超高层建筑脉动风压的非高斯特性_楼文娟
超高层建筑结构风效应的关键技术研究及其应用

超高层建筑结构风效应的关键技术研究及其应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着中国城市化进程的加速,超高层建筑的兴建已成为现代城市发展的重要特征。
超高层建筑结构风振响应及控制

形 ; 构在反 复风振 作 用 下产 生 疲 劳破 坏 ; 结 构气 结 使 动弹性 不稳定 ; 结构 震动加 剧 , 响高层 住宅舒适 度 。 影
有被 动控制 ( 如安 装黏 滞阻尼 器 、 弹性阻尼 器 、 频 黏 调
质量 阻 尼 器 、 频 液 体 阻 尼 器 ) 智 能 控 制 和 主 动 调 、
控 制 ] 。
结 构风振 控制 的原理是 在结 构发 生风振 反应时 , 由设 置在 结构 上 的一些 控 制装 置 主 动或 者 被 动地 施 加 一组控 制力 , 以达 到减少 和抑制风 振反应 的一 种方
数相同。
置在 结构顶 部 以控 制 风 振 反 应 , 结 构第 一 、 二 振 使 第
型 的阻尼水 平从 1 %和 0 4 . %增加 到 1 2 和 1 5 , .% .%
( )在伸 臂桁 架 层 的斜 撑 替 换 为 人 字 形 安 装 的 3
2 风 振控 制 应 用
结 构 体系 中, 风振 控 制装 置 属非 承 重构 件 , 功 其
能仅在 结构 中发 挥 耗 能 作 用 , 不 承担 导 荷 承 载 作 而 用, 即增 加风振 控制装 置不 改变主 体结构 竖 向受力 体 系 。一 般情 况下 , 构 越 高 、 柔 、 结 越 跨度 越 大 、 振动 越 强 、 压越 高 , 控制效 果越显 著 。 风 则
器对 其进 行风振 控制 , 使结 构阻 尼 比从 0 8 . %提 高到
作者简介: 国军( 9 3 , , 徐 1 7 一)男 江苏南通人 , 合肥工大建设监理有限责任公 司工程师 22 《 1 工程与建设》 2 1 年第 2 01 5卷第 2期
超高层建筑结构抗风性能研究

超高层建筑结构抗风性能研究摘要:高层建筑数量的不断增加更加充分利用土地资源,在结构设计中我们需要考虑高层建筑与多层建筑的区别,且高层建筑由于整体高度,结构内部受力情况也更加复杂。
对于高层建筑而言,风荷载引起的效应在总荷载效应中所占的比重比较大,所以要做好高层建筑结构抗风设计工作,提高建筑结构的科学性和合理性,从而为人们提供一个舒适的居住环境,以此促进高层建筑的发展和进步。
关键词:超高层;建筑结构;抗风;性能1高层建筑结构抗风设计理论高层建筑一般具备较大的高宽比,同时其抗侧刚度较小;并且地震作用和风荷载都是其主要承担的水平荷载。
相比较地震作用,风荷载出现的频率比较高。
所以,在高层建筑结构中,主要设计的荷载是风荷载。
1.1基于性能的结构抗风设计理论基于性能的结构抗风设计理论,主要目标是在不一样强度水平风振的影响下,对建筑结构的安全和舒适度进行有效的控制,从而确定不同性能水准,确保在整个生命周期内的建筑物,在承担可能会出现的风振作用下,其总体成本费用是最小的。
1.2结构风振性能水准1.2.1风振系数作为我国目前使用得荷载规范的一个重要系数,风振系数对风载值的作用比较大。
1.2.2人体舒适度在侧向力的影响下,高层建筑会出现振动的情况,如果振动处于某一个限值时,人们会产生不舒服的感觉。
人体得舒服度可以分为六个不同的等级,分别是无振感、轻微振感、中等振感、烦恼和非常烦恼以及无法忍受。
1.2.3结构风振性能水准性能水准,主要是指所设计的建筑物,在可能会遭受的特定风作用下,所明确的最大容许舒服度,或者所容许的最大破坏度。
主要是从舒适度和变形两个方面确定性能水准的指标。
1.3结构性能目标性能目标,主要指的是所设计的建筑物,在设计风压等级的需求下,满足性能水准的总和。
结构性能目标,要综合考虑建筑物的使用要求、功能要求的重要性等等要素。
1.4结构抗风计算1.4.1理论计算在计算分析的工作中:①要充分的考量结构的线性,同时要充分的考量非线性恢复力特性,从而完成模型分析工作;②选择科学的计算方法,计算模拟风场,同时分析风振的动力时程;③按照不一样的性能目标,选择有效的分析方法;④推广实用性较强和容易掌握的计算方法,降低计算量,重视前后处理软件程序的开发和利用工作。
超高层建筑在脉动风致响应下数值模拟研究

顺风 向的风可 分 为平均 风 和脉动 风 , 种风 的作 用特 两 性截 然不 同 : 均 风 可作 为 静 力 看 待 , 平 因而 在平 均 风 作用 下结 构效应 可 利用静 力 分析得 到 ; 脉动 风作 用是
动力性 质 的 , 要 按 随 机 振 动 理 论 进 行 结 构 动 力 分 需
中 图分 类 号 i TU2 18 TU3 8 2 4. ; 9 . 文 献标 识 码 l A 文章 编 号 l6 35 8 (0 1 0—5 70 17 —7 1 2 1 ) 50 7 —3
0 引
言
包括 顺 风 向 、 横风 向和垂 直 向 的湍 流 。由于垂直 向的
湍 流数值 很小 , 结构 影 响可 以忽 略不 计 , 对 且横 风 向
《 工程与建设 》 2 l 年第 2 卷第 5 O1 5 期 5 7 7
( ) 风 向脉 动 风 速谱 。 目前 国际 上 有 很 多 种 3顺
方 差是 随高 度 的增加 而增 加 的 , 动系数 减 小 只表 明 脉 脉 动风 压在 整个 风压 中的 比例是 沿 高度 减小 的 。
风速谱 , 基本 分 为 沿 高 度 不 变 和沿 高 度 变 化 的 脉 动 风 速谱 。沿 高度 不 变 的脉 动 风 速谱 有 Dae pr风 vn ot 速 谱 、 ri风速 谱 等 ; 高 度 变 化 的脉 动 风 速谱 有 Har s 沿 K ma 速谱 、i u风 速 谱 和 Hio风 速 谱 等 。其 a n风 Smi n
()湍流 强 度 。可 定 义 为 脉 动 风 速 的根 方差 与 2 平 均 风速 之 比 , z高度 处 的湍流强 度 为 则
I) ( 一 ( ) v z / () () 1
高层建筑的风环境影响及其控制

高层建筑的风环境影响及其控制高层建筑是在特殊地区和时间下,为了满足社会和经济的需求而建造的, 其独特性和各自特异的风格,增加了城市景观,吸引了大量的旅游观光者。
而更具有实用意义的是满足了城市日益增长的工作、生活空间的需求。
本文就高层建筑物所形成的独特风环境影响,及其控制方法做简要的阐述。
关键词:高层建筑风环境风振控制阻尼器人体舒适度在大风季节时,高层建筑及其群体的布局,可能造成对自身及其周围的不良风环境,甚至风灾的课题,已责无旁贷地展现在今日城市规划、建筑设计部门、施工单位的面前。
如同城市中大气污染、噪声污染、光污染、采光权纠纷等环境问题一样,能否在高层建筑的规划与布局伊始,事先就周密地考虑到优化风环境,防范不测风灾,而进行认真的论证和试验,这已成为评估城市建设规划优劣的一个重要衡量指标。
显然,良好的建筑的风环境指的是,在气象工作者给出的某一大区域内风特性的条件下,为了使人们工作、居住生活与活动有一个舒适的环境,城市规划与设计部门能否力求以最小的代价去营造一个安全而舒适的风环境,来满足广大人民群众安居乐业之需。
1. 高层建筑内、外风环境不舒适性测评准则高层建筑及其群体的外形、布局,随设计者的构思而异。
在风力作用下,其绕流特性各异。
当布局不当时,在建筑物外部往往造成局部不良的风环境:如卷起灰尘、纸屑及杂物并堆积于背风区;掀起屋顶覆盖物、破坏围护结构、幕墙玻璃、门窗等等,对广场、街道上的行人及交通安全构成威胁。
此外,目前很多高层建筑采用钢结构框架,设计重量越来越轻,高度越来越高,而本身机械阻尼却越来越低,对风力作用越来越敏感,且往往是高柔性结构。
尽管结构工程师能保证结构承受风荷载是安全可靠的,但风致振动,使大楼产生摆动,造成室内家具碰撞产生噪声,吊灯摇晃等现象。
同时,居住或工作在发生振动的建筑物中的人完全暴露于振动环境中,可能引起人们一系列不良心理效应,如焦虑、疲劳、劳动能力减退等。
这里提出一个建筑物内部的风环境舒适性的问题,同时对高层建筑的风环境分内外两个方面来评价。
第3,4章 高层建筑荷载

高层建筑的荷载包括竖向荷载和水
平荷载。竖向荷载的计算与一般房 屋并无区别,这里不再重复。以下 主要介绍水平荷载——风荷载和地 震荷载的计算方法。
3.1 风荷载
空气流动形成的风遇到建筑物时,会使建筑物表面产 生压力或吸力,这种作用称为建筑物所受到的风荷载。 风的作用是不规则的,风压随风速、风向的变化而不 断改变。实际上,风荷载是随时间波动的动力荷载, 但设计时一般把它视为静荷载。长周期的风压使建筑 物产生侧移,短周期的脉动风压使建筑物在平均侧移 附近摇摆。对于高度较大且较柔的高层建筑,要考虑 动力效应,适当加大风荷载数值。确定高层建筑风荷 载,大多数情况(高度300m以下)可按照《建筑结构荷 载规范》规定的方法,少数建筑(高度大、对风荷载敏 感或有特殊情况)还要通过风洞试验确定风荷载,以补 充规范的不足。
• 位于山区的高层建筑,按上述方法确定风压高度 变化系数后,尚应按现行国家标准 《建筑结构荷 载规范》GB50009的有关规定进行修正。 • 对于山区的建筑物,风压高度变化系数可按平坦地 面的粗糙度类别,由表7· 1确定外,还应考虑地形 2· 条件的修正,修正系数h分别按下述规定采用:
1 对于山峰和山坡,其顶部B处的修正系数可按下 述公式采用:
局部风荷载:用于计算局部构件或围护构件或
维护构件与主体的连接。 对于檐口、雨蓬、遮阳板、阳台等突出构件的 上浮力,取μs>=-2.0。 对封闭式建筑,按外表面风压的正、负情况取2.0或+2.0。
3.1.3风洞试验
(JGJ3-2002)规定:有下列情况之一的建筑物, 宜按风洞试验确定风荷载。 1 高度大于200m 2高度大于150m,且平面性状不规则、立面形 状复杂,或立面开洞、连体建筑等 3 规范或规程中没有给出风载体形系数的建筑 物 4 周围地形和环境复杂的建筑物
棱柱形高层建筑幕墙在非高斯脉动风作用下的响应
棱柱形高层建筑幕墙在非高斯脉动风作用下的响应
史建鑫;吕令毅
【期刊名称】《工程建设与设计》
【年(卷),期】2012(000)005
【摘要】高层建筑上风压场的某些区域具有明显的非高斯特性,与传统的高斯风压场相比,非高斯风压场会使幕墙结构的动力响应增大.从模拟非高斯风压场入手,以幕墙结构节点位移根方差为比较对象,对幕墙结构等效模型进行动力分析,得出非高斯风压场较高斯风压场动力特性增大15%的结论.
【总页数】3页(P60-62)
【作者】史建鑫;吕令毅
【作者单位】东南大学土木工程学院,南京210096;东南大学土木工程学院,南京210096
【正文语种】中文
【中图分类】TU312+.1
【相关文献】
1.独立高柱广告牌在脉动风荷载作用下的疲劳响应分析 [J], 谢以顺;朱卫国;韩新
2.煤矿井塔结构在脉动风荷载作用下的响应分析 [J], 黄欣;张勇;盛宏玉
3.脉动风作用下高耸塔结构风振响应研究 [J], 甘进;洪灶明;吴卫国
4.脉动风荷载作用下声屏障动力响应分析 [J], 罗文俊;李恒斌
5.超高层建筑在脉动风致响应下数值模拟研究 [J], 鲍远伟
因版权原因,仅展示原文概要,查看原文内容请购买。
矩形超高层建筑横风向脉动风力,Ⅱ:数学模型
l
0 6 .7
差系数 、 功率谱 和相关 系数 进行 拟 合 , 得到 以风场 和 厚 宽 比为基 本 变量 的闭 合公 式 。限 于篇 幅 , 文不 给 出 本
风洞试验 过程 , 简要 给 出公 式 拟合 的 方法 。风 洞 试 仅
{.6— . 1 +( 067+ .4 o ) +(.5 10 03a 一 .7 028 O  ̄ / 015一
数 的数据量 较大 , 以厚宽 比和风 场类 型 为基 本变 量 , 又
文献 [ ] 6 对数 个矩 形 建 筑模 型 进行 了 同步测 压 风 洞试
验, 拟合 得到 了横风 向风力功 率谱 的公式 。但 文献 [ ] 6 的测压试 验仅 在 我 国建 筑 结 构荷 载 规 范 G J B 9—8 7定
基 金 项 目: 国家 自然科 学 基 金 委 创 新 研 究 群 体 科 学 基 金 ( 02 0 2 、 56 16 ) 国
家 自然 科 学 基 金重 大 研 究 计 划 重 点 项 目( 0 10 0 、 家 自然 科 学 9 75 4 ) 国
一
摘 要 :系列文章的第一部分总结了矩形截面高层建筑横风向脉动风力的基本特征。在此基础上, 采用非线性最
小二乘法 , 以风场类 型及厚宽 比为基本变量 , 对横风向脉动风力 根方差系数 、 向相关 系数 以及功 率谱 密度进行拟合 , 竖 得
到 横 风 向 脉 动风 力 的闭 合 求 解公 式 。最 后 通 过 与 试验 结 果 的 比 较 , 证 了 这 些 公 式 的精 度 。运 用 这 些 公 式 , 较 为 方 便 验 可 地 计 算 矩形 截 面高 层 建 筑 的横 风 向脉 动 风 力 。 关 键词 :矩 形 超 高层 建筑 ; 洞试 验 ; 风 向风 力 ; 学模 型 风 横 数
超高层建筑设计中的风振效应治理
超高层建筑设计中的风振效应治理超高层建筑作为现代城市的地标性建筑,不仅体现了人类对于技术和建筑的不断追求与创新,同时也带来了一系列独特的挑战与问题。
其中之一就是超高层建筑设计中的风振效应治理。
风振效应是指在风力作用下,建筑结构发生的振动现象。
对于低矮建筑而言,风振效应的影响往往可以忽略不计,但是对于超高层建筑而言,风振效应不仅会影响到建筑的舒适性和使用寿命,还可能对建筑的安全性产生重大威胁。
治理超高层建筑中的风振效应是一项极其重要且复杂的任务。
首先,设计师需要通过合理的结构设计来降低风振效应的发生。
各项参数的选择以及结构的刚度都需要经过精密的计算和模拟,以确保建筑能够在不同风力下保持稳定。
其次,采用适当的减振措施也是治理风振效应的重要手段之一。
最常见的减振装置就是阻尼器,它可以通过消耗建筑结构的振动能量来减小风振效应。
阻尼器的种类多种多样,包括液压阻尼器、摩擦阻尼器等等。
设计师需要根据具体情况来选择合适的减振装置,并确保其能够正常运行和维护。
除了结构设计和减振措施,建筑外立面的设计也可以在一定程度上减小风振效应。
通过合理布置外窗的开口和设置遮挡物,可以改变建筑的风场分布,减小风的影响力。
此外,一些先进的外立面材料也可以通过其自身的减振能力来有效降低风振效应。
然而,要想真正解决超高层建筑中的风振效应问题,单纯依靠设计和减振措施是远远不够的。
实际上,综合治理风振效应需要多个环节的协同配合。
首先是施工阶段的监控和控制。
在建造过程中,要严格遵守相关的建筑规范和工艺要求,确保施工的质量和安全。
同时,建筑结构的监测系统也需要进行实时监控,及时发现并处理异常情况。
其次是建筑维护和管理的重要性。
超高层建筑通常需要进行定期的维护和检查,以确保结构的稳定性和安全性。
维护团队应该具备专业的技术与知识,能够及时处理各类问题,并对建筑进行必要的加固和改进。
最后是科学研究和技术创新的持续推动。
随着科学技术的不断进步,我们需要不断地总结经验教训,深入研究超高层建筑中的风振效应,并寻找更加有效和可持续的治理方法。
风荷载对高层建筑物的影响
风荷载对高层建筑物的影响摘要:随着经济的发展,近年来高层建筑尤其是体型复杂的超高层建筑得到了蓬勃的发展。
一般而言,高层建筑物占地面积少,建筑面积大,造型独特,相对集中。
这一特点使得高层建筑物在人口稠密的大城市迅速发展。
但是高层建筑物上风荷载也越来越大,导致水平荷载不断增大。
因此,高层建筑物需要较大的承载力和刚度来解决水平荷载的问题。
关键词:风载荷高层建筑物影响风是紊乱的随机现象风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。
目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。
风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。
一、风荷载的形成风荷载是空气流动形成的,对建筑物的作用是不规则的,风荷载实际上是一种随机时变活荷载,但不同于一般活荷载(楼面和屋面活荷载、吊车荷载、雪荷载)。
为了结构设计方便,迄今为止,世界各国的高层建筑结构设计,都是将风荷载转换为确定性的静力等效风。
风对建筑物的影响不仅仅是风声,主要是风荷载对水平位移的影响。
具体到多少米会有影响,要看当地气候特点、风力状况、场地特征、建筑物体型等等因素。
总风荷载与局部风荷载总风荷载是指建筑物的各个表面所受风荷载的合力,是沿建筑物变化的线荷载,通常按建筑物的主轴方向计算。
局部风荷载是指在建筑物表面某些风压较大的部位,考虑风压对局部某些构建的不利作用时考虑的风荷载,考虑部位一般是建筑物的角隅或阳台雨篷等悬挑构件。
风荷载与楼层高度有关,越高风压越大,但不是简单的正比关系。
对于平坦或稍有起伏的地形,风压高度变化系数应根据地面粗糙度类别按规范取值确定。
对于山区的建筑物,风压高度变化系数还应考虑地形条件的修正。
二、风荷载对高层建筑物的影响风荷载是超高层建筑的主要控制荷载,气流经过高耸结构物会产生明显的三维风荷载效应,即顺风向、横风向和扭转风荷载,从而引起结构在三个方向上的振动。