2019届高三物理精准培优专练十六:带电粒子在电场中的运动(解析版)
(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理带电粒子在电场中的运动技巧全解及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点3,0P L⎛⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.【答案】(1)23BLqm(2221BLq32203BE EvB+⎛⎫⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111vqv B mr=由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
2019年高考物理双基突破:专题04-带电粒子在电场中的运动(精练)(附答案解析)

1.如图所示,电子由静止开始从A 板向B 板运动,到达B 板的速度为v ,保持两极间电压不变,则A .当减小两板间的距离时,速度v 增大B .当减小两极间的距离时,速度v 减小C .当减小两极间的距离时,速度v 不变D .当减小两极间的距离时,电子在两极间运动的时间变长 【答案】C2.(多选)如图所示,在真空中A 、B 两块平行金属板竖直放置并接入电路。
调节滑动变阻器,使A 、B 两板间的电压为U 时,一质量为m 、电荷量为-q 的带电粒子,以初速度v 0从A 板上的中心小孔沿垂直两板的方向射入电场中,恰从A 、B 两板的中点处沿原路返回,不计重力,则下列说法正确的是A .使初速度变为2v 0时,带电粒子恰能到达B 板B .使初速度变为2v 0时,带电粒子将从B 板中心小孔射出C .使初速度v 0和电压U 都增加为原来的2倍时,带电粒子恰能到达B 板D .使初速度v 0和电压U 都增加为原来的2倍时,带电粒子将从B 板中心小孔射出 【答案】BC速度变为2v 0;或使A 、B 两板间的电压变为12U ;或使初速度v 0和电压U 都增加到原来的2倍,故B 、C 正确,A 、D 错误。
6.(多选)如图甲,两水平金属板间距为d ,板间电场强度的变化规律如图乙所示。
t =0时刻,质量为m 的带电微粒以初速度v 0沿中线射入两板间,0~T3时间内微粒匀速运动,T 时刻微粒恰好经金属板边缘飞出。
微粒运动过程中未与金属板接触。
重力加速度的大小为g 。
关于微粒在0~T 时间内运动的描述,正确的是A .末速度大小为2v 0B .末速度沿水平方向C .重力势能减少了12mgdD .克服电场力做功为mgd 【答案】BC7.如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料。
ABCD 面带正电,EFGH 面带负电。
从小孔P 沿水平方向以相同速度射入三个质量相同的带正电液滴A 、B 、C ,最后分别落在1、2、3三点。
高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cos xv v α=1cos 2α=060α∴=2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯3.如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。
高考物理带电粒子在电场中运动专题训练答案及解析

高考物理带电粒子在电场中的运动专题训练答案及分析一、高考物理精讲专题带电粒子在电场中的运动1.如下图,在两块长为 3 L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v0水平向右射入板间,粒子恰巧打到下板的中点.若撤去平行板间的磁场,使上板的电势随时间 t 的变化规律如下图,则t=0 时辰,从O 点射人的粒子P 经时间 t0 (未知量 )恰巧从下板右边沿射出.设粒子打到板上均被板汲取,粒子的重力及粒子间的作使劲均不计.(1)求两板间磁场的磁感觉强度大小B.(2)若两板右边存在必定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0 时辰射入的粒子 P 经过右边磁场偏转后在电场变化的第一个周期内能够回到O 点,求右边磁场的宽度d 应知足的条件和电场周期T 的最小值T min.【答案】(1)B mv0R2 cos a R23L(6 3 2 ) L( 2)d2; T minqL3v0【分析】【剖析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则 qv0 B m v 02R1由几何关系:R12( 3L )2( R1L )222解得Bmv0 qL(2)粒子 P 从 O 点运动到下板右边沿的过程,有:3L v0t01 L 1v y t022解得v y 3 v0 3设合速度为 v,与竖直方向的夹角为α,则:tan v03v y则=3 v v02 3v0sin3粒子 P 在两板的右边匀强磁场中做匀速圆周运动,设做圆周运动的半径为R2,则1 LR22,sin解得R23L 3右边磁场沿初速度方向的宽度应当知足的条件为d R2 cosR23 L;2因为粒子 P 从 O 点运动到下极板右边边沿的过程与从上板右边沿运动到O 点的过程,运动轨迹是对于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:T min 2t(22) R2 0v解得T min6 32L3v0【点睛】带电粒子在电场或磁场中的运动问题,重点是剖析粒子的受力状况和运动特点,画出粒子的运动轨迹图,联合几何关系求解有关量,并搞清临界状态.2.如图,质量分别为m A=1kg、 m B=2kg 的 A、B 两滑块放在水平面上,处于场强盛小5A 不带电,B 带正电、电荷量-5E=3× 10N/C、方向水平向右的匀强电场中,q=2 × 10 C.零时刻, A、 B 用绷直的细绳连结 (细绳形变不计 )着,从静止同时开始运动,2s 末细绳断开.已知 A、 B 与水平面间的动摩擦因数均为μ=0.1,重力加快度大小 g=10m/s2.求:(1)前 2s 内, A 的位移大小;(2)6s 末,电场力的刹时功率.【答案】 (1) 2m (2) 60W【分析】【剖析】【详解】(1) B 所受电场力为 F=Eq=6N;绳断以前,对系统由牛顿第二定律: F-μ(m A+m B)g=(m A+m B)a1可得系统的加快度由运动规律: x= 1a1 t12 2解得 A 在 2s 内的位移为x=2m;(2)设绳断瞬时,AB 的速度大小为v1, t2 =6s 时辰, B 的速度大小为v2,则v1=a1 t1=2m/s ;绳断后,对 B 由牛顿第二定律:F-μm B g=m B a2解得 a2=2m/s 2;由运动规律可知:v2=v1+a2(t 2-t 1 )解得 v2=10m/s电场力的功率P=Fv,解得 P=60W3.如下图,竖直平面内有一固定绝缘轨道ABCDP r=0.5m的圆弧轨道CDP和与,由半径之相切于 C 点的水平轨道 ABC 构成,圆弧轨道的直径DP 与竖直半径OC间的夹角θ=37°,A、 B 两点间的距离 d=0.2m .质量 m1=0.05kg 的不带电绝缘滑块静止在 A 点,质量-5m2=0.1kg、电荷量 q=1 × 10C 的带正电小球静止在 B 点,小球的右边空间存在水平向右的匀强电场.现用大小 F=4.5N、方向水平向右的恒力推滑块,滑块抵达月点前瞬时撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,抵达P 点时恰巧和轨道无挤压且所受协力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计全部摩擦.取 g=10m/s2, sin37 °=0.6, cos37°=0.8.(1)求撤去该恒力瞬时滑块的速度大小v 以及匀强电场的电场强度大小E;(2)求小球抵达P 点时的速度大小v P和 B、 C 两点间的距离x.【答案】;× 4(1) 6m/ s 7.510N/ C (2) 2.5m/ s ;0.85m【分析】【详解】a1=1m/s 2;(1)对滑块从 A 点运动到 B 点的过程,依据动能定理有:Fd解得: v=6m/ s小球抵达 P 点时,受力如下图:则有: qE=m 2 gtan θ,4解得: E=7.5 ×10N/ C(2)小球所受重力与电场力的协力大小为:G 等m 2 g cos小球抵达 P 点时,由牛顿第二定律有:v P 2G 等r解得: v P =2.5m/ s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为则有: m 1v=m 1v 1+m 2v 21m 1v21m 1v 121m 2v 222 22解得: v 1=-2m / s( “-” v 1 的方向水平向左 ), v 2=4m /s表示对小球碰后运动到 P 点的过程,依据动能定理有:qE x r sinm 2 g rrcos1m 2 v P21m 2v 2 222解得: x=0.85m1m 1v22v 1、 v 2,4. 如图,以竖直向上为 y 轴正方向成立直角坐标系;该真空中存在方向沿x 轴正向、场强为 E 的匀强电场和方向垂直 xoy 平面向外、磁感觉强度为B 的匀强磁场;原点 O 处的离子源连续不停地发射速度大小和方向必定、质量为 m 、电荷量为 -q ( q>0)的粒子束,粒子恰能在 xoy 平面内做直线运动,重力加快度为 g,不计粒子间的互相作用;(1)求粒子运动到距x 轴为 h 所用的时间;(2)若在粒子束运动过程中,忽然将电场变成竖直向下、场强盛小变成E 'mg,求从qO 点射出的全部粒子第一次打在 x 轴上的坐标范围(不考虑电场变化产生的影响);(3)若保持 EB 初始状态不变,仅将粒子束的初速度变成本来的2 倍,求运动过程中,粒子速度大小等于初速度 λ倍( 0<λ<2)的点所在的直线方程 .【答案】 (1) Bhm 2 gx5m 2 g( ) y1x15m 2 gt(2)222222BB 328q B Eqq【分析】( 1)粒子恰能在 xoy 平面内做直线运动,则粒子在垂直速度方向上所受合外力必定为零,又有电场力和重力为恒力,其在垂直速度方向上的重量不变,而要保证该方向上合外力为零,则洛伦兹力大小不变,因为洛伦兹力F 洛 Bqv ,因此遇到大小不变,即粒子做匀速直线运动,重力、电场力和磁场力三个力的协力为零,设重力与电场力协力与-y 轴夹角为 θ,粒子受力如下图,225mg222qEmgBqvqEmg, v 2qBBq则 v 在 y 方向上重量大小 v yv sinvqEE mgBqvB2qB因为粒子做匀速直线运动,依据运动的分解可得,粒子运动到距x 轴为 h 地方用的时间hBh2qhBt;v y Emgmg (2)若在粒子束运动过程中,忽然将电场变成竖直向下,电场强度大小变成E ',q则电场力 F 电 ' qE ' mg ,电场力方向竖直向上;因此粒子所受合外力就是洛伦兹力,则有,洛伦兹力充任向心力,即v2mvmqE 22qvBmgm, RB 2qrBq2如下图,由几何关系可知,当粒子在O 点就改变电场时,第一次打在x 轴上的横坐标最m22qE2mEm 2 g 小, x 12R sin2qEmg2 2222 2 2B qB qq BqEmg当改变电场时粒子所在处于粒子第一次打在x 轴上的地点之间的距离为2R 时,第一次打在2m 22qE mg222RB 2q 22m[ qEmg x 轴上的横坐标最大,x 2] 5m 2 gsinqEB 2 q 2Eq 2 B222qE mg因此从 O 点射出的全部粒子第一次打在 x 轴上的坐标范围为x 1 x x 2 ,即m 2 g x5m 2 gq 2 B2q 2B2( 3)粒子束的初速度变成本来的 2 倍,则粒子不可以做匀速直线运动,粒子必发生偏转,而洛伦兹力不做功,电场力和重力对粒子所做的总功必不为零;那么设离子运动到地点坐标( x , y )知足速率 v ' v ,则依据动能定理有qEx mgy1 mv 21m 2v , qEx mgy3 mv 23 2 ,15m g22228q 2 B 2因此 y1 x 15m2 g28q 2 B 2点睛:本题观察带电粒子在复合场中的运动问题;重点是剖析受力状况及运动状况,画出受力争及轨迹图;注意当求物体运动问题时,改变条件后的问题求解需要对条件改变惹起的运动变化进行剖析,从变化的地方开始进行求解.5. 如下图,在 xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于 y 轴向下.一电子以速度 v0 从 y 轴上的 P 点垂直于 y 轴向右飞入电场,经过 x 轴上 M 点进入磁场地区,又恰能从y 轴上的 Q 点垂直于 y 轴向左飞出磁场已知 P 点坐标为 (0,- L), M 点的坐标为 ( 2 3L,0).求3(1)电子飞出磁场时的速度大小v(2)电子在磁场中运动的时间t【答案】( 1)v2v04 L ;( 2)t29v0【分析】【详解】(1)轨迹如下图,设电子从电场进入磁场时速度方向与x 轴夹角为,(1)在电场中 x 轴方向:23L v0t1,y轴方向: Lv y, tanv y3t1v0 32得60o, v v02v0cos(2)在磁场中,23L4 r Lsin32磁场中的偏转角度为32 rt23 4 Lv9v06.如下图,OO′为正对搁置的水平金属板M 、 N 的中线,热灯丝逸出的电子(初速度、重力均不计)在电压为U 的加快电场中由静止开始运动,从小孔O 射人两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动,已知两板间的电压为2U,两板长度与两板间的距离均为 L ,电子的质量为 m 、电荷量为 e 。
高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)及解析

高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv lQ kq= (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α==由洛伦兹力提供向心力可得2011v qv Bm r =解得:0152mv B ql=(2)粒子从P 到A 的轨迹如图所示:粒子绕负点电荷Q 做匀速圆周运动,设半径为r 2 由几何关系得252cos 8l r l α==由库仑力提供向心力得20222v Qqk mr r = 解得:2058mv lQ kq=(3)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析

高考物理带电粒子在电场中的运动解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x 2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y 当322a y y =y =98a 时,H 有最大值由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a3.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a2v gh =,45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p v gh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=4.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv emv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin sin 2v e v mθθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v v ve v mθϕϕ==-+; (2)① ②()1122211sin 2e v mθϕϕ=-+5.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r=0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d=0.2m .质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q=1×10-5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N 、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m /s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m6.如图所示,有一比荷qm=2×1010C/kg 的带电粒子,由静止从Q 板 经电场加速后,从M 板的狭缝垂直直线边界a 进入磁感应强度为B =1.2×10-2T 的有界矩形匀强磁场区域后恰好未飞出直线边界b ,匀强磁场方向垂直平面向里,a 、b 间距d =2×10-2m(忽略粒子重力与空气阻力)求:(1)带电粒子射入磁场区域时速度v ; (2)Q 、M 两板间的电势差U QM 。
高中物理 必修三(2019)第十章静电场中的能量 第5节带电粒子在电场中的运动 培优练习(含答案)
(2)小球通过最低点C时小球对细线的拉力.
参考答案
1.D
【详解】
设板长为L,板间距离为d,水平初速度为v0,带电粒子的质量为m,电荷量为q;两次运动的时间分别为t1和t2。第一次射入时
L=v0t1
= ·
联立两式解得
U1=
第二次射入时
=v0t2
d= ·
联立两式解得
U2=
所以
U1∶U2=1∶8
A.X、Y极接电源的正极,X′、Y′接电源的负极
B.X、Y′极接电源的正极,X′、Y接电源的负极
C.X′、Y极接电源的正极,X、Y′接电源的负极
D.X′、Y′极接电源的正极,X、Y接电源的负极
6.如图所示,空间有一水平匀强电场,在竖直平面内有一初速度v0的带电微粒,沿图中虚线由A运动至B,其能量变化情况是(重力不能忽略)()
A.小球在电容器中运动的加速度大小为
B.小球在电容器中的运动时间与射出电容器后运动到挡板的时间相等
C.电容器所带电荷量
D.如果电容器所带电荷量 ,小球还以速度v从N点水平射入,恰好能打在上级板的右端
13.如图,在点电荷的电场中,ab所在的电场线竖直向下,在a点由静止释放一个质量为m,电荷量大小为q的带电粒子,粒子到达b点时速度恰好为零,a、b间的高度差为h,则说法正确的是
Байду номын сангаасA.直线
B.正弦曲线
C.抛物线
D.向着电场力方向偏转且加速度作周期性变化的曲线
5.如图所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标系的O点,其中x轴与XX′电场的场强方向重合,x轴正方向垂直于纸面向里,y轴与YY′电场的场强方向重合,y轴正方向竖直向上).若要电子打在图示坐标系的第Ⅲ象限,则
带电粒子在电场中的运动(附详解答案)
带电粒子在电场中的运动 强化训练1.(多选题)冬天当脱毛衫时,静电经常会跟你开个小玩笑.下列一些相关的说法中正确的是( ) A .在将外衣脱下的过程中,内外衣间摩擦起电,内衣和外衣所带的电荷是同种电荷B .如果内外两件衣服可看作电容器的两极,并且在将外衣脱下的某个过程中两衣间电荷量一定,随着两衣间距离的增大,两衣间电容变小,则两衣间的电势差也将变小C .在将外衣脱下的过程中,内外两衣间隔增大,衣物上电荷的电势能将增大(若不计放电中和)D .脱衣时如果人体带上了正电,当手接近金属门把时,由于手与门把间空气电离会造成对人体轻微的电击2.(2012·新课标全国卷) (多选题)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( )A .所受重力与电场力平衡B .电势能逐渐增加C .动能逐渐增加D .做匀变速直线运动3.(2011·安徽卷)如图6-3-12甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( )A .0<t 0<T 4 B.T 2<t 0<3T4C.3T 4<t 0<T D .T <t 0<9T 84.示波管是一种多功能电学仪器,它的工作原理可以等效成下列情况:如图所示,真空室中电极K 发出电子(初速度不计)经过电压为U 1的加速电场后,由小孔S 沿水平金属板A 、B 间的中心线射入板中.金属板长为L ,相距为d ,当A 、B 间电压为U 2时,电子偏离中心线飞出电场打到荧光屏上而显示亮点.已知电子的质量为m ,电荷量为e ,不计电子重力,下列情况中一定能使亮点偏离中心的距离变大的是( )A .U 1变大,U 2变大B .U 1变小,U 2变大C .U 1变大,U 2变小D .U 1变小,U 2变小 5.(2011·广东卷) (多选题)如图6-3-14为静电除尘器除尘机理的示意图.尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘的目的.下列表述正确的是( )A .到达集尘极的尘埃带正电荷B .电场方向由集尘极指向放电极C .带电尘埃所受电场力的方向与电场方向相同D .同一位置带电荷量越多的尘埃所受电场力越大6.如图所示,D 是一只二极管,AB 是平行板电容器,在电容器两极板间有一带电微粒P处于静止状态,当两极板A 和B 间的距离增大一些的瞬间(两极板仍平行),带电微粒P 的运动情况是( )A .向下运动B .向上运动C .仍静止不动D .不能确定 7.(多选题)如图6-3-16所示,灯丝发热后发出的电子经加速电场后,进入偏转电场,若加速电压为U 1,偏转电压为U 2,要使电子在电场中偏转量y 变为原来的2倍,可选用的方法有(设电子不落到极板上)( )A .只使U1变为原来的12倍B .只使U 2变为原来的12倍C .只使偏转电极的长度L 变为原来的2倍D .只使偏转电极间的距离d 减为原来的12倍8.(2013·沈阳二中测试) (多选题)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图6-3-17所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等姓名:班级:学号:分数: + =9.(2011·安徽卷)图甲为示波管的原理图.如果在电极YY′之间所加的电压按图乙所示的规律变化,在电极XX′之间所加的电压按图丙所示的规律变化,则在荧光屏上会看到的图形是图6-3-19中的( )甲乙丙A.B.C. D.10.(多选题)在地面附近,存在着一有界电场,边界MN将某空间分成上下两个区域Ⅰ、Ⅱ,在区域Ⅱ中有向上的匀强电场,在区域Ⅰ中离边界某一高度由静止释放一质量为m的带电小球A,如图6-3-20甲所示,小球运动的v-t图像如图6-3-20乙所示,已知重力加速度为g,不计空气阻力,则( )A.在t=2.5 s时,小球经过边界MNB.小球受到的重力与电场力之比为3∶5C.在小球向下运动的整个过程中,重力做的功与电场力做的功大小相等D.在小球运动的整个过程中,小球的机械能与电势能总和先变大再变小11.如图所示的真空中,场强为E的匀强电场,方向与竖直平面xOy平行且与竖直轴Oy负方向成θ=37°的夹角.带电粒子以初速度v0=7.5 m/s,从原点O沿着Ox轴运动,达到A点时速度为0.此刻,匀强电场的方向突然变为竖直向下,而大小不变,粒子又运动了t2=2 s.(g取10 m/s2)求:(1)粒子带何种电荷?粒子到A点前的运动情况;(2)带电粒子运动2 s后所在位置的坐标.12.如图6-3-25所示,长L=1.2 m、质量M=3 kg的木板静止放在倾角为37°的光滑斜面上,质量m=1 kg、带电荷量q=+2.5×10-4 C的物块放在木板的上端,木板和物块间的动摩擦因数μ=0.1,所在空间加有一个方向垂直斜面向下、场强E=4.0×104N/C的匀强电场.现对木板施加一平行于斜面向上的F=10.8 N的拉力.取g =10 m/s2,斜面足够长.求:(1)物块经多长时间离开木板?(2)如果拉力保持F=10.8 N恒定不变,物块离开木板时木板获得的动能.(3)物块在木板上运动的过程中,由于摩擦而产生的内能.带电粒子在电场中的运动 强化训练(答案)1、解析:根据电荷守恒知,A 错;由C =Q U 和C ∝Sd知,当内外衣之间的距离d 增大时,两衣间的电势差增大,B错;因为内外衣所带的是异种电荷,产生静电引力作用,故当两衣之间的距离增大时,电场力做负功,电荷的电势能增大,C 对;由于人体带上正电荷,当手靠近金属门把时,产生静电感应现象,当两者之间的电压足以使空气电离时,产生放电现象,故人感觉到有轻微的电击,D 也正确. 答案:CD2、解析:由题意可知粒子做直线运动,受到竖直向下的重力和垂直极板的电场力,考虑到电场力和重力不可能平衡,故只有电场力与重力的合力方向水平向左才能满足直线运动条件,故粒子做匀减速直线运动,电场力做负功,电势能逐渐增加,B 、D 对. 答案:BD3、解析:本题考查带电粒子在交变电场中的运动,意在考查考生综合分析问题的能力.两板间加的是方波电压,刚释放粒子时,粒子向A 板运动,说明释放粒子时U AB 为负,因此A 项错误.若t 0=T2时刻释放粒子,则粒子做方向不变的单向直线运动,一直向A 运动;若t 0=3T4时刻释放粒子,则粒子在电场中固定两点间做往复运动,因此T 2<t 0<3T4时间内,粒子的运动满足题意的要求,选项B 正确,选项C 、D 错误. 答案:B4、解析:当电子离开偏转电场时速度的反向延长线一定经过偏转电场中水平位移的中点,所以电子离开偏转电场时偏转角度越大(偏转距离越大),亮点距离中心就越远.设电子经过U 1加速后速度为v 0,离开偏转电场时侧向速度为v y ,根据题意得eU 1=12m v 20①电子在A 、B 间做类平抛运动,当其离开偏转电场时侧向速度为v y =at =eU 2md ·Lv 0②结合①②式,速度的偏转角θ满足tan θ=v y v 0=U 2L2dU 1.显然,欲使θ变大,应该增大U 2、L ,或者减小U 1、d .正确选项是B. 答案:B5、解析:本题考查电场、电场力的基本概念,考查考生对静电除尘器原理的理解及对电场知识的掌握.集尘极与电源的正极相连带正电,放电极带负电,尘埃在电场力作用下向集尘极迁移,说明尘埃带负电荷,A 项错误;电场方向由集尘极指向放电极,B 项正确;带电尘埃带负电,因此所受电场力方向与电场方向相反,C 项错误;同一位置电场强度一定,由F =qE 可知,带电荷量越多的尘埃,所受电场力越大,D 项正确. 答案:BD6、解析:当带电微粒P 静止时,对其进行受力分析得Eq =mg ,即Udq =mg .当A 、B 之间距离增大时,电容器的电容C 减小,由Q =CU 得,Q 也减小,但由于电路中连接了一个二极管,它具有单向导电性,不能放电,故电容器A 、B 两极板上的电荷量不变,场强不变,电场力仍等于微粒的重力,故带电微粒仍保持静止状态,C 选项正确. 答案:C7、解析:先求出y 值.由qU 1=12m v 20,得v 0=2qU 1m . 故y =12at 2=U 2qL 22dm v 20=U 2L 24dU 1.由此可确定A 、C 、D 正确. 答案:ACD 8、解析:设AC 与竖直方向的夹角为θ,对带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B 错误.小球水平方向做匀速直线运动,从A 到B 的运动时间是从B 到C 的运动时间的2倍,选项C 错误;小球在竖直方向先加速后减速,小球从A 到B 与从B 到C 竖直方向的速度变化量的大小相等,水平速度不变,小球从A 到B 与从B 到C 的速度变化量的大小相等,选项D 正确. 答案:AD9、解析:本题考查示波管的原理,意在考查考生对示波管原理的掌握.在0~2t 1时间内,扫描电压扫描一次,信号电压完成一个周期,当U Y 为正的最大值时,电子打在荧光屏上有正的最大位移,当U Y 为负的最大值时,电子打在荧光屏上有负的最大位移,因此一个周期内荧光屏上的图像为B. 答案:B10、解析:由速度图像可知,带电小球在区域Ⅰ与区域Ⅱ中的加速度之比为3∶2,由牛顿第二定律可知:mgF -mg=32,所以小球所受的重力与电场力之比为3∶5,B 正确.小球在t =2.5 s 时速度为零,此时下落到最低点,由动能定理可知,重力与电场力的总功为零,故C 正确.因小球只受重力与电场力作用,所以小球的机械能与电势能总和保持不变,D 错. 答案:BC11、解析:(1)由于带电粒子沿着Ox 轴运动,根据受力分析知粒子一定带负电. 粒子到达A 点前沿Ox 轴做匀减速运动. (2)前阶段,受力分析如图6-3-22所示. F 合=ma 1=mg tan37°,a 1=34g =7.5 m/s 2,又由v 2-v 20=2a 1s , 得x =s =3.75 m.电场的方向改变后,受力分析如图6-3-23所示,粒子做竖直向上的匀加速运动,a 2=F 电-mg m =14g =2.5 m/s 2,y =12a 2t 22=5 m. 带电粒子所在的位置坐标为(3.75 m,5 m). 答案:(1)负电 匀减速运动 (2)(3.75 m,5 m)12、解析:(1)物块向下做加速运动,设其加速度为a 1,木板的加速度为a 2,则由牛顿第二定律,对物块:mg sin37°-μ(mg cos37°+qE )=ma 1① 对木板:Mg sin37°+μ(mg cos37°+qE )-F =Ma 2② 又12a 1t 2-12a 2t 2=L ③ 得物块滑过木板所用时间t = 2 s.(2)物块离开木板时木板的速度v 2=a 2t =32m/s.其动能为E k2=12M v 22=27 J.(3)由于摩擦而产生的内能为 Q =F 摩 x 相=μ(mg cos37°+qE )·L =2.16 J. 答案:(1) 2 s (2)27 J (3)2.16 J。
高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)及解析
高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,OO′为正对放置的水平金属板M 、N 的中线.热灯丝逸出的电子(初速度重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射入两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动.已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e .(1)求板间匀强磁场的磁感应强度的大小B 和方向;(2)若保留两金属板间的匀强磁场不变,使两金属板均不带电,求从小孔O 射入的电子打到N 板上的位置到N 板左端的距离x . 【答案】(1)12mU B L e = 垂直纸面向外;(2)32L【解析】 【分析】(1)在电场中加速度,在复合场中直线运动,根据动能定理和力的平衡求解即可; (2)洛伦兹力提供向心力同时结合几何关系求解即可; 【详解】(1)电子通过加速电场的过程中,由动能定理有:212eU m v = 由于电子在两板间做匀速运动,则evB eE =,其中2U E L= 联立解得:12mUB L e=根据左手定则可判断磁感应强度方向垂直纸面向外;(2)洛伦兹力提供电子在磁场中做圆周运动所需要的向心力,有:2v evB m r=,其中由(1)得到2eUv m=设电子打在N 板上时的速度方向与N 板的夹角为θ,由几何关系有:2cos L r rθ-=由几何关系有:sin x r θ= 联立解得:32x L =. 【点睛】本题考查了带电粒子的加速问题,主要利用动能定理进行求解;在磁场中圆周运动,主要找出向心力的提供者,根据牛顿第二定律列出方程结合几何关系求解即可.2.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .3.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK]出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==- 电场力做功W=40 J5.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比; (2)框架以CD 为轴抬起后,AB 边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD 为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=2Lπ,小球在斜面上做类平抛运动,水平方向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对小球,由牛顿第二定律得:a=mgsinmθ=g sinθ,AB 边距离桌面的高度:h =L sinθ=222v g;6.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=7.如图所示,AB 是一段长为s 的光滑绝缘水平轨道,BC 是一段竖直墙面。
高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析
高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三物理精准培优专练十六:带电粒子在电场中的运动(解析版)1. 本知识点常以计算题的形式与牛顿运动定律、功能关系、能量守恒综合考查。
2. 两点注意:(1)注意带电粒子重力能否忽略;(2)力电综合问题注意受力分析、运动过程分析,应用动力学知识或功能关系解题。
典例1. (2018∙全国III 卷∙21)如图,一平行板电容器连接在直流电源上,电容器的极板水平,两微粒a 、b 所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等。
现同时释放a 、b ,它们由静止开始运动,在随后的某时刻t ,a 、b 经过电容器两极板间下半区域的同一水平面,a 、b 间的相互作用和重力可忽略。
下列说法正确的是( ) A. a 的质量比b 的大B. 在t 时刻,a 的动能比b 的大C. 在t 时刻,a 和b 的电势能相等D. 在t 时刻,a 和b 的动量大小相等【解析】两个粒子都做初速度为0的匀加速直线运动,则有221122qE y at t m==⋅,有题意知相同时间内a 的位移大于b 的,且q 、E 相等,所以m a <m b ,A 错误;根据动能定理得E k -0=qEy ,即t 时刻粒子的动能为E k =qEy ,a 的位移大,电场力做功多,所以在t 时刻,a 的动能比b 的大,B 正确;在t 时刻,a 、b 经过电场中同一水平面,电势相等,它们的电荷量相等、符号相反,由E φ=qφ知,它们的电势能不相等,C 错误;由动能定理得qEt =p -0,即t 时刻粒子的动量为p =qEt ,则在t 时刻,a 微粒的动量等于b 微粒的动量,选项D 正确。
【答案】BD典例2. (2017·全国Ⅱ卷·25)如图所示,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场。
自该区域上方的A 点将质量均为m ,电荷量分别为q 和-q (q >0)的带电小球M 、N 先后以相同的初 速度沿平行于电场的方向射出。
小球在重力作用下进入电场区域,并从该区域的下边界离开。
已知N 离开一、考点分析二、考题再现电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时的动能的1.5倍。
不计空气阻力,重力加速度大小为g 。
求:(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小。
【解析】(1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0。
M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2。
由题给条件和运动学公式得 v 0-at =0① s 1=v 0t +12at 2② s 2=v 0t -12at 2③ 联立①②③式得:s 1s 2=3④(2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式 v y 2=2gh⑤H =v y t +12gt 2⑥ M 进入电场后做直线运动,由几何关系知:v 0v y =s 1H⑦ 联立①②⑤⑥⑦式可得:h =13H⑧(3)设电场强度的大小为E ,小球M 进入电场后做直线运动,则 v 0v y =qEmg⑨ 设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得 E k1=12m (v 02+v y 2)+mgH +qEs 1⑩E k2=12m (v 02+v y 2)+mgH -qEs 2⑪由已知条件E k1=1.5E k2⑫联立④⑤⑦⑧⑨⑩⑪⑫式得:E =2mg2q⑬1.如图所示,有一带电粒子贴着A 板沿水平方向射入匀强电场,当偏转电压为U 1时,带电粒子沿轨迹①从两板正中间飞出;当偏转电压为U 2时,带电粒子沿轨迹②落到B 板中间。
设粒子两次射入电场的水平速度相同,则两次的电压之比为( )A .U 1∶U 2=1∶8B .U 1∶U 2=1∶4C .U 1∶U 2=1∶2D .U 1∶U 2=1∶1【解析】据题意,粒子在偏转电场中做类平抛运动,即粒子在水平方向做匀速直线运动,则:x =vt ,在竖直方向做初速度为0的匀加速直线运动,则:y =12at 2=qUx 22mdv 2,偏转电压为U =2mdyv 2qx 2,则偏转电压之比为:U 1U 2=y 1x 22y 2x 12=y 1y 2·(x 2x 1)2=18,故A 选项正确。
【答案】A2. 如图,M 、N 两点处于同一水平面,O 为M 、N 连线的中点,过O 点的竖直线上固定一根绝缘光滑细杆,杆上A 、B 两点关于O 点对称。
第一种情况,在M 、N 两点分别放置电量为+Q 和-Q 的等量异种点电荷,套在杆上带正电的小金属环从A 点无初速释放,运动到B 点;第二种情况,在M 、N 两点分别放置电量为+Q 的等量同种点电荷,该金属环仍从A 点无初速释放,运动到B 点。
则两种情况中( ) A. 金属环运动到B 点的速度第一种情况较大B. 金属环从A 点运动到B 点所用的时间第一种情况较短C. 金属环从A 点运动到B 点的过程中,动能与重力势能之和均保持不变D. 金属环从A 点运动到B 点的过程中(不含A 、B 两点),在杆上相同位置的速度第一种情况较大 【答案】BD3.(多选)如图甲所示,两平行金属板A 、B 放在真空中,间距为d ,P 点在A 、B 板间,A 板接地,B 板的电势φ随时间t 变化情况如图乙所示。
t =0时,在P 点由静止释放一质量为m 、电荷量为e 的电子,当t =2T 时,电子回到P 点。
电子运动中没与极板相碰,不计重力。
则( ) A .φ1∶φ2 =1∶2 B .φ1∶φ2=1∶3C .在0~2T 内,当t =T 时电子的动能最大D .在0~2T 内,电子的电势能减小了2e 2T 2φ12md 2【答案】BD三、对点速练4.如图所示,竖直平面内有水平向左的匀强电场E,M点与P点的连线垂直于电场线,M点与N点在同一电场线上。
两个完全相同的带等量正电荷的粒子,以相同大小的初速度v0分别从M点和N点沿竖直平面进入电场,重力不计。
N点的粒子垂直电场线进入,M点的粒子与电场线成一定夹角进入,两粒子恰好都能经过P点,在此过程中,下列说法正确的是()A.电场力对两粒子做功相同B.两粒子到达P点的速度大小可能相等C.两粒子到达P点时的电势能都减小D.两粒子到达P点所需时间一定不相等【解析】由题图可知M、P两点在同一等势面上,所以两点间的电势差为零,而N、P间的电势差大于零,根据W=qU知,电场力对M点的粒子不做功,对N点的粒子做正功,故A错误;根据动能定理知N点的粒子到达P点时电场力做正功,所以速度增大,而M点的粒子到达P点时电场力不做功,所以速度大小不变,又因它们的初速度大小相等,所以两粒子到达P点的速度大小不等,故B错误;M点的粒子到达P点时电势能不变,N点的粒子到达P点电场力做正功,所以电势能减少,故C错误;在垂直于电场线方向,两个粒子都做匀速直线运动,设PM=L,M点的粒子初速度方向与电场线的夹角为α,则M点的粒子到达P点的时间:t M=Lv0sin α,N点的粒子到达P点的时间:t N=Lv0,由此可见,两粒子到达P点所需时间一定不相等,故D正确。
【答案】D5.(多选)如图所示,半径R=0.5 m的14圆弧接收屏位于电场强度方向竖直向下的匀强电场中,OB水平,一质量为m=1.0×10-4 kg、带电荷量为q=8.0×10-5 C的粒子从与圆弧圆心O等高且距O点0.3 m的A点以初速度v0=3 m/s水平射出,粒子重力不计,粒子恰好能垂直打到圆弧曲面上的C点(图中未画出),取C点电势φ=0,则()A.该匀强电场的电场强度E=100 V/mB.粒子在A点的电势能为8×10-5 JC.粒子到达C点的速度大小为5 m/sD.粒子速率为4 m/s时的电势能为4.5×10-4 J【解析】粒子在电场力作用下做类平抛运动,因粒子垂直打在C 点,由类平抛运动规律知:C 点速度方向的反向延长线必过O 点,且OD =AO =0.3 m ,DC =0.4 m ,即有:AD =v 0t ,DC =12qE mt 2,解得E =25 N/C ,故A 错误;因U DC =E ·DC =10 V ,而A 、D 两点电势相等,所以φA =10 V ,即粒子在A 点的电势能为:E p =qφA =8×10-4 J ,故B 错误;从A 到C 由动能定理:qU AC =12mv C 2-12mv 02,得v C =5 m/s ,故C 正确;粒子在C 点总能量E C =12mv C 2=1.25×10-3 J ,由能量守恒定律可知,粒子速率为4 m/s 时的电势能E p ′=E C -12mv 2=4.5×10-4 J ,故D 正确。
【答案】CD6. 如图所示,在竖直面内有一矩形区ABCD ,水平边AB=,竖直边BC = L ,O 为矩形对角线的交点。
将一质量为m 的小球以一定的初动能自O 点水平向右抛出,小球经过BC 边时的速度方向与BC 夹角为60°。
使此小球带电,电荷量为q (q > 0),同时加一平行于矩形ABCD 的匀强电场。
现从O 点以同样的初动能沿各个方向抛出此带电小球,小球从矩形边界的不同位置射出,其中经过C 点的小球的动能为初动能的23,经过E 点(DC 中点)的小球的动能为初动能的76,重力加速度为g 。
(1)求小球的初动能;(2)取电场中O 点的电势为零,求C 、E 两点的电势;(3)带电小球经过矩形边界的哪个位置动能最大?最大动能是多少?【解析】(1)0v t =竖直方向:y v gt =,0tan30y v v =o联立解得:小球的初动能2k001324E mv mgL ==(2)加电场后,根据能量守恒定律:由O 到C :k0k0123234C q mgL E E mgL ϕ=+-=由O 到E :k0k0173268E q mgL E E mgL ϕ=+-=则3348C E mgL mgL q qϕϕ==, (3)如图,取OC 中点F ,则EF 为等势线,电场线与等势线EF 垂直由1cos302OE U El =︒,得qE用正交分解法求出电场力和重力的合力:sin30x F qE =︒,1cos304y F mg qE mg =-︒=合力12F mg ==,方向沿OD合力对小球做功越多,小球动能越大,则从D 点射出的带电小球动能最大,根据动能定理:km k0F OD E E ⋅=-解得最大初动能km 54E mgL =。