回归方程和独立性检验知识点

回归方程和独立性检验知识点
回归方程和独立性检验知识点

回归方程和独立性检验

知识点

Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

回归分析和独立性检验

一、回归分析

1、回归直线方程 a x b y

???+= (x 叫做解释变量,y 叫做预报变量) 其中∑∑==---=n

i i

n

i i i

x x

y y x x

b

1

2

1

)()

)((?=

∑∑==--n

i i

n

i i

i

x n x

y

x n y

x 1

2

21

(由最小二乘法得出,考试时给出此公式中的一

个)

x b y a

??-= ( 此式说明:回归直线过样本的中心点)(y x , ,也就是平均值点。 ) 2、几条结论:

(1)回归直线过样本的中心点)(y x ,。

(2)b>0时,y 与x 正相关,散点图呈上升趋势;b<0时,y 与x 负相关,散点图呈下降趋势。

(3)斜率b 的含义(举例):

如果回归方程为y=+2, 说明x 增加1个单位时,y 平均增加个单位; 如果回归方程为y=-+2,说明x 增加1个单位时,y 平均减少个单位。 (4)相关系数r 表示变量的相关程度。 范围:1≤r ,即 11≤≤-r

r 越大.,相关性越强.

。0>r 时,y 与x 正相关;0

∈R 2R 越大.,拟合效果越好.

,(这时:残差平方和越小,残差点在带状区域内的分布比较均匀,

带状区域宽度越窄,拟合精度越高)。

2R 表示解释变量x 对于预报变量y 变化的贡献率。

例如:64.02≈R ,表明“x 解释了64%的y 变化”,或者说“y 的差异有64%是由x 引起的”。

(6)线性回归模型 e a bx y ++=, 其中e 叫做随机误差。(y 是由x 和e 共同确定的。)

二、独立性检验

1、原理:假设性检验(类似反证法原理)。

一般情况下:假设分类变量X 和Y 之间没有关系,通过计算2K 值,然后查表对照相应的概率P ,

发现这种假设正确的概率P 很小,从而

推翻假设,最后得出X 和Y 之间有关系的可能性为(1-

P),

也就是“X 和Y 有关系”。(表中的k 就是2K 的观测值,即2K k =) 2、2?2列联表: (考试给出)

部分对照表(考试时会给出用到的一部分数

据):

3、范围:),0(2+∞∈K ; 性质:2

K 越大.,说明变量间越有关系...

。 三、典型例题

例1、右表中是生产某种产品x (吨)与相应消耗的煤y (吨)记录数

据:

(1)画出数据的散点图;

)

)()()(()

(2

2d b c a d c b a bc ad n K ++++-=

(3)当7=x 时,25.535.077.0=+?=y 所以,估计..

生产7吨产品时,消耗的煤约为吨。 例2、为了考察某药物预防疾病的效果,现对105

人进行试验调查,得到2?2列联表。试判断:服用药物和患病之间是否有关系

解:105=n ,10=a ,45=b ,20=c ,30=d

75

305055)20453010(1052

2

????-??=K

≈> (提示:运算时尽量先约分化简,再计算)

所以,有1-=%的把握认为服用药物和患病之间有关系。

(推荐)高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

如果它们的斜率互为负倒数,那么它们互相垂直,即

直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211 y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0) 2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 3420 2220x y x y +-=??++=? 得 x=-2,y=2

高中数学直线与圆的方程知识点总结

高中数学直线与圆的方 程知识点总结 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:

①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可 3、距离公式: ①两点间距离:2 2122121)()(y y x x P P -+-= ②点到直线距离:2 2 00B A C By Ax d +++= ③平行直线间距离:2 2 21B A C C d +-= 4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2 ,2( 2 121y y x x ++ ②AB 三分点),(),,(2211t s t s :)3 2,32(2 1 21y y x x ++ 靠近A 的三分点坐标 )3 2,32(2 121 y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。 三分点坐标公式,用得较少,多见于大题难题。 5.直线的对称性问题

高中数学 第2讲变量的相关性、回归分析及独立性检验

第2讲 变量的相关性、回归分析及独立性检验 一、知识回顾 1.如何判断两个变量的线性相关: 如果在散点图中,2个变量数据点分布在一条直线附近,则这2个变量之间具有线性相关关系。 2.所求直线方程 ?y =bx +a 叫做回归直线方程;其中 ?∑∑∑∑n n i i i i i=1 i=1 n n 2 2 2 i i i=1 i=1 (x -x)(y -y) x -nx y b = = ,a =y -bx (x -x)x -nx y 回归直线方程必过中心点(,)x y 3 .相关系数的∑n i i (x -x)(y -y) r = 性质 ? (1)|r|≤1.(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小. 4. ??=-i i y y i 残差e =实际值-预测值2 ^^ 2 1 1 () ===-∑∑n n i i i i i e y y 总残差平方和: 残差平方和越小,即模型拟合效果越好 5. 两个分类变量的独立性检验: (1)假设结论不成立,即“两个分类变量没有关系”. (2)在此假设下计算随机变量 2 2 n(ad -bc) K =(a +b)(c +d)(a +c)(b +d) (3) 根据随机变量K 2 查表得“两个分类变量没有关系”的概率,用1减去此概率即得有联系的概率 典型例题: 例1.(宁夏海南卷)对变量x, y 有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(,)(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )。 (A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 1x 1y 1u 1 v

高二立体几何与直线方程的知识点总结

立体几何初步1、柱、锥、台、球的结构特征 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高, ' h为斜高,l为母线) ()l r r S+ =π2 圆柱表 ()l r r S+ =π 圆锥表 ()2 2R Rl rl r S+ + + =π 圆台表 (3)柱体、锥体、台体的体积公式 V Sh = 柱, 2 V Sh r h π == 圆柱, 1 3 V Sh = 锥, h r V2 3 1 π = 圆锥 ' 1 () 3 V S S h =++ 台 '22 11 ()() 33 V S S h r rR R h π =++=++ 圆台 (4)球体的表面积和体积公式: 3 4 = 3 V R π 球; 2 4 S R π = 球面

二、点、直线、平面之间的关系 (一)、立体几何网络图: 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(12)、垂直于同一平面的两直线平行。 2、线线垂直的判断: (7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 (8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。 (10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。 判定定理: 性质定理: ★判断或证明线面平行的方法 ⑴利用定义(反证法):lα=? I,则l∥α (用于判断); ⑵利用判定定理:线线平行线面平行(用于证明); ⑶利用平面的平行:面面平行线面平行(用于证明); ⑷利用垂直于同一条直线的直线和平面平行(用于判断)。 2线面斜交和线面角:l∩α = A 2.1 直线与平面所成的角(简称线面角):若直线与平面斜交, 则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 注意:当直线在平面内或者直线平行于平面时,θ=0°; 当直线垂直于平面时,θ=90° 4、线面垂直的判断: ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 图2-3 线面角

线性回归方程分析讲课教案

线性回归方程分析

环球雅思学科教师辅导讲义讲义编号:组长签字:签字日期:

又y 对x 的线性回归方程表示的直线恒过点(x -,y - ), 所以将(176,176)代入A 、B 、C 、D 中检验知选C. 答案 C 3.(2011·陕西)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个 样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是 ( ). A .x 和y 的相关系数为直线l 的斜率 B .x 和y 的相关系数在0到1之间 C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 D .直线l 过点(x -,y -) 解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的 绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据回 归直线方程一定经过样本中心点可知D 正确,所以选D. 答案 D 4.(2011·广东)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系: 时间x 1 2 3 4 5 命中率y 0.4 0.5 0.6 0.6 0.4 小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________. 解析 小李这5天的平均投篮命中率 y -=0.4+0.5+0.6+0.6+0.4 5 =0.5, 可求得小李这5天的平均打篮球时间x -=3.根据表中数据可求得b ^=0.01,a ^ = 0.47,故回归直线方程为y ^ =0.47+0.01x ,将x =6代入得6号打6小时篮球的 投篮命中率约为0.53. 答案 0.5 0.53 5.(2011·辽宁)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与

高一数学必修2直线与方程知识点总结

高一数学必修 2 直线与方程知识点总结 (一)高一数学必修2 直线与方程知识点总结一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时, 我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0180 (2)直线的斜率 ①定义:倾斜角不是90 的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即。斜 率反映直线与轴的倾斜程度。 当时,; 当时,; 当时,不存在。②过两点的直线的斜率公式:注意下面四点:(1) 当时,公式右边无意义,直线的斜率不存在,倾斜角为90 (2)k 与P1、P2 的顺序无关;(3) 以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:直线斜率k,且过点注意:当直线的斜率为0 时,k=0 ,直线的方程是y=y1 。 当直线的斜率为90 时,直线的斜率不存在,它的方程不能用点斜式表示. 但因l 上每一点的横坐标都

等于x1 ,所以它的方程是x=x1 。 ②斜截式:,直线斜率为k,直线在y 轴上的截距为b ③两点式:()直线两点,④截矩式: 其中直线与轴交于点, 与轴交于点, 即与轴、轴的截距分别为。 ⑤ 一般式:(A ,B 不全为0) 注意:各式的适用范围特殊的方程如: 平行于x 轴的直线:(b 为常数); 平行于y 轴的直线:(a 为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系 平行于已知直线(是不全为0 的常数)的直线系:(C 为常数) (二)垂直直线系 垂直于已知直线(是不全为0 的常数)的直线系:(C 为常数) (三)过定点的直线系 (ⅰ )斜率为k 的直线系:,直线过定点; (ⅱ )过两条直线,的交点的直线系方程为 (为参数),其中直线不在直线系中。 (6)两直线平行与垂直

高考试题回归分析,独立性检验

回归分析与独立性检验 1.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看, ①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 2.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化碳排放量的效果最显着 B .2007年我国治理二氧化碳排放显现成效 C .2006年以来我国二氧化碳年排放量呈减少趋势 D .2006年以来我国二氧化碳年排放量与年份正相关 3.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程???y bx a =+ ,其中???0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )] A .万元 B .万元 C .万元 D .万元 4.在画两个变量的散点图时,下面哪个叙述是正确的 ( ) A .预报变量在x 轴上,解释变量在y 轴上 B .解释变量在x 轴上,预报变量在 y 轴上 C .可以选择两个变量中任意一个变量在x 轴上 D .可以选择两个变量中任意一个变量在y 轴上 5 2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年

不得病 61 213 274 合计 93 314 407 ( ) A .种子经过处理跟是否生病有关 B .种子经过处理跟是否生病无关 C .种子是否经过处理决定是否生病 D .以上都是错误的 6.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问 题中,y 的预报最大取值是10,则x 的最大取值不能超过 ( ) A .16 B .17 C .15 D .12 7.在研究身高和体重的关系时,求得相关指数≈2 R ___________,可以叙述为“身高解释了64%的体重变化,而随 机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。 8.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 (I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到),预测2016年我国生活垃圾无害化处理量。 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑, 7 2 1 ()0.55i i y y =-=∑,7≈. 参考公式:相关系数1 2 2 1 1 ()() ()(y y)n i i i n n i i i i t t y y r t t ===--= --∑∑∑, 回归方程 y a bt =+) )) 中斜率和截距的最小二乘估计公式分别为: 9.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 10.为了研究某班学生的脚长x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取10名学生,根据 测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为???y bx a =+.已知10 1 225i i x ==∑,10 1 1600i i y ==∑,?4b =.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 11.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:

直线与方程例题解析

第三章:直线与方程的知识点 一、基础知识 倾斜角与斜率 1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<或),0[πα∈ 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点 1122(,),(,)P x y P x y ,则有斜率公式2 1 21y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α?<,随着α的增大,斜率k 也增大;当90180α?<

回归分析及独立性检验的基本知识点及习题集锦

回归分析的基本知识点及习题 本周题目:回归分析的基本思想及其初步应用 本周重点: (1)通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤;了解线性回归模型与函数模型的区别; (2)尝试做散点图,求回归直线方程; (3)能用所学的知识对实际问题进行回归分析,体会回归分析的实际价值与基本思想;了解判断刻画回归模型拟合好坏的方法――相关指数和残差分析。 本周难点: (1)求回归直线方程,会用所学的知识对实际问题进行回归分析. (2)掌握回归分析的实际价值与基本思想. (3)能运用自己所学的知识对具体案例进行检验与说明. (4)残差变量的解释; (5)偏差平方和分解的思想; 本周内容: 一、基础知识梳理 1.回归直线: 如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。 求回归直线方程的一般步骤: ①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→ ③写出回归直线方程,并利用回归直线方程进行预测说明. 2.回归分析: 对具有相关关系的两个变量进行统计分析的一种常用方法。 建立回归模型的基本步骤是: ①确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; ②画好确定好的解释变量和预报变量的散点图,观察它们之间的关系(线性关系). ③由经验确定回归方程的类型. ④按一定规则估计回归方程中的参数(最小二乘法); ⑤得出结论后在分析残差图是否异常,若存在异常,则检验数据是否有误,后模型是否合适等. 3.利用统计方法解决实际问题的基本步骤: (1)提出问题; (2)收集数据; (3)分析整理数据; (4)进行预测或决策。 4.残差变量的主要来源: (1)用线性回归模型近似真实模型(真实模型是客观存在的,通常我们并不知道真实模型到底是什么)所引起的误差。 可能存在非线性的函数能够更好地描述与之间的关系,但是现在却用线性函数来表述这种关系,结果就会产生误差。这 种由于模型近似所引起的误差包含在中。 (2)忽略了某些因素的影响。影响变量的因素不只变量一个,可能还包含其他许多因素(例如在描述身高和体重 关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),但通常它们每一个因素的影响可能都是比较小的,它们的影响都体现在中。 (3)观测误差。由于测量工具等原因,得到的的观测值一般是有误差的(比如一个人的体重是确定的数,不同的秤可 能会得到不同的观测值,它们与真实值之间存在误差),这样的误差也包含在中。 上面三项误差越小,说明我们的回归模型的拟合效果越好。

直线的方程知识点及题型归纳总结

直线的方程知识点及题型归纳总结 知识点精讲 一、基本概念 斜率与倾斜角 我们把直线y kx b =+中k 的系数k (k R ∈)叫做这条直线的斜率,垂直于x 轴的直线,其斜率不存在。 x 轴正方向与直线向上的方向所成的角叫这条直线的倾斜角。倾斜角[)0,απ∈,规定与x 轴平行或重合 的直线的倾斜角为0,倾斜角不是 2 π 的直线的倾斜角的正切值叫该直线的斜率,常用k 表示,即tan k α=。 当0k =时,直线平行于轴或与轴重合; 当0k >时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0k <时,直线的倾斜角为钝角,倾斜角k 随的增大而减小; 二、基本公式 1. 111222(,),(,)P x y P x y 两点间的距离公式 12||PP =2. 111222(,),(,)P x y P x y 的直线斜率公式 121212tan (,)2 y y k x x x x π αα-= =≠≠- 3.直线方程的几种形式 (1)点斜式:直线的斜率k 存在且过00(,)x y ,00()y y k x x -=- 注:①当0k =时,0y y =;②当k 不存在时,0x x = (2)斜截式:直线的斜率k 存在且过(0,)b ,y kx b =+ (3)两点式: 11 2121 y y x x y y x x --=--,不能表示垂直于坐标轴的直线。 注:211121()()()()x x y y x x y y --=--可表示经过两点1122(,),(,)P x y Q x y 的所有直线 (4)截距式: 1x y a b +=不能表示垂直于坐标轴及过原点的直线。 (5)一般式:2 2 0(0)Ax By C A B ++=+≠,能表示平面上任何一条直线(其中,向量(,)n A B =r 是这 条直线的一个法向量)

线性回归方程高考题讲解

线性回归方程高考题讲解

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若有数据知y对x呈线性相关关系.求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号x y xy x2 1 2 2.2 2 3 3.8 3 4 5.5 4 5 6.5 5 6 7.0 ∑ (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:

4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 7 8 9 66 69 73 81 89 90 91 已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据: 2 4 5 6 8 30 40 60 50 70 (1)画出散点图: (2)求回归直线方程;

回归方程和独立性检验知识点

回归方程和独立性检验 知识点 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

回归分析和独立性检验 一、回归分析 1、回归直线方程 a x b y ???+= (x 叫做解释变量,y 叫做预报变量) 其中∑∑==---=n i i n i i i x x y y x x b 1 2 1 )() )((?= ∑∑==--n i i n i i i x n x y x n y x 1 2 21 (由最小二乘法得出,考试时给出此公式中的一 个) x b y a ??-= ( 此式说明:回归直线过样本的中心点)(y x , ,也就是平均值点。 ) 2、几条结论: (1)回归直线过样本的中心点)(y x ,。 (2)b>0时,y 与x 正相关,散点图呈上升趋势;b<0时,y 与x 负相关,散点图呈下降趋势。 (3)斜率b 的含义(举例): 如果回归方程为y=+2, 说明x 增加1个单位时,y 平均增加个单位; 如果回归方程为y=-+2,说明x 增加1个单位时,y 平均减少个单位。 (4)相关系数r 表示变量的相关程度。 范围:1≤r ,即 11≤≤-r r 越大.,相关性越强. 。0>r 时,y 与x 正相关;0

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

直线与方程知识点总结(学生版)

I直线方程知识点总结 一、基础知识梳理 知识点 1:直线的倾斜角与斜率 ( 1)倾斜角:一条直线向上的方向与X 轴的所成的最小正角,叫做直线的倾斜角,范围为 ( 2)斜率:当直线的倾斜角不是900时,则称倾斜角的为该直线的斜率,即k=tan 注记:所有直线都有倾斜角,但不是所有直线都有斜率.(当=90 0时,k 不存在)(3)过两点 p1(x1,y1),p2(x2,y2)(x1≠ x2)的直线的斜率公式: k=tan y 2 y 1(当x 1=x2时,k不存在,此时直线的倾斜角为900) . x2x1 知识点 2:直线的方程名称方程 斜截式y=kx+b 点斜式y-y0=k( x-x0) 两点式y y 1 =y y1 y2y1y2y1 截距式x y +=1 a b 一般式Ax+By+C=0已知条件局限性 k——斜率 b——纵截距 (x0, y0)——直线上 已知点, k——斜率 (x1,y1) ,(x2,y2)是直线上 两个已知点 a——直线的横截距 b——直线的纵截距 A C C ,,分别为 B A B A、 B 不能同时为零斜率、横截距和纵截距 直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。 二、规律方法提炼 1、斜率的求法一般有两种方式 ( 1)已知倾斜角,利用k tan ;(2)已知直线上两点,利用 k y2y 1 ( x1 x 2 ) x2x1 2、求直线的一般方法 (1)直接法:根据已知条件选择适当的直线方程,选择时应注意方程表示直线的局限性; (2)待定系数法:先设直线方程,根据已知条件求出待定系数,最后先出直线方程; 3、与直线方程有关的最值问题的求解策略: ○1 首先,应根据问题的条件和结论,选取适当的直线方程形式,同时引进参数; ○2 然后,可以通过建立目标函数,利用函数知识求最值;或通过数形结合思想求最值. II两直线的位置关系

高中选修1-2回归分析和独立性检验知识总结与联系

11 22211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====? ---??==??--??=-??∑∑∑∑选修1-2第一部分 变量间的相关关系与统计案例 【基础知识】 一、回归分析 1.两个变量的线性相关:判断是否线性相关 ①用散点图 (1)正相关:在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关. (2)负相关:在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (3)线性相关关系、回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. ②用相关系数r (3)除用散点图外,还可用样本相关系数r 来衡量两个变量x ,y 相关关系的强弱, n i i x y nx y r -?= ∑当r >0,表明两个变量正相关,当r <0,表明两个变量负相关,r 的绝对值越接近于1,表明两个变量的线性相关性越强;r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |0.75>时,认为这两个变量具有很强的线性相关关系. 2.回归方程: 两个变量具有线性相关关系,数据收集如下: 可用最小二乘法得到回归方程?y bx a =+,其中 3.回归分析的基本思想及其初步应用 (1)回归分析是对具有相关关系的两个变量进行统计分析的方法,其常用的 研究方法步骤是画出散点图,求出回归直线方程,并利用回归直线方程进行预报. (2)对n 个样本数据(x 1,y 1)、(x 2,y 2)、…、(xn ,yn ),(,)x y 称为样本点的中心.样本点中心一定落在回归直线上。 4、回归效果的刻画: 用相关指数2R 来刻画回归的效果,公式是μ 2 21 2 1 ()1() n i i i n i i y y R y y ==-=- -∑∑ 2R 的值越大,说明残差平方和越小,也就是说模型拟合效果好

最新直线与方程和圆与方程-知识点总结

第三章 直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α?≤

高二数学知识点总结大大全(必修)

高二数学会考知识点总结大全(必修) 第1章空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积 1棱柱、棱锥的表面积:各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl Sπ π+ = 4 圆台的表面积2 2R Rl r rl Sπ π π π+ + + = 5 球的表面积2 4R Sπ = (二)空间几何体的体积 1柱体的体积h S V? = 底 2锥体的体积h S V? = 底 3 1 3台体的体积h S S S S V? + + =) 3 1 下 下 上 上 ( 4球体的体积3 3 4 R Vπ = 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 2 2 2r rl Sπ π+ =

1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质 D C B A α L A · α C B · A · α α 共面 =>a ∥c

相关文档
最新文档