基于混沌的通信技术:基础发展及实际应用
工程学中的混沌理论和应用

工程学中的混沌理论和应用混沌理论是20世纪60年代提出的一种新理论,它可以描述非线性系统中的复杂运动。
它不仅在物理学中有重大的应用,同样也在工程学中有广泛的应用。
混沌的本质是指系统变化的无规律性和不可预测性,很难预测物理系统的行为,由此导致了一些传统的控制方法和设计方法失效,因此混沌理论的研究在一些已知工程问题的解决中是非常重要的。
工程学中的混沌理论有广泛的应用,其中最有代表性的是在控制系统方面的应用。
在某些控制系统中,需要将输入信号转化为某些输出信号,但是这些信号会受到各种各样的干扰,使得系统的性能无法得到有效的保证。
传统的控制方法无法解决因为干扰及其他未知因素而带来的系统不可控制的问题,因此,混沌控制理论应运而生。
混沌控制理论的主要思想是通过调整控制参数或控制信号,使系统处于某种稳态或状态下。
控制的过程通常涉及对系统的输出进行监控,并相应地调节系统的输入信号,以反向反馈和稳定系统状态。
混沌控制理论中,最常用的方法就是基于混沌现象的控制,具体应用方式是基于混沌算法设计开关电源、控制器等,使得系统能够自行调整,达到最佳效果。
混沌控制的应用领域非常广泛,其中最为突出的就是在通信领域中的应用。
混沌可以用于通信数据的加密和解密,同时也可以利用混沌产生的噪声进行通信信号的抗干扰和隐蔽传输,增强通信的保密性和安全性。
此外,在物联网领域中,由于系统复杂度的增加和通信难度的增大,混沌控制的应用得到了广泛的应用和研究。
除了控制领域,在工程学的其他领域中,混沌的应用也具有重要的意义。
例如,在机械工程或建筑工程中,混沌理论可以用于预测和控制结构的震动。
当结构受到外部激励时,混沌控制可以使得结构保持稳定,减少损失和灾难。
同样,在计算机科学领域中,混沌控制可以用于优化算法,改进数据的模拟和处理能力。
总的来说,混沌理论在工程学中的应用依然存在很多挑战和问题,但是已经证明了它具有重要的价值和研究意义。
在未来,随着混沌控制理论的不断完善和技术的提升,工程学中混沌理论的应用空间将变得更加广泛。
混沌理论及其在通信中的应用

际 中也 可 以用计算 方法 中迭 代法 产生 一个 混 沌信 号 ,
再 将 计算 结果和存储 E R P OM 器件结合 。图 1就是用 MAT B实现 的 初始 值 为 X。 . 2 映 射模 型为 IA 一0 1 9 X¨l —2 、迭代 了 6 0次 的L g t 一1 X 。 0 o ii s c映射 的波形 输 出图 。 该方式 的优点是 实现 简单 、 系统复杂 度低 、 对 器件 无太 高的要求 ;缺 点是 算 法的运算量 大
X 0.3 0 .93 0 52 7 0 2 .2 0. 54 .7 1 0.7 7 7 0 4 6 0. 5 0 1 71 .8 4 X ± 0.3 0 8 0. 2 0 94 .21 0 80 .8 0 7 .6 0 7 0.4 1 0, 0 .0 8 5 99 0 3
.
最 系统 文献最 丰富 的一种方 式 。该方 式 一般 主要 由 运 算放 大器和储 能元件 组成 。比如著名 的蔡 氏 电路以 及 由 A. . l a i 等 设 计 的 产 生 混 沌 振 荡 系 列 电 S E w kl 路 Ⅱ ,和 由K. Cu mo设 计 的一 种基于 I rn 映 射 ] M. o ez o 的混 沌 产生 电路 。此类 系统是 根据 由微分 形式 给 出混 沌模 型 ,利用储能 元件 ( 电容 、电感 )和 自动控 制理 论 的有关 知识 ( 主要 是反 馈 和传输方程 )来设 计 混沌 信号 产生 电路 。它 的特点 是 实时性 比较好 ,但 系统 的
A 0 1 2 3 4 5 6 7
相 关性 。
( )确定 性 3
该性质是 混沌信 号 与 白噪声 的主要
图 3 混 沌 信 号 自相 差 函数 A( ) r
混沌同步的理论与应用研究

混沌同步的理论与应用研究混沌理论是近年来兴起的一种新的科学理论,它的出现对于科学技术的发展起到了重要的推动作用。
混沌同步作为混沌理论的重要分支之一,其理论研究和应用价值也越来越受到学者和工程师的关注。
本文将介绍混沌同步的理论和应用,探讨其在各个领域的研究和进展。
一、混沌同步的基本概念混沌同步是指在两个或多个混沌系统之间,通过某种方式使它们的演化趋势发生同步,使它们之间的状态保持一致。
混沌同步的本质在于通过控制某些变量的值,使得混沌系统之间的输出信号同步,从而达到某种控制的目的。
混沌同步有很多种形式,其中最常见的是完全同步和广义同步。
完全同步是指两个混沌系统在所有时间点上的状态都一致,广义同步则是指两个混沌系统的输出信号在某种意义下保持同步,但彼此之间可能具有一些差异。
不同种类的混沌同步形式在实际应用中都具有一定的价值。
二、混沌同步的实现方法混沌同步的实现方法有很多种,其中比较常用的方法包括反馈控制同步、耦合同步、自适应同步等。
反馈控制同步是指通过反馈控制方式,使得两个混沌系统之间的差异最小化,从而实现同步。
在实际应用中,反馈控制同步是最为常见的混沌同步方式。
耦合同步则是指通过在两个混沌系统之间引入相互耦合作用,从而实现同步。
在实际应用中,耦合同步常常被用于多个物理系统之间的同步控制。
自适应同步则是指通过调整两个混沌系统之间的参数,从而实现同步。
自适应同步的优势在于能够自动调节参数,适应不同的环境和应用场景。
三、混沌同步的应用领域混沌同步作为一种有广泛应用价值的控制技术,已经被广泛应用于很多领域。
下面将介绍混沌同步在通信、图像处理、生物医学、机器人控制等领域的应用。
1. 通信领域混沌同步在通信领域的应用主要体现在保密通信和传输控制方面。
通过混沌同步技术,可以实现高度保密的通信,避免信息泄露和攻击。
此外,混沌同步技术还可以用于控制传输速率,从而有效控制网络拥塞和服务质量。
2. 图像处理领域混沌同步在图像处理领域的应用主要体现在图像加密和压缩方面。
混沌信号发生器原理及应用

混沌信号发生器原理及应用混沌信号发生器原理及应用:混沌信号发生器是指能够产生具有混沌性质的信号的设备。
混沌是一种非线性动力学系统的行为,表现在信号上就是具有无规律、复杂且不可预测的特性。
混沌信号发生器的原理基于此种非线性动力学系统,通过控制系统参数和初始状态,使系统进入混沌状态,产生混沌信号。
混沌信号发生器的原理:混沌信号的产生是通过非线性动力学系统实现的。
非线性动力学系统是指系统中的输入和输出不遵循线性相关的关系,并且系统的演化可能具有复杂的轨迹。
混沌信号可以通过许多不同的非线性动力学系统实现,如洛伦兹吸引子、Rossler 系统和Mackey-Glass系统等。
以洛伦兹系统为例,其方程组描述如下:dx/dt = σ(y - x)dy/dt = x(ρ- z) - ydz/dt = xy - βz其中,x、y、z是状态变量,σ、ρ、β分别是控制系统参数,t是时间。
通过调整参数值,可以使系统进入混沌状态。
根据洛伦兹系统的状态变量,可以得到混沌信号。
混沌信号发生器的应用:1. 加密与解密通信:混沌信号是一种具有无规律特性的信号,可以用于保护通信过程的安全性。
通过将待传输的信息与混沌信号进行异或运算,可以增加信息的加密程度,提高通信的抗干扰性和安全性。
2. 伪随机数发生器:混沌信号具有复杂、无规律的特性,可以用于产生伪随机数序列。
这些伪随机数可以应用于密码学、随机仿真、随机调制等领域。
3. 滤波器设计:混沌信号具有宽带、丰富的频率成分,可以用于滤波器的设计。
通过与混沌信号进行卷积或相关运算,可以实现滤波器的设计与实现。
4. 信号处理与压缩:混沌信号具有复杂的频率成分和多样的动态特性,可以用于信号处理与压缩。
通过混沌信号的反馈、频率调制和时频分析等方法,可以实现信号的重构和压缩。
5. 混沌调制通信:混沌信号可以用于调制通信系统中。
通过将待传输的信号与混沌信号进行叠加或者异或运算,可以实现信息的隐藏与扩频,提高通信系统的抗干扰性和保密性。
混沌保密通信关键技术研究

混沌保密通信关键技术研究混沌保密通信是一种基于混沌理论的信息安全传输技术,它利用混沌系统的复杂性和不可预测性,实现了对通信信号的加密和解密。
在本文中,我们将介绍混沌保密通信的关键技术,包括混沌加密算法、混沌同步和混沌调制等。
混沌加密算法是混沌保密通信的核心技术之一,它利用混沌系统的动态行为来生成加密密钥。
根据不同的加密方式,可以将混沌加密算法分为以下几种:这种算法利用混沌映射的特性,生成一组随机的加密密钥。
其中,常用的混沌映射包括Logistic映射、Tent映射、Henon映射等。
通过将明文信息映射到加密密钥上,可以实现加密和解密过程。
这种算法利用混沌流密码的特性,通过对明文信息进行逐比特混沌加密,生成密文。
常用的混沌流密码包括基于M-序列的混沌流密码、基于线性反馈移位寄存器的混沌流密码等。
这种算法利用混沌密码学的原理,通过对明文信息进行加密和解密处理,实现加密通信。
常用的混沌密码学算法包括基于离散混沌映射的加密算法、基于连续混沌映射的加密算法等。
混沌同步是混沌保密通信的关键技术之一,它利用两个或多个相同的混沌系统,实现它们之间的信号传输和同步控制。
在混沌保密通信中,利用混沌同步技术可以实现信号的准确接收和传输,从而保证通信的可靠性。
根据不同的同步方式,可以将混沌同步技术分为以下几种:这种同步方式是指两个或多个混沌系统在外部控制下完全相同,它们的运动轨迹和动态行为完全一致。
通过完全同步技术,可以实现信号的准确传输和接收。
这种同步方式是指两个或多个混沌系统在外部控制下实现相关关系的保持或者恢复。
广义同步技术可以应用于信号传输和处理的各个方面,包括信号调制、解调、同步等。
这种同步方式是指将两个或多个混沌系统的状态变量投影到某个子空间上,使得它们在该子空间上的投影点重合。
通过投影同步技术,可以实现信号的准确解码和接收。
混沌调制是混沌保密通信的关键技术之一,它利用混沌系统的复杂性和不可预测性,实现了对信号的调制和解调。
混沌信号生成与应用研究

混沌信号生成与应用研究混沌信号是一种具有高度复杂性和随机性的信号,在众多领域中得到了广泛的应用。
本文将从混沌信号的生成机理、特点以及在通信、保密和混沌系统等方面的应用进行探讨。
一、混沌信号的生成机理混沌信号生成的基本原理是通过非线性动力学系统产生离散的、不可预测的信号。
其中最常见的混沌产生系统包括洛伦兹系统、刘维尔系统和Ikeda映射等。
这些系统具有以下特点:1. 非线性:混沌系统中的方程往往包含非线性项,导致系统的行为不可预测。
2. 灵敏依赖于初始条件:微小的初始条件变化会引起混沌系统的完全不同的演化行为。
3. 范围选择性:混沌信号的频谱范围非常广,可以覆盖从低频到高频的所有频段。
二、混沌信号的特点混沌信号具有以下几个显著的特点:1. 宽频带:混沌信号的频谱非常宽,可以在多个频段传输信息。
2. 伪随机性:混沌信号看似随机,但实际上是由确定性的非线性系统产生的。
3. 私钥性:由于混沌信号的不可预测性,可以作为一种私钥用于信息的加密和解密。
4. 抗干扰性:混沌信号在传输中具有很好的抗干扰性,能够有效地抵御外界噪声和干扰。
三、混沌信号在通信中的应用1. 无线通信:混沌信号可以用作无线通信中的扩频码,将信号在频谱中展开,提高系统的抗干扰性和容量。
2. 加密通信:混沌信号的伪随机性和私钥性使其成为一种优秀的加密手段,可以用于保护敏感信息的安全传输。
3. 通信隐蔽性:混沌信号可以实现抗窃听和抗干扰的通信,提高通信的隐蔽性。
四、混沌信号在保密中的应用1. 图像加密:将混沌信号作为加密密钥,可以对图像进行加密,实现机密性保护。
2. 视频加密:利用混沌加密算法对视频进行加密处理,保护视频内容的安全性。
3. 数据加密:混沌信号可以用于对数据进行加密保护,确保数据的机密性和完整性。
五、混沌信号在混沌系统中的应用混沌系统是一种基于混沌现象设计的动力学系统,广泛应用于通信、图像处理、模拟电路和神经网络等领域。
混沌系统可以产生具有丰富数据结构和不可预测性的信号,并可用于实现随机数生成、时间序列的预测和模拟生物系统等任务。
混沌在通信的应用
2.混沌在通信中的应用混沌在通信研究中的一个新领域,是伴随混沌动力系统在数学,物理和电子工程中的研究产生的。
混沌同步现象的发现使得混沌在通信领域的应用的研究迅速的展开。
混沌信号具有许多特殊的性质,如表面的伪随机性,非周期性,相关特性,宽带白谱特性和长期不可预测性,这些性质满足了一些通信系统对通信信号的特殊要求,因此混沌在扩频通信,多用户和保密通信中具有潜在的应用前景。
混沌在通信中的应用潜力,大致可以分为三个领域:(1)宽带特性由于混沌信号具有内在的非周期性,因此其谱分量在频带上连续分布,并且通过设计不同的混沌电路可以定制出具有一定谱特性的混沌信号。
在宽带通信常被用来抵抗信道的不良影响,特别是一些窄带的影响,如频率选择性衰落,窄带干扰等。
因此混沌信号有可能作为一种易于产生的宽带信号,如在扩频通信中。
(2)复杂性混沌信号具有非常复杂的内部结构,对初始条件和参数的敏感性,使得混沌系统能够很容易产生出不同的混沌轨道。
这使得估计系统的结构或长期预测混沌变得非常的困难。
混沌信号的这种复杂性和难于预测的特点,使其可应用于保密通信中。
(3)正交性混沌信号是非周期的,所以不同的混沌系统或相同的混沌系统采用不同的初始值或系统参数所产生出的混沌信号间具有迅速消失的互相关函数,这些信号可以看作是不相关的,满足一定意义上的正交性。
满足这种正交特性的混沌信号易于产生,并且数量巨大,因此在多用户通信中具有广泛的应用前景。
一些基于混沌的码分多址方式已经成功应用于CDMA系统中。
基于混沌的模拟调制系统有二种主要的技术:混沌掩盖和混沌调制。
混沌掩盖的一种途径就是直接将信号加在类似噪声的混沌信号上,解调时需要重建出发送端的混沌信号,再从接收到的信号中将其减去,这种方法看似简单,但是如何在接收端重建与发送端同步的混沌信号还是学术界的热点。
混沌掩盖通信的基本原理是以混沌同步为基础,把小的信号叠加在混沌信号上,利用混沌信号的伪随机特性,把信息信号隐藏在看似杂乱的混沌信号中,在接收端利用同步后的混沌信号进行掩盖,从而解调出信号信息,以此达到保密。
【最新推荐】混沌通讯实验报告-范文word版 (8页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==混沌通讯实验报告篇一:近代物理实验混沌通信----实验报告近代物理实验——混沌电路及其在加密通信中的应用预习报告:随着计算机的普及和信息网络技术的发展,数据通信的安全性问题引起了普遍的关注。
混沌信号所具有的对初始条件的敏感性、非周期性、似随机性和连续的宽带能谱等待点,非常有利于在加密通信系统中应用。
本实验利用蔡氏电路产生混沌信号,并利用混沌信号进行加密通信实验。
此外,还可以利用计算机和网络进行基于一维时空混沌的语音加密通信实验。
蔡氏电路虽然简单,但具有丰富而复杂的混沌动力学特性,而且它的理论分析、数值模拟和实验演示三者能很好地符合,因此受到人们广泛深入的研究。
自从1990年Pecora和Carroll首次提出混沌同步的概念,研究混沌系统的完全同步以及广义同步、相同步、部分同步等问题成为混沌领域中非常活跃的课题,利用混沌同步进行加密通信也成为混沌理论研究的一个大有希望的应用方向。
我们可以对混沌同步进行如下描述:两个混沌动力学系统,如果除了自身随时间的烟花外,还有相互耦合作用,这种作用既可以是单向的,也可以是双向的,当满足一定条件时,在耦合的影响下,这些系统的状态输出就会逐渐趋于相近,进而完全相等,称之为混沌同步。
实现混沌同步的方法很多,本实验介绍利用驱动响应方法实现混沌同步。
实验电路如图1所示。
图1由图中所见,电路由驱动系统、响应系统和单向耦合电路3部分组成。
其中,驱动系统和相应系统两个参数相同的蔡氏电路,单向耦合电路由运算放大器组成的隔离器和耦合电阻构成,实现单向耦合和对耦合强度的控制。
当耦合电阻无穷大(即单向耦合电路断开)时,驱动系统和响应系统为独立的两个蔡氏电路,分别观察电容??1和电容??2上的电压信号组成的相图????1?????2,调节电阻R,使系统处于混沌状态。
基于混沌同步的保密通信系统设计与实现
基于混沌同步的保密通信系统设计与实现近年来,信息安全问题越来越受到人们的关注。
随着技术的发展,保密通信系统在军事、金融、科研等领域扮演着至关重要的角色。
本文将介绍一种基于混沌同步的保密通信系统的设计与实现,旨在提供一种可行且安全的通信解决方案。
1. 引言在传统的通信系统中,由于信息的传递是通过明文进行的,一旦遭到黑客的攻击,信息的泄露成为了不可避免的。
因此,人们迫切需要一种有效的通信方式来保证信息的安全性。
混沌同步理论就是在这种背景下应运而生的,通过利用混沌现象的不可预测性和复杂性,为保密通信提供一种新的思路。
2. 混沌同步原理混沌同步是指两个或多个混沌系统在耦合作用下,其状态变量之间的关系保持一致。
混沌系统具有极高的敏感性和捕获能力,这使得混沌同步成为一种理论上可行的保密通信手段。
在混沌同步中,发送信号方(发送端)和接收信号方(接收端)之间通过共享的混沌映射来实现信息的加密和解密,从而达到保密通信的目的。
3. 系统设计基于混沌同步的保密通信系统主要由两部分组成:发送端和接收端。
发送端负责将明文信息转化为混沌信号,而接收端则负责将混沌信号还原为明文信息。
3.1 发送端发送端首先需要选择一个混沌系统作为基础模型,如Logistic映射、Chen系统等。
然后,在此基础上构建一个差分方程来描述混沌系统的运动规律。
差分方程的具体形式可以根据具体需求进行调整。
其次,发送端需要选择一个合适的加密算法来对明文信息进行加密。
一种常用的方法是采用置乱和扩频技术,将明文信息转化为随机扰动的混沌信号。
最后,发送端需要通过通信信道将加密后的混沌信号传输给接收端。
3.2 接收端接收端首先需要配置一个与发送端相同的混沌系统来模拟发送端的运动规律。
然后,接收端通过接收信道获取到加密后的混沌信号,并利用混沌同步原理将接收到的混沌信号与自身系统的状态变量进行耦合。
通过耦合力的作用,接收端能够实时地恢复发送端的混沌信号。
最后,接收端需要在恢复的混沌信号上进行解密操作,将混沌信号转化为明文信息。
混沌系统与混沌电路:原理、设计及其在通信中的应用
混沌系统与混沌电路:原理、设计及其在通信中的应用1 混沌系统的原理混沌系统是一种表现非周期、非随机、近似于混沌状态的物理系统。
这种系统的运动状态会不断地演变,它的状态变化是混沌的,即使在同一初始条件下,其状态也会显示出随机性,因此具有高度的不可预测性。
混沌系统的本质是由一组非线性微分方程组成的,具有非线性耦合作用。
这种系统的运动规律不能完全由微分方程的初值和边界条件所确定,而是与初始状态的微小差异有关。
因此,其在信息加密、随机数产生和通信等方面具有广泛的应用。
2 混沌电路的设计混沌电路是利用物理混沌现象制造的电路,它产生的电信号具有无规律、不可预测的特点。
混沌电路的设计与制造包括了模拟、数字和光学等多种技术,因此也具有广泛的应用。
典型的混沌电路是由非线性电学元器件、放大器和反馈电路组成的。
其中非线性元器件的作用是将输入信号转化为夹杂的高频成分,而反馈电路又将这些高频成分返回到放大器中,所产生的信号具有一定程度的随机性。
在混沌电路的设计中,考虑到电路的可调性和可控性,通常会采用微调电容、电阻等元器件的阻值来控制电路的混沌状态。
此外,由于混沌电路的工作频率通常比较高,因此对电路的抗噪声、稳定性和可靠性的要求比较高。
3 混沌系统在通信中的应用混沌效应的不可预测性和复杂性赋予了混沌系统在通信安全、密钥分发、调制解调等方面的广泛应用。
在通信安全方面,混沌同步技术可以用来实现高速密钥分发和加密。
其中,利用混沌周期性的特点,可以在接收端产生与发送端完全一致的混沌波形,这样就可以实现加密的目的。
此外,在数字电视、卫星通信等领域,混沌扰码技术也被广泛应用。
在通信调制解调方面,混沌调制技术可以进行宽带通信,其主要作用是将数据信号混合到混沌信号中去,这样可以大大提高数据传输的有效性。
此外,混沌序列还可以用来进行多载波通信、脉冲编码调制等方面的研究。
总的来说,混沌系统在通信中具有很多优点,可以提高数据传输的安全性、稳定性和可靠性,同时还可以为现代通信技术的发展提供创新思路和新的研究方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于混沌的通信技术:基础发展及实际应用刘重明谢智刚
香港理工大学电子及资讯工程学系
混沌信号是由非线性动力学系统衍生而来的非周期、有界、类随机信号。
通常来说,一个动力学系统有固定数目的独立状态变量,它们的运动或者轨道是被一系列包含着所有状态变量的微分方程所决定的。
混沌系统具有一种特殊的特性——初值敏感性,初值敏感性意味着尽管两个相同混沌系统的初始值非常接近,但这两个系统所产生出来的混沌信号很快就变得毫不相关。
这个特性使得我们能够从理论上对同一个系统用不同的初值来得到无数的混沌信号。
此外,由于混沌信号的类随机特性,它们具有与冲激函数类似的自相关函数和白色宽带频谱。
而且,混沌信号互相关函数的值很小。
由于其与生俱来的宽带特性,混沌信号很自然的被提出用于充当扩展频谱通信中的载波。
与传统的扩展频谱系统相比,基于混沌的扩展频谱系统具有很多优势。
比如,用很简单的电路就可以产生宽带混沌信号,因此相应的硬件成本可以很低。
同样,由于混沌信号的非周期特性,其携带的信息很难被截获,因此大大增强了传输的安全性。
此外,混沌信号具有非常好的自相关和互相关特性,这些特性在多址通信环境中是非常重要的,它们可以保证信道间的干扰很小,从而确保整体系统的性能。
最后不得不提到的是,通过设置不同的初始状态,我们可以很容易得到大量的混沌信号,这些信号在多用户环境中可以很好的区分不同的用户。
在过去的十多年中,研究人员提出过很多基于混沌的通信系统。
这些系统可以大致的分为三个主要类别,即基于混沌的模拟调制,基于混沌的数字调制和直接序列扩频。
接下来,我们简要的介绍一下这三种通信系统。
在基于混沌的模拟调制系统中,研究人员提出了两种主要技术——混沌掩盖(chaotic masking)和混沌调制(chaotic modulation)。
混沌掩盖的一种途径就是直接将信息信号加在噪声般的混沌信号上,解调时需要重建出发送端的混沌信号,再从接收到的信号中将其减去。
这种方法很容易实现,但是,为了在接收端重建出混沌信号,需要很坚固的同步电路。
在混沌调制中,要传输的信息注入到混沌映射的参数当中。
结果,混沌映射在不停的发生变化。
解调这种
模拟信号时不需要进行同步,目前,主要有三种解调方法,即倒推过程,使用最小均值方差的自适应滤波、最小方差倒推和基于卡尔曼滤波的线性解调,及使用基于径向基函数(RBF)神经网络的非线性解调。
这三种方法中,第一种最简单,但是当混沌信号被噪声污染后,其携带的信息很难被恢复出来。
第二种方法通过使用自适应滤波器解调信息来减轻噪声的影响。
第三种方法中,通过训练接收端的RBF神经网络来连续的估计发送端非线性系统的状态,根据最后估计的结果来恢复最初的模拟信息。
非常遗憾的是,现有的模拟调制机制还不具备足够的应付噪声的能力,因此限制了它们在实际通信系统中的应用。
与模拟调制方法相比,数字调制方法更加实用。
过去,很多基于混沌的数字调制和解调方法被提出来。
在一个基于混沌的数字通信系统中,数字符号通常被映射成非周期的混沌基函数。
比如,在混沌键控(chaos shift keying,CSK)中,不同的数字符号被映射成不同的混沌吸引子,这些吸引子可以由一个动力学系统通过不同的分岔参数产生成,也可以由一系列彻底不同的动力学系统产生。
如果接收端能够同步的复制出混沌基信号,那么我们可以通过分析同步误差来检测信号,或者用传统的相干类型的探测器。
这种类型的检测我们称之为相干检测。
由于实现坚固的混沌同步技术还处于研究阶段,
因此在实际环境中,相干系统还没有实现。
如果接收端不能够同步的复制出混沌基信号,我们只能用非相干的方法进行检测。
另一种被广泛研究的对数字信号进行编码的调制方法是基于差分键控的思想,这种调制方法被称作差分混沌键控(differential CSK,DCSK),它本质上是对数字比特流构造一种特殊的结构使得接收端能够用非相干的方法进行检测,也就是说无需同步复制出混沌信号。
具体来讲,在二进制情况下,每一个待传送的数字符号用两个混沌信号采样集来表示,第一个采样集作为参考采样集而第二个作为数据采样集。
根据待传送的数字符号,数据采样集与参考采样集或者相同或者相反。
解调可以直接将两个混沌采样集进行相干比较得到,通过比较相关器输出和给定的阈值我们可以区分出不同的数字符号。
混沌键控和差分混沌键控也衍生出其它的数字调制方法,比如,混沌开关键控(chaotic on-off keying),频率
调制差分混沌键控(frequency-modulatedDCSK),相干延迟键控(correlationdelayshiftkeying),对称混沌键控(symmetric CSK)和正交混沌键控(quadrature CSK)。
一九九二年,研究人员首次提出将混沌直接应用于传统的直接序列扩频系统(directsequence spread spectrum, DS-SS)。
这里的基本原则是将离散时间非线性映射生成的混沌序列替代传统的二进制扩频序列,如m序列和Gold序列。
已经被证实这样生成的新系统在性能上可以与原来二进制扩频序列生成的系统相比。
使用混沌扩频序列的主要优势是有无限数量的扩频序列和生成的扩频信号更难于被截获。
研究人员也对使用量化混沌信号扩展二进制符号序列进行了深入研究。
在这个过程中,他们试着将量化后的信号变成周期信号。
分析表明用这种周期量化序列的系统在多址环境中比m序列和Gold序列具有更大的容量和更低的误比特率。
整体而言,如果将信息嵌入到混沌信号中去,有可能极大的提高数据安全性。
由于混沌信号具有宽频带,当其被传送时,无疑具有传统扩展频谱信号具有的不易探测、抗人为干扰、减轻多径效应等优点。
此外,混沌信号易于产生,理论上具有无穷的数量,因此对构造扩展频谱系统提供了一个相对低成本的解决方案。
特别值得一提的是,对于直接序列码分多址系统,理论上已经证实如果使用经过量化和周期性重复后的混沌时间序列片断作为扩频序列,系统的容量和误码率将得到很大改善。
但是,从实际工程应用的角度来看,基于混沌的通信系统还不够成熟,还有很多重要的技术问题需要得到解决。
正如前面提到的,相干检测需要接收端同步复制出混沌信号。
这点需要混沌系统在发送器和接收器之间具有很坚固的同步性。
这个问题是不能忽略的,迄今为止,还没有一种可以接受的用于低信噪比通信系统中的混沌同步机制。
这个难题还推动了不需要发送器和接收器之间进行同步的非相干检测的进一步研究。
由于众多的检测方法具有可能被应用的潜力,非相干检测的方法相对而言可以被视为还未被深入研究。
迄今为止,在非相干检测的方法中,差分混沌键控得到了最为广泛的研究。
但是,差分混沌键控始终没有利用到混沌的确定性特性。
可以被预测,将来的混沌通信中,非相干检测将是一片新的研究领域。
设计通信系统时,非理想的信道状况比如噪声和信号失真是我们关注的重点。
当混沌信号被用来传送信息时,信道失真的影响比其它情况更为深远,因为它可以使接受器无法同步。
此外,目前只有少数系统考虑到了多径效应,显然这里需要做更多的工作。