺数据如下:(2)根据题意计算观测值为()2280282614129.8257.87942384040K⨯⨯-⨯=≈>⨯⨯⨯,所以有99.5%的把握认为中学生使用手机对学习有影响.2.某校高二生物研究性学习小组的同学们为了研究当地某种昆虫的产卵数与温度的变化关系,他们收集了一只该种昆虫在温度Cx︒时相对应产卵数个数为y的8组数据,为了对数据进行分析,他们绘制了如下散点图:(1)根据散点图,甲、乙两位同学分别用y bx a=+和z dx c=+(其中lnz y=)两种模型进行回归分析,试判断这两位同学得到的回归方程中,哪一个的相关指数2R更接近1;(给出判断即可,不必说明理由)(2)根据(1)的结论选定上述两个模型中更适宜作为对昆虫产卵数与温度变化关系进行回归分析的模型,并利用下表中数据,计算该模型的回归方程:(方程3 / 31表示为()y f x =的形式,数据计算结果保留两位小数)(3)据测算,若只此种昆虫的产卵数超过4e ,则会发生虫害.研究性学习小组的同学通过查阅气象资料得知近期当地温度维持在25C ︒左右,试利用(2)中的回归方程预测近期当地是否会发生虫害. 附:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u βα=+的斜率和截距的最小二乘估计分别为1221ˆˆˆ,nl i i ni i u v nuvv u unu βαβ==-==--∑∑. 【试题来源】甘肃省兰州市2020-2021学年高三下学期诊断试题【答案】(1)乙同学模型的相关指数2R 更接近1;(2)应选择z dx c =+做为回归方程,0.22 2.22x y e -=;(3)近期当地不会发生虫害.【分析】(1)通过观察图象即可得出结论;(2)根据(1)的结论,应选择z dx c =+做为回归方程,利用最小二乘法即可求解,求出,d c 即可. (3)当25x =时,求出估计值,即可判断得出结论.【解析】(1)乙同学模型的相关指数2R 更接近1.(2)根据(1)的结论,应选择z dx c =+做为回归方程,根据公式,812221757826 3.30.22, 3.30.2226 2.425722826i i i nii x z nxzd c z dx xnx =-=--⨯⨯==≈=-≈-⨯=--⨯-∑∑, 0.22 2.42z x ∴=-,5 / 31故y 关于x 的回归方程为0.22 2.22x y e -=.(3)当25x =时,0.22 2.22 3.084x y e e e -==<,因此近期当地不会发生虫害. 3.人均可支配收入是反映一个地区居民收入水平和城市经济发展水平的重要指标,并且对人均消费水平有重大影响,下图是根据国家统计局发布的《2020年上半年居民收入和消费支出情况》绘制的,是我国31个省(区、市)2020年上半年人均可支配收入x (单位:元)与人均消费支出y (单位:元)的散点图.(1)由散点图可以看出,可以用线性回归模型ˆˆybx a =+拟合人均消费支出y 与人均可支配收入x 的关系,请用相关系数加以说明; (2)建立y 关于x 的线性回归方程(精确到0.01);(3)根据(2)的结论,规定半年人均盈余(人均可支配收入-人均消费支出)不低于4620元的省(区、市)达到阶段小康的标准,则估计达到阶段小康标准的省(区、市)的半年人均可支配收入至少为多少元? 参考数据:参考公式:相关系数()()niix x y y r --=∑,回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 【试题来源】2021年新高考测评卷数学(第二模拟)【答案】(1)答案见解析;(2)ˆ0.482192y x =+;(3)13100元.【分析】(1)将已知数据代入相关系数的求解公式即可得解;(2)根据题中数据及参考公式求得ˆb ,ˆa ,即可建立y 关于x 的线性回归方程;(3)由题意知半年人均盈余为ˆx y-,得到不等式ˆ4620x y -≥,解不等式即可. 【解析】(1)由题意知()()316839000000.983800018400iix x yy r --==≈⨯∑,因为y 与x 的相关系数近似为0.98,接近1,所以y 关于x 的线性相关程度非常高,因此可以用线性回归模型拟合y 与x 的关系.(2)()()()3113121683900000ˆ0.481412000000ii i ii xx y y bxx ==--==≈-∑∑,ˆˆ96320.48155002192ay bx =-≈-⨯=,所以ˆ0.482192y x =+. (3)半年人均盈余为ˆ0.4821920.522192x yx x x -=--=-, 令0.5221924620x -≥,得13100x ≥,故估计达到阶段小康标准的省(区、市)的半年人均可支配收入至少为131007 / 31元.4.近年来,明代著名医药学家李时珍故乡黄冈市蕲春县大力发展大健康产业,蕲艾产业化种植已经成为该县脱贫攻坚的主要产业之一,已知蕲艾的株高y (单位:cm)与一定范围内的温度x (单位:℃)有关,现收集了蕲艾的13组观测数据,得到如下的散点图:现根据散点图利用y a =+dy c x=+建立y 关于x 的回归方程,令s =1t =得到如下数据:213t131i =∑21.22且(i s ,i y )与(i t ,i y )(i =1,2,3,…,13)的相关系数分别为1r ,2r ,且2r =﹣0.9953.(1)用相关系数说明哪种模型建立y 与x 的回归方程更合适; (2)根据(1)的结果及表中数据,建立y 关于x 的回归方程;(3)已知蕲艾的利润z 与x 、y 的关系为1202z y x =-,当x 为何值时,z 的预报值最大.参考数据和公式:0.21×21.22=4.4562,11.67×21.22=247.6374=15.7365,对于一组数据(i u ,i v )(i =1,2,3,…,n ),其回归直线方程v uαβ=+的斜率和截距的最小二乘法估计分别为1221ni i i nii u vnu v unuβ==-⋅=-∑∑,v u αβ=-,相关系数ni i u vnu vr -⋅∑.【试题来源】湖北省八市2021届高三下学期3月联考 【答案】(1)用d y c x =+模型建立y 与x 的回归方程更合适;(2)10ˆ111.54yx=-;(3)当温度为20时这种草药的利润最大.【分析】(1)利用相关系数1r ,2r ,比较1||r 与2||r 的大小,得出用模型dy c x=+建立回归方程更合适;(2)根据(1)的结论求出y 关于x 的回归方程即可;(3)由题意写出利润函数ˆz,利用基本不等式求得利润z 的最大值以及对应的x 值.【解析】(1)由题意知20.9953r =-,10.8858r ====,因为121r r <<,所有用dy c x=+模型建立y 与x 的回归方程更合适. (2)因为1311322113 2.1ˆ100.2113i ii ii t y t ydtt ==-⋅-===--∑∑, ˆˆ109.94100.16111.54cy dt =-=+⨯=,9 / 31所以ˆy关于x 的回归方程为10ˆ111.54y x=- (3)由题意知11012020(111.54ˆˆ)22zy x x x =-=--20012230.8()2x x =-+ 2230.8202210.8≤-=,所以22.8ˆ10z≤,当且仅当20x 时等号成立,所以当温度为20时这种草药的利润最大.5.已知某班有50位学生,现对该班关于“举办辩论赛”的态度进行调查,,他们综合评价成绩的频数分布以及对“举办辩论赛”的赞成人数如下表:(1)请根据以上统计数据填写下面2×2列联表,并回答:是否有95%的把握认为“综合评价成绩以80分位分界点”对“举办辩论赛”的态度有差异?(2)若采用分层抽样在综合评价成绩在[60,70),[70,80)的学生中随机抽取10人进行追踪调查,并选其中3人担任辩论赛主持人,求担任主持人的3人中至少有1人在[60,70)的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【试题来源】山东省聊城市第一中学2021届高三一模检测题(一)【答案】(1)表格见解析,不能;(2)2930.【分析】(1)由已知完成列联表,结合公式计算2K 根据参考数据即可判断结果;(2)由分层抽样得在[)60,70里面抽6个,[)70,80里面抽4个,再用对立事件求解概率即可. 【解析】(1)做个皮尔逊卡方检验的话,有()2250286412 3.125 3.84132184010K ⨯⨯-⨯==<⨯⨯⨯故此不能推翻零假设,不能认定成绩和态度有关.(2)这样分层抽样,会在[)60,70里面抽6个,[)70,80里面抽4个,11 / 31设A 为没有人在[60,70)内的事件,则概率即为()1P P A =-3431029130C C =-=.6.某疫苗进行安全性临床试验.该疫苗安全性的一个重要指标是注射疫苗后人体血液中的高铁血红蛋白(MetHb )的含量(以下简称为“M 含量”)不超过1%,则为阴性,认为受试者没有出现血症.若一批受试者的M 含量平均数不超过0.65%,出现血症的被测试者的比例不超过5%,同时满足这两个条件则认为该疫苗在M 含量指标上是“安全的”;否则为“不安全”.现有男、女志愿者各200名接受了该疫苗注射.经数据整理,制得频率分布直方图如图.(注:在频率分布直方图中,同一组数据用该区间的中点值作代表.)(1)请说明该疫苗在M 含量指标上的安全性;(2)按照性别分层抽样,随机抽取50名志愿者进行M 含量的检测,其中女性志愿者被检测出阳性的恰好1人.请利用样本估计总体的思想,完成这400名志愿者的22⨯列联表,并判断是否有超过95%的把握认为,注射该疫苗后,高铁血红蛋白血症与性别有关?附:()()()()()22n ad bcKa b c d a c b d-=++++.【试题来源】江西省九所重点中学(玉山一中、临川一中等)2021届高三3月联合考试【答案】(1)该疫苗在M含量指标上是“安全的”;(2)表格见解析,没有. 【分析】(1)求出区间(]1.0,1.2上的频率,以及平均数即可得结论;(2)根据题意写出列联表,计算2K的值,并与3.841比较即可得出结论. 【解析】(1)由频率分布直方图得M含量数据落在区间(]1.0,1.2上的频率为0.150.20.03⨯=,故出现血症的比例为3%5%<,由直方图得平均数为0.30.20.50.30.70.30.90.17 1.10.030.606x=⨯+⨯+⨯+⨯+⨯=即志愿者的M含量的平均数为0.606%0.65%<综上,该疫苗在M含量指标上是“安全的”.(2)依题意得,抽取的50名志愿者中女性志愿者应为25人由已知,25名女性志愿者被检测出阳性恰有1人,故女性中阳性的频率0.04 所以全部女性志愿者阳性共有2000.048⨯=人由(1)知400名志愿者中,阳性的频率为0.03,所以阳性的人数共有4000.0312⨯=人因此男性志愿者被检测出阳性的人数是1284-=人.所以完成表格如下:由22⨯列联表可()22400419281961.375 3.84120020012388K⨯⨯-⨯=≈<⨯⨯⨯,由参考表格,可得,故没有超过95%的把握认为注射疫苗后,高铁血红蛋白血症与性别有关.7.某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x(单位:年)与失效费y(单位:万元)的统计数据如下表所示:(1)由上表数据可知,可用线性回归模型拟合y与x的关系.请用相关系数加以说明;(精确到0.01)(2)求出y关于x的线性回归方程,并估算该种机械设备使用10年的失效费.13 / 31参考公式:相关系数()()niix x y y r --=∑.线性回归方程ˆˆˆybx a =+中斜率和截距最小二乘估计计算公式:()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-. 参考数据:()71()14.00i i i x x y y =--=∑,()7217.08i iy y =-=∑14.10≈.【试题来源】四川省成都市2021届高三第二次诊断性检测【答案】(1)答案见解析;(2)ˆ0.5 2.3yx =+,7.3万元. 【分析】(1)根据统计数据求x 、y 、()721i i x x =-∑,结合参考数据及相关系数公式,求相关系数r ,进而判断y 与x 的相关程度;(2)利用最小二乘法公式估计ˆb 、ˆa ,写出线性回归方程,进而将10x =代入估算求值.【解析】(1)由题意,知123456747x ++++++==,2.903.30 3.604.40 4.805.20 5.904.307y ++++++==,()()()()()()()()72222222211424344454647428i i x x =-=-+-+-+-+-+-+-=∑.所以结合参考数据知14.000.9914.10r ==≈≈.因为y 与x 的相关系数近似为0.99,所以y 与x 的线性相关程度相当大,从而可以用线性回归模型拟合y 与x 的关系.15 / 31(2)因为()()()7172114ˆ0.528iii ii x x y y bx x ==--===-∑∑, 所以ˆˆ 4.30.54 2.3ay bx =-=-⨯=. 所以y 关于x 的线性回归方程为ˆ0.5 2.3y x =+,将10x =代入线性回归方程,得ˆ0.510 2.37.3y=⨯+=. 所以估算该种机械设备使用10年的失效费为7.3万元.8.人类已经进入大数据时代.目前,数据量级已经从TB (1TB =1024GB )级别跃升到PB (1PB =1024TB ),EB (1EB =1024PB )乃至ZB (1ZB =1024EB )级别.国际数据公司(IDC )研究结果表明,2008年全球产生的数据量为0.49ZB ,2009年数据量为0.8ZB ,2010年增长到1.2ZB ,2011年数据量更是高达1.82ZB .下表是国际数据公司(IDC )研究的全球近6年每年产生的数据量(单位:ZB )及相关统计量的值:表中ln i i z y =,6116i i z z ==∑.(1)根据上表数据信息判断,方程21c xy c e =⋅(e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(2c 精确到0.01).(2)有人预计2021年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由.参考数据: 4.5695.58e ≈, 4.5897.51e ≈,回归方程y a bx =+中,斜率最小二乘法公式为()()()1122211n niii ii i nniij i x x y y x y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.【试题来源】2021年高三数学二轮复习讲练测(新高考版) 【答案】(1) 1.520.38x y e +=;(2)见解析.【分析】(1)设ln z y =,则12ln z c c x =+,再根据参考数据及公式即可得解 (2)先将8x =代入得预计2021年数据量,进而和2011年的50倍比较大小即可得解【解析】(1)由21c xy c e =⋅,两边同时取自然对数得()2112ln ln ln c xy c e c c x =⋅=+,设ln z y =,则12ln z c c x =+. 因为 3.5x =, 2.85z =,()62117.58i i x x=-=∑,()()616.7.i i i x x z z =--=∑,所以()()()12216.730.3817.58niii nij x x y z c x x ==--==≈-∑∑,12ln 2.850.38 3.5 1.52c z c x =-=-⨯=.17 / 31所以 1.520.38ln z x y =+=,所以 1.520.38x y e +=;(2)令8x =,得 1.520.388 4.56ˆ95.58 1.825091ye e +⨯==≈>⨯=. 预计2021年全世界产生的数据规模会超过2011年的50倍.【名师点睛】对于非线性回归方程的求解,一般要结合题意作变换,转化为线性回归方程来求解,同时也要注意相应数据的变化.9.随着手机游戏的发展,在给社会带来经济利益的同时,也使许多人深陷其中,从而产生一些负面的影响.A ,B 两所学校为了解学生每天玩游戏的时间,各自抽取了100名学生进行调查,得到的数据如表所示:A 学校B 学校(1)以样本估计总体,计算A 学校学生日游戏时间的平均数以及B 学校学生日游戏时间的中位数.(2)为了调查家长对孩子玩游戏的态度,学校相关领导随机抽取了200名男性家长和200名女性家长进行调查,并将所得结果统计如表所示,判断是否有99.9%的把握认为家长对孩子玩游戏的态度与家长性别有关?附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【试题来源】普通高等学校招生全国统一考试数学预测卷(一)【答案】(1)A学校学生日游戏时间的平均数为64.7()min;B学校学生日游戏时间的中位数为74()min;(2)没有.【分析】(1)根据频率分布表,利用平均数公式求解;由中位数的定义求解;(2)根据22⨯列联表中的数据,利用()()()()()22n ad bcKa b c d a c b d-=++++求得2K的值,再与临界值表对照下结论.【解析】(1)A学校学生日游戏时间的平均数为3.50.1450.14550.16650.2750.18850.13950.0964.7⨯+⨯+⨯+⨯+⨯+⨯+⨯=()min.B学校学生日游戏时间的中位数为5037102070107425----+⨯=()min.19 / 31(2)由已知可得22⨯列联表:则()2240013639161648.17210.828200200297103K ⨯⨯-⨯=≈<⨯⨯⨯, 所以没有99.9%的把握认为家长对孩子玩游戏的态度与家长性别有关. 10.为了解国内不同年龄段的民众旅游消费的基本情况.某旅游网站从其数据库中随机抽取了1000条客户信息进行分析,这些客户一年的旅游消费金额数据如下表所示;把一年的旅游消费金额满8千元称为“高消费”,否则称为“低消费”. (1)从这些客户中随机选一人,求该客户是高消费的中老年人的概率; (2)完成下面的22⨯列联表,并判断能否有99%的把握认为旅游消费的高低与年龄有关.附表及公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++【试题来源】学科网2021年高三1月大联考考后强化卷(新课标Ⅱ卷)【答案】(1)15;(2)填表见解析;有.【分析】(1)用频率估计概率,计算样本中高消费的中老年人的频率即为概率;(2)将数据填入列联表,用2K的计算公式计算2K的观测值k,与附表中的数据比较可得出结论.【解析】(1)样本中总客户数为1000,其中高消费的中老年人有200人,随机选一人,则该客户是高消费的中老年人的概率为2001 10005=.(2)2×2列联表如下:21 / 31可得2K的观测值21000(300200100400)7.937400600700300k ⨯⨯-⨯=≈⨯⨯⨯, 因为7.937 6.635>,所以有99%的把握认为旅游消费的高低与年龄有关. 11.2020山东省旅游发展大会暨首届中国国际文化旅游博览会在济南奥体中心东荷体育馆隆重开幕.大会以“文旅融合发展,乐享好客山东”为主题,来自38个国家和地区的友好宾朋,跨越空间阻隔,相约线上交流,共同推动山东文化和旅游业发展谱写新的篇章.某机构为了解人们对博览会的关注度是否与年龄有关,随机抽取了200位市民(其中40周岁及以下与40周岁以上各100人)进行问卷调查,并得到如下的22⨯列联表:(1)根据22⨯列联表,判断是否有90%的把握认为对博览会的关注度与年龄有关;(2)若从关注度极高的被调查者中按年龄分层抽样的方法抽取9人了解他们从事的职业情况,再从9人中任意选取2人谈谈关注博览会的原因,求这2人中两个年龄段的市民各一人的概率.附:22()()()()()n ad bc Ka b c d a c b d -=++++,其中n a b c d =+++.参考数据:【试题来源】普通高等学校招生全国统一考试数学预测卷(三)【答案】(1)有;(2)59.【分析】(1)根据22⨯列联表中的数据求得2K 值,再与临界值表对照下结论; (2)先利用分层抽样的方法抽取各层的人数,然后再求得9人中任意选取2人的基本事件数和这2人中两个年龄段的市民各一人的基本事件数,代入古典概型的概率公式求解.【解析】(1)由22⨯列联表可得22200(60524840) 2.899 2.70610010010892K ⨯⨯-⨯=≈>⨯⨯⨯,故有90%的把握认为对博览会的关注度与年龄有关.(2)根据题意,从关注度极高的被调查者中按年龄分层抽样的方法抽取9人, 则抽取40周岁及以下的有6095108⨯=人,40周岁以上的有954-=人. 从9人中任意选取2人的基本事件有29C 36=个,这2人中两个年龄段的市民各一人的基本事件有1154C C 20=个;则这2人中两个年龄段的市民各一人的概率205369P ==. 12.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:23 / 31(1)求相关系数r 的大小(精确到0.01),并判断管理时间y 与土地使用面积x 的线性相关程度;(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()niix x y y r --=∑,()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 临界值表:22.02.【试题来源】重组卷05-冲刺2021年高考数学之精选真题模拟重组卷(新课标卷)【答案】(1)0.84;管理时间y 与土地使用面积x 的线性相关程度为强相关;(2)有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.【分析】(1)根据参考公式和数据计算相关系数r 的值,并判断强弱关系;(2)根据列联表计算2K ,并和临界数表比较大小. 【解析】(1)1234535x ++++==,911142620165y ++++==, ()()()()()()()()113916231116331416niii x x y y =--=-⨯-+--+-⨯-∑()()()()43261653201637+--+--=,()()()()()()2222221132333435310ni i x x =-=-+-+-+-+-=∑, ()()()()()()22222219161116141626162016194ni i y y =-=-+-+-+-+-=∑44.04=≈,()()370.840.7544.04niix x y y r --==≈>∑, 所以管理时间y 与土地使用面积x 的线性相关程度为强相关.(2)由条件可知女性不愿意参与管理的人数为300140604060---=()223001406060402510.828200100180120K ⨯⨯-⨯==>⨯⨯⨯,所以有99.9%的把握认为村民的性别与参与管理的意愿具有相关性. 13.某公司对项目进A 行生产投资,所获得的利润有如下统计数据表:(1)请用线性回归模型拟合y 与x 的关系,并用相关系数加以说明; (2)该公司计划用7百万元对A 、B 两个项目进行投资.若公司对项目B 投资25 / 31()16x x ≤≤百万元所获得的利润y 近似满足:0.490.160.491y x x =-++,求A 、B 两个项目投资金额分别为多少时,获得的总利润最大? 附:①对于一组数据()11,x y 、()22,x y 、、(),n n x y ,其回归直线方程y bx a=+的斜率和截距的最小二乘法估计公式分别为1221ni ii nii x y nx yb xnx==-⋅=-∑∑,ˆa y bx=-. ②线性相关系数ni ix y nx yr -⋅=∑.一般地,相关系数r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱. 参考数据:对项目A 投资的统计数据表中111ni i i x y ==∑,212.24ni i y ==∑ 2.1≈.【试题来源】2021年高考数学金榜预测卷(山东、海南专用)【答案】(1)0.2y x =;答案见解析;(2)对A 、B 项目分别投资4.5百万元,2.5百万元时,获得总利润最大.【分析】(1)计算出x 、y 的值,将表格中的数据代入最小二乘法公式,求出b 、a 的值,可得出回归直线方程,并计算出相关系数r 的值,可得出结论;(2)求得()0.491.930.0411y x x ⎡⎤-++⎢+⎣=⎥⎦,利用基本不等式可求得y 的最大值,利用等号成立求得x 的值,即可得出结论.【解析】(1)对项目A 投资的统计数据进行计算,有3x =,0.6y =,52155i i x ==∑,所以515222151190.255535i ii i i x y x yb x x==-⋅-===-⨯-∑∑,0.60.230a y bx =--⨯==,所以回归直线方程为0.2y x =.线性相关系数55i ix y x yr -⋅==∑0.95340.95=≈>, 这说明投资金额x 与所获利润y 之间的线性相关关系较强, 用线性回归方程0.2y x =对该组数据进行拟合合理;(2)设对B 项目投资()16x x ≤≤百万元,则对A 项目投资()7x -百万元. 所获总利润()()0.490.490.490.27 1.930.60411110.x x y x x x ⎡⎤++-=⎥=--++⎢++⎣⎦1.93 1.65≤-=, 当且仅当()100.04194.x x =++,即 2.5x =时取等号, 所以对A 、B 项目分别投资4.5百万元,2.5百万元时,获得总利润最大. 14.有一种速度叫中国速度,有一种骄傲叫中国高铁.中国高铁经过十几年的发展,取得了举世瞩目的成就,使我国完成了从较落后向先进铁路国的跨越式转变.中国的高铁技术不但越来越成熟,而且还走向国外,帮助不少国家修建了高铁.高铁可以说是中国一张行走的名片.截至到2020年,中国高铁运营里程已经达到3.9万公里.下表是2013年至2020年中国高铁每年的运营里程统计表,它反映了中国高铁近几年的飞速发展:27 / 31根据以上数据,回答下面问题.(1)甲同学用曲线y =bx +a 来拟合,并算得相关系数r 1=0.97,乙同学用曲线y =ce dx 来拟合,并算得转化为线性回归方程所对应的相关系数r 2=0.99,试问哪一个更适合作为y 关于x 的回归方程类型,并说明理由;(2)根据(1)的判断结果及表中数据,求y 关于x 的回归方程(系数精确到0.01). 参考公式:用最小二乘法求线性回归方程的系数公式:121()()ˆˆ,()niii nii x x y y ba y bxx x ==--==--∑∑;参考数据:882112.48,()()15.50,()42.00,i i i i i y x x y y x x ===--=-=∑∑令8820.4411ln ,0.84,()() 6.50,() 1.01, 1.15.i i i i i w y w x x w w w w e ====--=-==∑∑【试题来源】安徽省示范高中皖北协作区2021届高三下学期第23届联考 【答案】(1)答案见解析;(2)0.151.15x y e =.【分析】(1)比较已知的相关系数大小关系即可得出正确答案;(2)由已知数据求出x ,结合回归方程变形为ln ln y c dx =+,求出d 和ln c ,从而可求出回归方程.【解析】(1)因为1201r r <<<,所以dx y ce =更适合作为y 关于x 的回归方程类型. (2)12345678364.588x =++++++===,由dx y ce =得ln ln y c dx =+,即ln c dx ω=+,则1821()()6.50.1542()Niii ii x x d x x ωω==--==≈-∑∑, 13ln 0.84 4.50.1484c dx ω=-=-⨯≈,所以0.140.150.140.150.151.15dx x x x y ce e e e e +====. 【名师点睛】本题考查了回归方程的求解,本题第二问的关键是对回归方程,结合对数的运算性质进行变形,结合最小二乘法求线性回归方程的系数公式进行求解.15.打乒乓球是一项众多中学生喜爱的体育运动,某中学体育协会为了解这项运动与性别的关联性,随机调查了100名男生和100名女生,每位学生回答喜欢或不喜欢,得到下面的列联表:(1)分别估计该中学男、女生喜欢打乒乓球的概率;(2)能否有99.5%的把握认为中学生喜欢打乒乓球与性别有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【试题来源】吉林省白山市2021届高三第三次联考(4月份)【答案】(1)男生喜欢打乒乓球的概率的估计值为0.55,女生喜欢打乒乓球的概率的估计值为0.35;(2)有99.5%的把握认为中学生喜欢打乒乓球与性别有关.【分析】(1)根据题意,利用公式求得男生和女生喜欢打乒乓球的频率,从而估计出其概率;(2)由题意,求得2K的值,对照临界值得出结论.【解析】(1)由调查数据可知,男生喜欢打乒乓球的频率为550.55 100=,女生喜欢打乒乓球的频率为350.35 100=,因此该中学男生喜欢打乒乓球的概率的估计值为0.55,女生喜欢打乒乓球的概率的估计值为0.35.(2)因为2 2200(55653545)8001001009011099 K⨯⨯-⨯==⨯⨯⨯且80080087.879 99100>=>,所以有99.5%的把握认为中学生喜欢打乒乓球与性别有关.16.某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.29 / 31表中1i i u x =,8118i i u u ==∑(1)根据散点图判断:y a bx =+与dy c x=+哪一个模型更适合作为该图书每册的成本费y 与印刷数量x 的回归方程?(只要求给出判断,不必说明理由) (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程(结果精确到0.01);(3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)附:对于一组数据1122(,),(,,,),()n n v v v ωωω⋯,其回归直线v αβω=+的斜率和截距的最小二乘估计分别为121()()()niii nii v v ωωβωω==--=-∑∑,v αβω=-.【试题来源】2021年高考数学考前信息必刷卷(江苏专用) 【答案】(1)d y c x =+更适合;(2)8.961.22y x=+;(3)至少印刷11120册才能使销售利润不低于80000元.【分析】(1)由散点图可知成反比例函数模型,故dy c x=+更适合; (2)令1u x=,根据表中的数据计算即可得y 关于u 的线性回归方程为1.228.96y u=+,进而得y 关于x 的回归方程为8.961.22y x=+; (3)根据题意只需解不等式8.969.22 1.2280x x x ⎛⎫-+≥ ⎪⎝⎭即可得答案.【解析】(1)由散点图判断,dy c x=+更适合作为该图书每册的成本费y (单位:元)与印刷数量x (单位:千册)的回归方程. (2)令1u x=,先建立y 关于u 的线性回归方程,由于81821()()7.0498.9578.960.787()i iiiiu u y ydu u==-⋅-==≈≈-∑∑,所以 3.638.9570.269 1.22c yd u=-⋅=-⨯≈,所以y关于u的线性回归方程为 1.228.96y u=+,所以y关于x的回归方程为8.961.22yx =+(3)假设印刷x千册,依题意得8.969.22 1.2280x xx⎛⎫-+≥⎪⎝⎭,解得11.12x≥,所以至少印刷11120册才能使销售利润不低于80000元.31 / 31。

回归直线方程与独立性检验-讲义(学生版)

回归直线方程与独立性检验-讲义(学生版)

回归直线方程与独立性检验一、课堂目标1、明确建立回归模型的基本步骤、熟练运用线性回归模型解决非线性相关问题.2、能够运用独立性检验对两个分类变量是否线性相关作出判断.二、直击高考知识模块知识内容全国卷常见题型回归分析一元线性回归模型2020年全国三卷18题解答题回归直线方程独立性检验分类变量2020年全国二卷18题解答题三、知识讲解1. 回归分析知识回顾方法提升考点一:回归直线方程的求解对于一组具有线性相关关系的数据:,,,,,我们知道其回归直线的斜率和截距的最小二乘法估计分别为:其中,,称为样本点的中心,位于回归直线上.【思想方法与技巧】利用线性相关回归分析处理非线性问题:研究两个变量的关系是,我们常常根据样本生成点坐标在平面直角坐标系中作出散点图,观察散点图中样本点的分布.从整体看,如果样本点并没有分布在某一条直线附近,这两个变量之间不具有线性相关关系,也就是非线性相关关系.考点二:相关系数的求解对于变量与随机抽到的对数据,,,,,可以利用相关系数来衡量两个变量之间线性相关关系,样本相关系数的计算公式为:.【思想方法与技巧】利用相关系数评判结果如下:(1)时,表示两个变量正相关;(2)时,表示两个变量负相关;(3)越接近于,表明两个变量的线性相关程度越强;(4)越接近于,表明两个变量的线性相关程度越弱.高考链接1.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的个地块,从这些地块中用简单随机抽样的方法抽取个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单(1)(2)(3)位:公顷)和这种野生动物的数量,并计算得,,,,.附:相关系数,.求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数).求样本的相关系数(精确到).根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.(1)(2)2.下图是某地区年至年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据年至年的数据(时间变量的值依次为)建立模型①:.根据年至年的数据(时间变量的值依次为)建立模型②:.年份投资额分别利用这两个模型,求该地区年的环境基础设施投资额的预测值.你认为用哪个模型得到的预测值更可靠?并说明理由.3.下图是我国年至年生活垃圾无害化处理量(单位:亿吨)的折线图(1)(2)年份代码年生活垃圾无害化处理量注:年份代码分别对应年亿吨参考数据:,,,.参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为:,.由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明.建立关于的回归方程(系数精确到),预测年我国生活垃圾无害化处理量.方法应用4.随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客提升销售额,每年双十一都会进行某种商品的促销活动,该商品促销活动规则如下:①“价由客定”,即所有参与该商品促销活动的人进行网络报价,每个人并不知晓其他人的报价也不知道参与该商品促销活动的总人数;②报价时间截止后,系统根据当年双十一该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;③每人限购一件,且参与人员分配到名额时必须购买,某位顾客拟参加年双十一该商品促销活动,他为了预测该商品最低成交价,根据该购物平台的公告统计了最近年双十一参与该商品促销活动的人数(见表):年份年份编号参与人数(百万人)12(2)由收集数据的散点图发现,可用线性回归模拟拟合参与人数(百万人)与年份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测年双十一参与该商品促销活动的人数.该购物平台调研部门对位拟参与年双十一该商品促销活动人员的报价价格进行了一个抽样调查,得到如下的一份频数表:报价区间(千元)频数求这位参与人员报价的平均值和样本方差(同一区间的报价可用该价格区间的中点值代替).假设所有参与该商品促销活动人员的报价可视为服从正态分布且与可分别由①中所求的样本平均值和样本方差估值,若预计年双十一该商品最终销售量为,请你合理预测(需说明理由)该商品的最低成交价.参考公式及数据()回归方程:,其中,.(),,.()若随机变量服从正态分布,则,,.5.我国全面二孩政策已于年月日起正式实施,国家统计局发布的数据显示,从年到年,中国的人口自然增长率变化始终不大,在上下波动(如图).中国内地总人口和自然增长率总人口自然增长率出生率(万人)为了了解年龄介于岁至岁之间的适孕夫妻对生育二孩的态度如何,统计部门按年龄分为组,每组选取对夫妻进行调查,统计有生育二孩意愿的夫妻数,得到下表:‰(1)(2)有意愿数(参考数据和公式:,,,,,)设每个年龄区间的中间值为 ,有意愿数为,求样本数据的线性回归直线方程,并求该模型的相关系数(结果保留两位小数).从,,,,这五个年龄段中各选出一对夫妻(能代表该年龄段超过半数夫妻的意愿)进一步调研,再从这对夫妻中任选对夫妻,设其中不愿意生育二孩的夫妻数为,求的分布列和数学期望.(1)(2)6.某小区为了调查居民的生活水平,随机从小区住户中抽取个家庭,得到数据如下:家庭编号月收入(千元)月支出(千元)参考公式:回归直线的方程是:,其中,,.据题中数据,求月支出(千元)关于月收入(千元)的线性回归方程(保留一位小数);从这个家庭中随机抽取个,记月支出超过千家庭个数为,求的分布列与数学期望.7.如表中的数据是一次阶段性考试某班的数学、物理原始成绩:学号数学物理学号数学(1)(2)(3)理用这人的两科成绩制作如下散点图:物理数学学号为号的同学由于严重感冒导致物理考试发挥失常,学号为号的同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将、两同学的成绩(对应于图中、两点)剔除后,用剩下的个同学的数据作分析,计算得到下列统计指标:数学学科平均分为,标准差为,物理学科的平均分为,标准差为,数学成绩与物理成绩的相关系数为,回归直线(如图所示)的方程为.若不剔除、两同学的数据,用全部的成绩作回归分析,设数学成绩与物理成绩的相关系数为,回归直线为,试分析与的大小关系,并在图中画出回归直线的大致位置.如果同学参加了这次物理考试,估计同学的物理分数(精确到个位).就这次考试而言,学号为号的同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平可按公式统一化成标准分再进行比较,其中为学科原始分,为学科平均分,为学科标准差).(1)(2)8.已知某校个学生的数学和物理成绩如下表:学生的编号数学物理若在本次考试中,规定数学在分以上(包括分)且物理在分以上(包括分)的学生为理科小能手.从这个学生中抽出个学生,设表示理科小能手的人数,求的分布列和数学期望.通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求与的回归方程.参考公式:,其中,.(1)(2)某调查机构为了了解某产品年产量(吨)对价格(千元/吨)和利润的影响,对近五年该产品的年产量和价格统计如下表:求关于的线性回归方程若每吨该产品的成本为千元,假设该产品可全部卖出,预测当年产量为多少时,年利润取到最大值?参考公式:,.(1)(2)10.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每棵种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差摄氏度发芽颗该农科所确定的研究方案是:先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.若选取的组数据恰好是连续天的数据(表示数据来自互不相邻的三天),求的分布列及期望.根据月日至日数据,求出发芽数关于温差的线性回归方程.由所求得线性回归方程得到的估计数据与剩下的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?附:参考公式:,.(1)11.在年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾均标有等级代码,为得到小龙虾等级代码数值与销售单价之间的关系,经统计得到如下数据:等级代码数值销售单价(元)已知销售单价与等级代码数值之间存在线性相关关系,求关于的线性回归方程(系数精(2)若莫斯科某个餐厅打算从上表的种等级的中国小龙虾中随机选种进行促销,记被选中的种等级代码数值在以下(不含)的数量为,求的分布列及数学期望.参考公式:对一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为:,.(1)(2)12.某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关):年份年份代号年利润(单位:亿元)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润.当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.参考公式:,.2. 独立性检验知识回顾方法提升考点:独立性检验求解步骤(1)准确作出列联表;(2)统计假设成立;(3)计算;(4)将上一步计算得到的观测值与临界值比较,从而接收或拒绝假设.【思想方法与技巧】1、在列联表中,越小,说明两个分类变量之间关系越弱;越大,说明两个分类变量之间关系越强.2、(1)制作列联表时要注意表中相关数据的位置及对应,避免出错;(2)作的列联表的独立性检验时,要求表中的个数据都要大于,因此,在选取样本容量时一定要注意.高考链接13.某学生兴趣小组随机调查了某市天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)(2)(3)锻炼人次空气质量等级(优)(良)(轻度污染)(中度污染)分别估计该市一天的空气质量等级为,,,的概率.求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表).若某天的空气质量等级为或,则称这天“空气质量好”;若某天的空气质量等级为或,则称这天“空气质量不好”.根据所给数据,完成下面的列联表;并根据列联表,判断是否有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次人次空气质量好空气质量不好附:.第一种生产方式第二种生产方式14.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图:(1)(2)(3)根据茎叶图判断哪种生产方式的效率更高?并说明理由.求名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式根据()中的列联表,能否有的把握认为两种生产方式的效率有差异?附:,(1)(2)(3)15.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取个网箱,测量各箱水产品的产量(单位:),其频率直方图如下:频率组距箱产量旧养殖法频率组距箱产量新养殖法附:.设两种养殖方法的箱产量相互独立,记表示事件:旧养殖法的箱产量低于, 新养殖法的箱产量不低于,估计的概率.填写下面列联表,并根据列联表判断是否有的把握认为箱产量与养殖方法有关.箱产量箱产量旧养殖法新养殖法根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到).方法应用(1)(2)(3)16.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区名患者的相关信息,得到如下表格:潜伏期(单位:天)人数求这名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表).该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过天为标准进行分层抽样,从上述名患者中抽取人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有的把握认为潜伏期与患者年龄有关.潜伏期天潜伏期天总计岁以上(含岁)岁以下总计附:,其中.以这名患者的潜伏期超过天的频率,代替该地区名患者潜伏期超过天发生的概率,每名患者的潜伏期是否超过天相互独立.为了深入研究,该研究团队随机调查了名患者,其中潜伏期超过天的人数最有可能(即概率最大)是多少?17.为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取件产品进行质量检测,所有产品质量指标值均在以内,规定质量指标值大于的产品为优质品,质量指标值在的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.(1)(2)(3)频率组距质量指标值质量指标值频数合计请分别估计新、旧设备所生产的产品的优质品率.优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有的把握认为“产品质量高与新设备有关”.非优质品优质品合计新设备产品旧设备产品合计附:,其中.用频率代替概率,从新设备所生产的产品中随机抽取件产品,其中优质品数为件,求的分布列及数学期望.18.冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便,石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜,从石墨分离石墨烯的一(1)(2)种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶,现在有材料,材料供选择,研究人员对附着在材料,材料上再结晶各做了次试验,得到如下等高条形图.材料试验结果材料试验结果石墨烯再结晶试验试验成功试验失败根据上面的等高条形图,填写如下列联表,判断是否有的把握认为试验成功与材料有关.材料材料合计成功不成功合计研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及胶层,②石墨烯层,③表面封装层,第一,二环节生产合格的概率均为,第三个环节生产合格的概率为,且各生产环节相互独立,已知生产吨的石墨烯发热膜的固定成本为万元,若生产不合格还需进行修复,第三个环节的修复费用为元,其余环节修复费用均为元.如何定价,才能实现每生产吨石墨烯发热膜获利可达万元以上的目标.附:参考公式:,其中.19.由团中央学校部、全国学联秘书处、中国青年报社共同举办的年度全国“最美中学生”寻访活动结果出炉啦,此项活动于年月启动,面向全国中学在校学生,通过投票方式寻访一批在热爱祖国、勤奋学习、热心助人、见义勇为等方面表现突出、自觉树立和践行社会主义核心价值观的“最美中学生”.现随机抽取了名学生的票数,绘成如图所示的茎叶图,若规定票数在票以上(包括票)定义为风华组.票数在票以下(不包括票)的学生定义为青春组.(1)(2)(3)在这名学生中,青春组学生中有男生人,风华组学生中有女生人,试问有没有的把握认为票数分在青春组或风华组与性别有关.如果用分层抽样的方法从青春组和风华组中抽取人,再从这人中随机抽取人,那么至少有人在青春组的概率是多少?用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取人,用表示所选人中青春组的人数,试写出的分布列,并求出的数学期望.附:;其中,独立性检验临界表:(1)(2)(3)20.为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有家企事业单位,家个体经营户,普查情况如下表所示:普查对象类型顺利不顺利合计企事业单位个体经营户合计写出选择个国家综合试点地区采用的抽样方法.根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.以频率作为概率,某普查小组从该小区随机选择家企事业单位,家个体经营户作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:.(1)(2)(3)21.黄冈市有很多名优土特产,黄冈市的蕲春县就有闻名于世的“蕲春四宝”(蕲竹、蕲艾、蕲蛇、蕲龟),很多人慕名而来旅游,通过随机询问名不同性别的游客在购买“蕲春四宝”时是否在来蕲春县之前就知道“蕲春四宝”,得到如下列联表:男女总计事先知道“蕲春四宝”事先不知道“蕲春四宝”总计附:.写出列联表中各字母代表的数字.由以上列联表判断,能否在犯错误的概率不超过的前提下认为购买“蕲春四宝”和是否“事先知道’蕲春四宝’有关系”?从被询问的名事先知道“蕲春四宝”的顾客中随机选取名顾客,求抽到的女顾客人数的分布列及其数学期望.(1)22.在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调查了某地区的个捐款居民每月平均的经济收入.在捐款超过元的居民中,每月平均的经济收入没有达到元的有个,达到元的有个;在捐款不超过元的居民中,每月平均的经济收入没有达到元的有个.参考数据当时,无充分证据判定变量,有关联,可以认为两变量无关联;当时,有的把握判定变量,有关联;当时,有的把握判定变量,有关联;当时,有的把握判定变量,有关联.附:,其中.在下图表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否超过元和居民每月平均的经济收入是否达到元有关?每月平均经济收入达到元每月平均经济收入没有达到元合计捐款超过元 捐款不超过元(2)合计将上述调查所得到的频率视为概率.现在从该地区大量居民中,采用随机抽样方法每次抽取个居民,共抽取次,记被抽取的个居民中经济收入达到元的人数为,求和期望的值.(1)(2)23.2016年月日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在岁之间的人进行调查,某机构随机抽取了在之间的人进行调查,经统计“青少年”与“中老年”的人数之比为.根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”.关注不关注合计青少年中老年合计现从抽取的青少年中采取分层抽样的办法选取人进行问卷调查,在这人中再选取人进行面对面询问,记选取的人中关注“国际教育信息化大会”的人数为,求的分布列及数学期望.附:参考公式:,其中.临界值表:(1)(2)24.为了研究家用轿车在高速公路上的车速情况,交通部门对名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在名男性驾驶员中,平均车速超过的有人,不超过的有人.在名女性驾驶员中,平均车速超过的有人,不超过的有人.完成下面的列联表,并判断是否有的把握认为平均车速超过的人与性别有关.平均车速超过人数平均车速不超过人数合计男性驾驶员人数 女性驾驶员人数合计以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取辆,记这辆车中驾驶员为男性且车速超过的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.参考公式与数据:,其中,对服务满意对服务不满意合计对商品满意 对商品不满意合计(1)(2)25.近年来,我国电子商务蓬勃发展.年“”期间,某网购平台的销售业绩高达亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对服务的满意率为,其中对商品和服务都满意的交易为次.根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对服务满意之间有关系”?若将频率视为概率,某人在该网购平台上进行的次购物中,设对商品和服务都满意的次数为随机变量,求的分布列和数学期望.附:(其中为样本容量)26.万众瞩目的第届全国冬季运动运会(简称“十四冬”)于年月日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:。

高考理科数学总复习(第1轮)广东专版课件第70讲 变量的相关性、回归分析和独立性检验

高考理科数学总复习(第1轮)广东专版课件第70讲 变量的相关性、回归分析和独立性检验
1.会作两个有关联变量数据的散点图,会利用散点 图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归 方程系数公式建立线性回归方程. 3.了解独立性检验的含义,会根据 2×2列联表分析 判断事件A与B是否具有相关性.
4.了解回归分析的基本思想、方法及其简单应用.
1.两个变量间的相关关系 如果两个变量之间确实存在关系,但又没有函数关系 所具有的确定性,它们的关系带有随机性,则称这两 个变量具有① ____________ . 有相关关系的两个变量,若一个变量的值由小到大时, 另一个变量的值也是由小到大,这种相关称为② ___ _______ ;反之,一个变量的值由小到大,另一个变量 的值由大到小,这种相关称为③ __________ .
x x y y x y nx y
i 1 i i
n
n
x x
i 1 i
ห้องสมุดไป่ตู้
n

2
i 1 n
i
i
x
i 1
2 i
nx
2
, a y bx.
3.最小二乘法 使残差平方和Q yi bxi a 为最小的方法,
2 i 1 n
2 n ad - bc 由 K2= 算得, a+bc+da+cb+d 2 110 × 40 × 30 - 20 × 20 K2= ≈7.8. 60×50×60×50
附表:
参照附表,得到的正确结论是(
)
A. 有 99%以上的把握认为“爱好该项运动与性别有关” B. 有 99%以上的把握认为“爱好该项运动与性别无关” C.在犯错误的概率不超过 0.1%的前提下,认为“爱好 该项运动与性别有关” D.在犯错误的概率不超过 0.1%的前提下,认为“爱好 该项运动与性别无关”

高考数学复习与策略专题8回归分析、独立性检验

高考数学复习与策略专题8回归分析、独立性检验

图 8-3
(1)应收集多少位女生的样本数据?
(2)根据这 300 个样本数据,得到学生每周平均体育运动时间的频率分布直
方图 (如图 8-3 所示 ),其中样本数据的分组区间为: [0,2],(2,4] ,(4,6] ,(6,8],(8,10],
(10,12],估计该校学生每周平均体育运动时间超过 4 小时的概率.
d=36,n=52,
2
K2=52×20×4×322×0-161×6×3612 =633670.
C 中, a= 8,b= 12,c=8,d=24,a+ b=20,c+d=32, a+ c=16,b+d
= 36,nБайду номын сангаас52,
K2=
52× 8× 24-12×8 20× 32×16× 36
2

13 10.
D 中, a= 14,b=6,c=2,d=30, a+ b= 20,c+d=32, a+ c=16,b+d
又因为样本数据中有 210 份是关于男生的, 90 份是关于女生的,所以每周
平均体育运动时间与性别列联表如下:
每周平均体育运动时间与性别列联表
5
7
t =4,∑ i=1 (ti- t )2=28,
7
∑i =1 yi- y 2= 0.55,
7
7
7
∑i=1 (ti- t )(yi- y )=∑i =1tiyi- t ∑i=1yi=40.17- 4× 9.32=2.89,2 分
2.89 ∴r ≈0.55× 2× 2.646≈0.99.
因为 y 与 t 的相关系数近似为 0.99,说明 y 与 t 的线性相关程度相当高,从
= 36,n=52,
2
K2=

高考理科数学复习向导课件 第十六章 统计 第3讲 回归分析与独立性检验

D.以上三种说法都不正确
误解分析:对临界值的理解. 正解:独立性检验的结论仅仅是一种数学关系,得出的结 论也可能犯错误.有 95%的把握认为吸烟与患肺病有关系,也 可以说这个结论出错的概率为 0.05 以下,这是数学中的统计思 维与确定性思维差异的反映.故选 C.
【互动探究】
3.为考察高中生性别与是否喜欢数学课程之间的关系,在 某城市的某校高中生中随机抽取 300 名学生,得到如下列联表:
x 1 2 3 5 10 20 30 50 100 200 y 10.15 5.52 4.08 2.85 2.11 1.62 1.41 1.30 1.21 1.15
检验每册书的成本费 y 与印刷册数倒数1x之间是否具有线性 相关关系?如有,求出 y 对 x 的回归方程.
解题思路:本题是非线性回归分析问题,不妨设变量 u= 1 , x
参考公式:K2=a+bcn+add-ab+cc2b+d,其中 n=a+b+c +d.
参考数据:
P(K2 ≥k0)
0.40
0.25
0.10 0.010
k0
0.708 1.323 2.706 6.635
解题思路:代入公式进行计算. 解析:(1) 完成 2×2 列联表如下:
喜爱运动
不喜爱运动
3.若由一个 2×2 列联表中的数据计算得 K2=4.013,那么
有( C )把握认为两个变量有关系.( )
A.85% C.95%
B.90% D.99%
4.下面是一个 2×2 列联表:
y1
y2
总计
x1
a
45
55
x2
20
30
50
总计
b
75
则表中 a、b 的值分别为_a_=__1_0_,__b_=__3_0__.

【高考数学总复习】:回归性分析与独立性检验(知识点讲解+真题演练+详细解答)

(2)相关关系:这是一种非确定性关系,①两个变量中一个为可控制变量,另一个为 随机变量,例如施肥量是可控制变量,而农作物的产量是随机变量。②两个变量均为随机变
量,例如某同学的数学成绩与化学成绩。
2.线性回归分析 (1) 散点图:将样本中的各对数据在直角坐标系中描点而得到的图形叫做散点图,它直观地 描述了两个变量之间是否有相关关系,是判断两个变量相关性的重要依据。 (2) 回归直线:散点图中点的整体分布在一条直线左右,则称这两个变量之间具有线性相关
(a b)(c d)(a c)(b d )
通过对统计量 K2 的研究,一般情况下认为:
①当 K 2 ≤3.841 时,认为变量 X 与 Y 是无关的。
②当 K 2 >3.841 时,有 95%的把握说变量 X 与 Y 有关;
④ 当 K 2 >6.635 时,有 99%的把握说变量 X 与 Y 有关;
定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验。
2.分类变量的理解: 分类变量是说明事物类别的一个名称,其取值是分类数据。如“性别”就是一个分类变 量,其变量值为“男”或“女”;“行业”也是一个分类变量,其变量值可以为“零售 业”,说明 X 与 Y 无关的把握越小
6. 右表是对与喜欢足球与否的统计列联表依据表中的数据,得到( )
A. K 2 9.564 B. K 2 3.564 C. K 2 2.706 D. K 2 3.841
7. 对两个分类变量 A、B 的下列说法中正确的个数为( ). ①A 与 B 无关,即 A 与 B 互不影响;②A 与 B 关系越密切,则 K2 的值就越大;③K2
x yw
46.6 563 6.8
8
(xi x )2
i 1

第11讲独立性检验与回归分析专题课件-2024届高三数学二轮复习

最小二乘法,求得的 ෠ , ො 叫做 b , a 的最小二乘估计,其中 ෠ =
σ
=1 (i −)(i − )
2
σ
=1 (i − )

σ
=1 i i −
2
σ
=1 i −

2
෠ .
, ො = -
(3) 经验回归直线必过点( , ).
2. 列联表与独立性检验
行了问卷调查,其中有200名游客进行了预订,这200名游客中各年龄段
所占百分比如图所示:
年龄在19~35岁的人群称为青年人群,已知在所有调查游客中随机抽取
3
1人,抽到不预订的青年游客的概率为 .
16
(1) 请将2×2列联表补充完整,并判断能否在犯错误的概率不超过
0.001的前提下,认为预订旅游与是否为青年有关;
利用χ2的取值推断分类变量 X 和 Y 是否独立的方法称为χ2独立性检验,
简称独立性检验.
(3) 独立性检验中概率的含义
独立性检验是对两个分类变量有关系的可信程度的判断,而不是对其是
否有关系的判断,χ2越大,认为两个分类变量有关系的把握越大.
热点1 独立性检验
[典例设计]
例1 (2023·锦州模拟)某景区的调查组对400名不同年龄段的游客进
12.4
23.9
13.2
15.5 16.5
25.1 28.2
32.3
18.0
18.8 19.2
19.8
20.2
36.5
(1) 求40只小白鼠体重的增加量的中位数 m ,再分别统计两组样本中
小于 m 与不小于 m 的数据的个数,完成下面的2×2列联表:
单位:只
与m比较

高考数学 常见题型解法归纳反馈训练 第65讲 回归分析和独立性检验

第65讲 回归分析和独立性检验【知识要点】(一)变量间的相关关系、回归分析的基本思想及初步运用 一、相关关系1、概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系.2、相关关系与函数关系的异同点. 相同点:两者均是指两个变量间的关系.不同点:函数关系是一种确定关系,是一种因果系.如正方形的面积s 和边长a 的关系2s a =就是一种函数关系.相关关系是一种非确定的关系,也不一定是因果关系.如产品的销售额与广告费的投入的关系. 二、散点图表示具有相关关系的两个变量的一组数据的图形叫做散点图.正相关:如果散点图中的点散布在从左小角到右上角的区域内,称为正相关. 负相关:如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.注:如果关于两个变量统计数据的散点图呈现发散状,则这两个变量之间不具有相关关系. 三、回归分析1、对具有相关关系的两个变量进行统计分析的方法叫回归分析.回归分析的一般步骤为画散点图→求回归直线方程→用回归直线方程进行预报.2、回归直线方程回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线.回归直线方程:设所求的直线方程为y bx a ∧=+,其中121()(),()niii nii x x y y b a y bx x x ==--==--∑∑,1111,,n ni i i i x x y y n n ====∑∑(,)x y 称为样本点的中心,回归直线过样本点的中心.回归方程的截距a 和斜率b 是用最小二乘法计算出来的. 3、相关系数两个变量之间线性相关关系的强弱用相关系数r 来衡量.相关系数:()()niix x y y r --=∑ 0r >,表示两个变量正相关;0r <,表示两个变量负相关;r 的绝对值越接近1,表明两个变量的线性相关性越强.r 的绝对值越接近0,表明两个变量之间几乎不存在线性相关关系.通常,r 的绝对值大于0.75时,表明两个变量的线性相关性很强. 4、建立回归模型的基本步骤:①确定研究对象,明确哪个是解释变量,哪个是预报变量;②画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(是否存在线性关系) ③由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y bx a =+) ④按照公式计算回归方程中的参数(如最小二乘法) ⑤得出结果后检查数据模型是否合适检查数据模型拟合效果的好坏,一般有两种方法.方法一:通过残差分析,如果残差点比较均匀地落在水平的带状区域中,则说明选用的模型比较合适,反之,不合适)方法二:用相关指数2R 来刻画回归的效果,其计算公式是:22121()1()nii nii y y R y y ∧==-=--∑∑其中i y y ∧-=真实值-预报值=残差,2R 值越大,说明残差的平方和越小,也就是说模型的拟合效果越好.(二)独立性检验的基本思想及其初步运用一、用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,是否患肺癌,国籍等二、独立性检验的方法1、列出两个分类变量的频数表(列联表),直观判断.2、画三维柱形图、二维条形图、等高条形图,直观判断.3、两个分类变量的独立性检验 一般步骤: (1)2*2列联表(2)提出假设:设p 与q 没有关系 (3)根据列联表中的数据2K 计算的值22()()()()()()n ad bc K n a b c d a b c d a c b d -==+++++++其中为样本容量(4)根据计算得到的随机变量2K 的观测值作出判断如:2 4.232K =因为4.232介于临界值3.841和5.024之间,2( 3.841)p K ≥=0.05,所以两个分类变量没有关系的概率是5%,即两个分类变量有关系的概率为95%. 三、温馨提示(1)独立性检验的必要性:为什么不能只凭列联表和图形下结论?原因是列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此需要用列联表检验这个方法来确认所得得结论在多大程度上适用于总体.(2)独立性检验的思想来自于统计上的假设性检验,它与反证法类似.假设检验和反证法都是先假设结论不成立,然后根据是否能够推出矛盾来确定结论是否成立.但是二者的矛盾的含义不同,反证法中的矛盾是指不符合逻辑的事情发生;而假设检验中的矛盾是指不符合逻辑的小概率事件发生,即在结论不成立的假设下推出有利于结论成立的小概率事件的发生.(3)2K 与k 的关系并不是2K k =,k 是2K 的观测值,或者说2K 是一个随机变量,它在dc b a ,,,取不同的值时,2K 可能不同,而k 是取定一组数d c b a ,,,后的一个确定值. 【方法讲评】【例1】【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.因为0.212≈,所以162211(16)16i i x x =-∑=20.212,所以162221160.21216i i x x ==⋅+∑ 22160.212169.971591.134=⋅+⋅≈剩下数据的样本方差为2222211611611611[()()][()152()]1515x x x x x x x x x x -++-=+++-++2222222211611315161622222111[()15215][(+x )15]151511[9.221510.02][1591.1349.221510.02]0.0081515i i x x x x x x x x x x ==+++-⋅=++++-=--⋅=--⋅≈∑0.09≈.【点评】(1)统计概率的解答题一般阅读量信息量比较大,并且数据比较多,对考生的心理素质要求较高,如果学生急躁冒进,对解题的影响就大了. 遇到这样的题目,建议先绕过拦路虎,杀个回马枪.先把其它题目完成再回过头来解答. 不要硬碰硬. (2)前几年的高考,数据直接代进去就可以了,运算量比较小,最近几年的高考,有的数据不能直接代进去,还要把目标数据变形后才能代进去. 故近几年的高考统计概率题的数据分析处理能力要求更高了.0.212≈,本题中要求剩下的15个数的平均数,但是已知告诉的却是16119.9716i i x x ===∑,所以要利用平均数的定义和16119.9716i i x x ===∑求出剩下的15个数的平均数. 本题要求剩下的15个数的方差,但是已知告诉的却是160.212≈,所以要利0.212≈求出剩下的15个数的方差. 这是本题的三个难点. 【反馈检测1】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:719.32ii y==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -【反馈检测2】经销商小王对其所经营的某一型号二手汽车的使用年数x (0<x ≤10)与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:(Ⅰ)试求y 关于x 的回归直线方程;(附:回归方程y b x a ∧∧∧=+中,1221,ni ii nii x y nx yb a y bx xnx ---==--∑∑(Ⅱ)已知每辆该型号汽车的收购价格为20.05 1.7517.2w x x =-+万元,根据(Ⅰ)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.【例2】全国人大常委会会议于 2015年12月27日通过了关于修改人口与计划生育法的决定, “全面二孩”从2016年元旦起开始实施,A 市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民30人、女性市民70人进行调查, 得到以下的22⨯列联表:(1)根椐以上数据,能否有0090的把握认为A 市市民“支持全面二孩”与“性别”有关?(2)现从持“支持”态度的市民中再按分层抽样的方法选出15名发放礼品,分别求所抽取的15人中男性市民和女性市民的人数;(3) 将上述调查所得到的频率视为概率,.现在从A 市所有市民中,采用随机抽样的方法抽取3位市民进行长期跟踪调查, 记被抽取的3位市民中持“支持”态度人数为X .①求X 的分布列;②求X 的数学期望()E X 和方差()D X . 参考公式:()()()()()22n ad bc K a b a d a c b d -=++++,其中n a b c d =+++ 参考数据:(3)(i )由22⨯列联表可知,抽到持“支持”态度的市民的频率为6031005=,将频率视为概率,即从A 市市民中任意抽取到一名持“支持”态度的市民的概率为35. 由于总体容量很大,故X 可视作服从二项分布,即3(3,)5X B :,所以3332()()()(0,1,2,3)55k k k P X k C k -===.从而X 的分布列为:(ii )39()355E X np ==⨯=;()(1)D X np p =-=321835525⨯⨯=. 【点评】第三小问中,由于总体容量很大,故X 可视作服从二项分布.【反馈检测3】【2017课标II ,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下: (1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:22()()()()()n ad bc K a b c d a c b d -=++++高中数学常见题型解法归纳及反馈检测第65讲:回归分析和独立性检验参考答案【反馈检测1答案】(Ⅰ)0.99r ≈,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系;(Ⅱ)1.82亿吨(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb , 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a所以,y 关于t 的回归方程为:t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.【反馈检测2答案】(I )ˆ 1.4518.7y x =-+;(II )预测当3x =时,销售利润z 取得最大值.【反馈检测2详细解析】(Ⅰ)由已知得6,10x y ==由552111242,220,i ii i x yx --==∑∑解得12211.45ni ii nii x y nx yb xnx---==--∑∑,18.7a y bx =-=所以回归直线的方程为14.518.7y x =-+(Ⅱ)221.4518.7(0.05 1.7517.2)0.050.3 1.5z x x x x x =-+--+=-++20.05(3) 1.95x =--+11 所以预测当3x =时,销售利润z 取得最大值.【反馈检测3答案】(1)0.4092;(2) 有99%的把握认为箱产量与养殖方法有关;(3)52.35kg.(2)根据箱产量的频率分布直方图得列联表()222006266343815.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为()0.0040.0200.04450.340.5++⨯=<,箱产量低于55kg 的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故新养殖法箱产量的中位数的估计值为0.5-0.3450+ 2.35kg 0.068()≈5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学分类理科版之回归分析与独立性检验及解析专题十一 概率与统计第三十三讲 回归分析与独立性检验 一、选择题1.(2017山东)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为A.160B.163C.166D.1702.(2015福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归本线方程ˆˆˆy bx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为A.11.4万元B.11.8万元C.12.0万元D.12.2万元3.(2014重庆)已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为A.0.4 2.3y x =+B.2 2.4y x =-C.29.5y x =-+D.0.3 4.4y x =-+ 4.(2014湖北)根据如下样本数据得到的回归方程为ˆy bx a=+,则A.0a >,0b <B.0a >,0b >C.0a <,0b <D.0a <,0b >5.(2012新课标)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为A.−1B.0C.12D.16.(2014江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是7.(2012湖南)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg 8.(2011山东)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆy bx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元二、解答题9.(2018全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5=-+y t ;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5=+yt . (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.10.(2016年全国ⅡI)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646.参考公式:相关系数()()niit t y y r --=∑回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -11.(2015新课标1)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =w =1881ii w=∑.(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,⋅⋅⋅,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()niii nii u u v v u u β==--=-∑∑,ˆˆv u αβ=-.12.(2014新课标2)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆa y bt =-13.(2012辽宁)电视传媒公司为了解某地区电视观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(I)根据已知条件完成下面22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性.若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.21212211222112)(++++-=n n n n n n n n n χ,附:回归分析与独立性检验答案部分1.C 【试题解析】因为22.5x =,160y =,所以160422.570a =-⨯=,42470166y =⨯+=,选C.2.B 【试题解析】∵10.0x =,8.0y =,ˆ0.76b =,∴ˆ80.76100.4a=-⨯=, ∴回归方程为ˆ0.760.4yx =+,把15x =代入上式得, ˆ0.76150.411.8y=?=(万元),选B. 3.A 【试题解析】由题意可知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.4.A 【试题解析】画出散点图知0,0b a <>.5.D 【试题解析】因为所有的点都在直线上,这组样本数据完全正相关,故其相关系数为1,故选D.6.D 【试题解析】因为222152(6221410)5281636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯, 222252(4201612)521121636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,222352(824128)52961636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,222452(143062)524081636322016363220χ⨯⨯-⨯⨯==⨯⨯⨯⨯⨯⨯,则有22224231χχχχ>>>,所以阅读量与性别关联的可能性最大.7.D 【试题解析】由回归方程为y =0.85x -85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-, 所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.8.B 【试题解析】样本中心点是(3.5,42),则ˆˆ429.4 3.59.1a y bx =-=-⨯=,所以回归方程是ˆ9.49.1yx =+,把6x =代入得ˆ65.5y =. 9.【试题解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆ30.413.519226.1y=-+⨯=(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆ9917.59256.5y=+⨯=(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t=-+上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ9917.5y t=+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.10.【试题解析】(Ⅰ)由折线图这数据和附注中参考数据得4 = t,28)(712=-∑=iitt,55.0)(712=-∑=iiyy,40.1749.32 2.89==-⨯=,99.0646.2255.089.2≈⨯⨯≈r.因为y与t的相关系数近似为0.99,说明y与t的线性相关相当高,从而可以用线性回归模型拟合y与t的关系.(Ⅱ)由331.1732.9≈=y及(Ⅰ)得71721()()2.89ˆ0.10328()i iiiit t y ybt t==--==≈-∑∑,92.04103.0331.1ˆˆ≈⨯-≈-=t b y a .所以,y 关于t 的回归方程为:t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.11.【试题解析】(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费x 的回归方程类型.(Ⅱ)令w 先建立y 关于w 的线性回归方程,由于81821()()108.8ˆ681.6()iii ii w w y y dw w ==--===-∑∑.ˆˆ56368 6.8100.6c y dw =-=-⨯=,所以y 关于w 的线性回归方程为ˆ100.668yw =+,因此y 关于x 的回归方程为ˆ100.6y=+(Ⅲ)(ⅰ)由(Ⅱ)知,当49x =时,年销售量y 的预报值ˆ100.6576.6y=+= 年利润z 的预报值ˆ576.60.24966.32z=⨯-=. (ⅱ)根据(Ⅱ)得结果知,年利润z 的预报值ˆ0.2(100.620.12zx x =+-=-+.所以当13.66.82==,即46.24x =时,ˆz取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.12.【试题解析】(I)由所给数据计算得17t =(1+2+3+4+5+6+7)=417y =(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.37211()t tt =-∑=9+4+1+0+1+4+9=287111()()t tt y y =--∑=(3)( 1.4)(2)(1)(1)(0.7)-⨯-+-⨯-+-⨯-00.110.520.93 1.614+⨯+⨯+⨯+⨯=71117211()()140.528()t t tt y y b tt ==--===-∑∑, 4.30.54 2.3a y bt =-=-⨯=.所求回归方程为0.5 2.3y t =+.13.【试题解析】(I)由频率颁布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:由2×2列联表中数据代入公式计算,得:222112212211212()100(30104515)100 3.0307525455533n n n n n x n n n n ++++-⨯-⨯==≈⨯⨯⨯因为3.030<3.841,所以,没有理由认为“体育迷”与性别有关.(Ⅱ)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件空间12132311{(,),(,),(,),(,)a a a a a a a b Ω=12212231,(,),(,),(,),(,),a b a b a b a b3212(,),(,)}a b b b 其中i a 表示男性,1,2,3i =.j b 表示女性,1,2j =.Ω由10个基本事件组成,而且这些事件的出现时等可能的.用A 表示“任选2人中至少有1名是女性”这一事件,则11122122313212{(,),(,),(,),(,),(,),(,),(,)}A a b a b a b a b a b a b b b =∴7()10P A =第11页,共11页。

相关文档
最新文档