蠕变分析

合集下载

蠕变试验步骤

蠕变试验步骤

蠕变试验步骤全文共四篇示例,供读者参考第一篇示例:蠕变试验是用来研究材料在高温和常温下受力条件下的变形行为的一种实验方法。

这种试验通常用于评估材料的持久性能和设计寿命,对材料的工程应用具有重要的指导意义。

在进行蠕变试验时,需要按照一定的步骤来进行,以确保试验结果的准确性和可靠性。

下面将详细介绍蠕变试验的步骤:第一步:准备样品在进行蠕变试验之前,首先需要准备好要测试的材料样品。

样品的准备应该按照标准化的要求进行,例如确定样品的几何尺寸和形状,确保样品的表面光滑和无损伤。

还需要对样品进行预处理,如去除氧化层、清洁表面等操作。

第二步:确定试验条件在开始蠕变试验之前,需要确定试验的温度、应力和时间等试验条件。

这些条件通常是根据材料的使用环境和需要来确定的。

在确定试验条件时,需要参考相应的标准和规范,以确保试验的可比性和可信度。

第三步:装配试验设备将样品装入蠕变试验设备中,并根据需要设置合适的载荷和温度控制系统。

试验设备通常包括蠕变试验机、加热炉、控温系统等。

在装配试验设备时,需要确保设备的运行正常和稳定。

第四步:开始试验在一切准备工作完成之后,就可以开始进行蠕变试验了。

在试验过程中,需要实时监测试验条件的变化,如样品的变形情况、温度的变化等。

还需要定期检查试验设备的运行情况,确保试验的稳定性和准确性。

第五步:结束试验在试验时间到达后,需要结束试验并将样品从试验设备中取出。

需要对试验数据进行分析和处理,得出试验结果并进行报告。

在结束试验时,还需要对试验设备进行清洁和维护,以确保设备的长期正常运行。

蠕变试验是一种重要的材料性能评价方法,通过上述步骤的进行,可以得到准确可靠的试验结果,并为材料的工程应用提供重要的参考。

希望通过不懈努力,将蠕变试验方法不断完善,为材料科学和工程领域的发展做出贡献。

第二篇示例:蠕变试验是一种用于研究材料在高温下受力引起的变形行为的实验方法,常用于工程材料的性能评价和材料疲劳寿命预测。

ansys高级非线性分析四蠕变

ansys高级非线性分析四蠕变


第一阶段 第二阶段
断裂 第三阶段
t
September 30, 2001 Inventory #001491 4-9
Advanced Structural Nonlinearities 6.0
隐式和显式蠕变
... 术语的定义
Training Manual
• 蠕变的三个阶段(续)
– 蠕变应变率可能是应力、应变、温度、和/或时间的函数。
• 本章将介绍ANSYS中可用的大量的隐式和显式蠕变法则。
– 主要讨论金属的蠕变。 然而, 讨论的各种观点也适用于塑料或混凝土 等其它材料的蠕变。
– ANSYS有隐式和显式两种蠕变分析过程。 首先讨论蠕变的一般知识, 然后是进行隐式或显式蠕变分析的细节。
September 30, 2001 Inventory #001491 4-2
September 30, 2001 Inventory #001491 4-17
Advanced Structural Nonlinearities 6.0
隐式和显式蠕变
... 一般蠕变方程
Training Manual
• ANSYS 中可用的蠕变法则汇总如下:
Creep Equation Description Strain Hardening Time Hardening Generalized Exponential Generalized Graham Generalized Blackburn Modified Time Hardening Modified Strain Hardening Generalized Garofalo (Hyperbolic sine) Exponential Form Norton Time Hardening Rational Polynomial Generalized Time Hardening User Creep Annealed 304 Stainless Steel Annealed 316 Stainless Steel Annealed 2.25 Cr - 1 Mo Low Alloy Steel Power Function Creep Law Sterling Power Function Creep Law Annealed 316 Stainless Steel 20% Cold Worked 316 SS (Irradiation-Induced)

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究引言:岩石是地球上最基础的构造材料之一,其性质的研究对于地质科学以及岩土工程领域具有重要意义。

岩石在地壳中扮演着起支撑与保护作用,因此了解岩石的变形行为以及蠕变性质对于地质灾害的预测与评估具有重要的指导意义。

本文将就岩石材料的蠕变实验及本构模型研究进行详细阐述。

一、岩石材料的蠕变实验蠕变是指物质在长时间内受到持续应力下的变形现象。

岩石材料由于具有多种类型的孔隙和裂隙,因此其蠕变行为比一般材料更为复杂。

蠕变实验是研究岩石材料蠕变性质的主要手段之一,其目的是了解岩石在不同应力、不同温度和不同时间下的蠕变特性。

1.实验设备蠕变实验一般需要使用蠕变试验机,该仪器能够提供连续加载并测量样品的应力和应变,同时控制温度。

实验所需的试样通常需要根据具体需要制备。

此外,还需要一些测量设备,如蠕变计和应变测量仪等。

2.实验过程蠕变实验的过程包括准备试样、加载试样、施加应力、保持应力和测量应变等步骤。

首先,需要根据实验要求制备符合标准的试样。

然后,将试样放置在蠕变试验机上,施加适当的负载并开始加载。

在加载过程中,需要保持恒定的应力并测量试样的应变,常用的应变测量方法有外部应变计和内部传感器等。

最后,根据实验结果绘制蠕变曲线,分析蠕变行为。

本构模型是描述材料力学性质的数学模型,通过建立岩石材料的本构模型,可以预测岩石的变形行为并进行力学仿真研究。

目前常用的岩石本构模型有线性弹性模型、弹塑性模型和粘弹性模型等。

1.线性弹性模型线性弹性模型是最简单的本构模型,它假设岩石材料的应力应变关系是线性的,即满足胡克定律。

这种模型适用于小应变范围内的岩石变形,但无法描述岩石的时间依赖性和非线性特性。

2.弹塑性模型弹塑性模型考虑了岩石在加载时的弹性变形和塑性变形,常用的模型有Mohr-Coulomb模型、Drucker-Prager模型等。

这些模型能够更准确地描述岩石的变形行为,但在蠕变时间很长的情况下,塑性本构模型可能会失效。

高温蠕变试验

高温蠕变试验

高温蠕变试验是一种用于测量材料在高温环境下受力和温度变化时变形和时间关系的试验方法。

这种试验通常用于研究高温材料和部件的性能,例如高温管道、发动机零件、航空器部件等。

在高温蠕变试验中,材料被置于一个高温环境中,通常是在一个可控的炉子或模拟环境中进行。

试验样品通常是一个标准的试样,例如一个圆形或矩形截面的金属棒或管子。

在试验过程中,样品受到一定的载荷,通常是通过施加压力或重物来实现。

试验开始后,样品会逐渐变形,直到达到一个稳定的状态。

这个过程可以通过测量样品在不同时间点的变形量来记录。

在高温蠕变试验中,时间、温度和载荷是三个关键参数。

试验过程中,这三个参数的变化会影响到样品的变形行为。

通过高温蠕变试验可以得到材料的蠕变曲线。

蠕变曲线是表示样品在不同时间点的变形量随时间变化的曲线。

从蠕变曲线中可以得到材料的蠕变行为,例如蠕变速率、蠕变率、最大蠕变变形量等参数。

这些参数可以帮助研究人员了解材料的性能和特点,为材料的设计和应用提供依据。

高温蠕变试验对于高温材料的研究和应用具有重要意义。

通过高温蠕变试验可以得到材料的蠕变曲线和相关参数,这些参数可以帮助研究人员了解材料的性能和特点,为材料的设计和应用提供依据。

同时,高温蠕变试验还可以用于研究和测试高温材料在不同环境条件下的性能,为高温设备的选材和应用提供技术支持。

在高温蠕变试验中,需要注意一些关键点,例如选择合适的温度和载荷范围、控制环境温度和湿度的稳定、避免样品的热应力和裂纹等问题。

同时,在试验过程中需要严格记录样品在不同时间点的变形量,并进行分析和处理,得到准确的试验结果。

总之,高温蠕变试验是一种重要的材料性能测试方法,对于高温材料的研究和应用具有重要意义。

通过高温蠕变试验可以得到材料的蠕变曲线和相关参数,这些参数可以帮助研究人员了解材料的性能和特点,为材料的设计和应用提供依据。

蠕变分析实例

蠕变分析实例

图2
坐标轴设置对话框
ห้องสมุดไป่ตู้3
时间为 1000 小时的轴向应力结果显示
ANSYS 显示窗口将显示螺栓的有限元图,如图 1。
图1 五、施加载荷
螺栓有限元模型图
1) 施 加位 移 约束 。选 择 Preprocessor → Loads → Define Loads → Apply → Structural→Displacement→On Nodes 命令, 出现 Apply U, ROT on Nodes 拾取菜单,单击 Pick All 和 OK,在 Lab2 DOFs to be contrained 复选框 中选择 All DOF, 取 VALUE Displacement value 为 0。 2) 施加温度。选择 Preprocessor→Loads→Define Loads→Apply→Structural→Temperature→Uniform Temp 命令,取 Uniform Temperature 为 900。 六、求解计算 1) 定义分析类型。分析类型为 Static。 2)选择 Solution→Load Step Opts→Solution Ctrl 命令,出现 Nonlinear Solution Control 对话框,使 Solution Control 状态从 ON 变为 OFF,在 Pressure load stiffness 下拉菜单中选择 Program Chosen。 3) 定义求解时间步。选择 Solution→Load Step Opts→Time/Frequenc→Time and Substps 命令,取 Time at end of load step 为 3600000,取 Number of substeps 为 100,并选中 Stepped, 其余采用默认设置。 4) 求解输出控制。选择 Solution → Load Step Opts → Output Ctrls → Solu Printout 命令,在 Item for printout control 下拉菜单中选择 Basic quantities,并选中 Every Nth substp, 取 N 值为 36000,Component name 为 All entities。 5) 写入数据库和结果文件控制。选择 Solution → Load Step Opts → Output Ctrls→DB/Result Files 命令,在 Item to be controlled 下拉菜单中选 择 Element solution, 并选中 Every Nth substp, 取 N 值为 1,Component name 为 All entities。 6) 选择 Solution→Solve→Current LS 命令,单击 OK, ANSYS 将开始求解计 算,求解结束时,出现 Note 对话框。 七、查看求解结果 1) 轴向应力和时间变化关系曲线显示 ·定义时间-历程变量。选择 TimeHist Postpro→Define Variables 命令,单 击 Add 按钮,选中 by seq no.,单击 OK 按钮,出现单元拾取菜单,在输入栏

岩石的蠕变

岩石的蠕变
若在这一阶段之中(曲线上某一点E)进行卸载,则应变沿着曲线
EFG下降,最后e 应变为零。其中EF曲线为瞬时弹性应变 之恢复曲线,
而FG曲线表示应变随时间逐渐恢复为零。 由于卸载后应力立刻消失,而应变却随时间逐渐恢复,所以应力
与应变的恢复不是同步的,即应变总是落后于应力。具有这种特性的 弹性变形称为滞弹性或弹性后效。
5.3 蠕变模型
γ
τ
γ
τ
η η
ηη 1 1
τ τ
b
b
γ
γ
η2η2
cc
γ
ττ
γ
ηη 1 1 η1
η1
γ
ττγΒιβλιοθήκη dde) e)ττ
η2 η2
γ
γ
图5-5 线性粘弹性模型及其蠕变曲线 (a)马科斯威尔模型;(b)伏埃特模型;(c)广义的马科斯威尔模型;
(d)广义的伏埃特模型;(e)鲍格斯模型
5.3 蠕变模型
1(t) A1 exp(ct)
式中,A、C均为实验常数。 第一阶段蠕变应变公式更复杂些也可采用:
1(t) A1 exp(c1t) B1 exp(c2t)
式中,A、B、C1、C2 均为实验常数。
5.2 岩石蠕变经验公式
第二阶段蠕 变经验公式有:
1 ) Nadai (1963) 提出的:
.0 exp( / 0 )
石油工程中的流变现象: 在石油钻井过程中,当钻遇盐膏层时,会发生缩径现象;油田开发过程 中,由于注水,泥页岩部位的套管会受到非均匀外载的作用等都与岩层蠕变 有关。
5.1 蠕变概念和蠕变曲线
蠕变的定义: 岩石在恒定载荷持续作用下,其变形随时间逐渐缓慢 地增长现象称为蠕变(Creep)。 应力松弛的定义: 若控制变形保持不变,应力随时间的延长而逐渐减少 的现象称松驰(Relaxation)或称应力松驰。

岩石蠕变性能和徐变性能测试方法与分析

岩石蠕变性能和徐变性能测试方法与分析

岩石蠕变性能和徐变性能测试方法与分析岩石是地壳中的基本构造材料,其性能对于地下工程的设计和施工起着至关重要的作用。

岩石的蠕变性能和徐变性能是研究岩石长期稳定性和变形特性的重要指标。

本文将对岩石蠕变性能和徐变性能的测试方法和分析进行介绍和探讨。

一、岩石蠕变性能的测试方法与分析1. 岩石蠕变性能的定义及重要性岩石蠕变性是指在恒定的应力条件下,岩石随时间的延续而发生的不可逆性变形。

蠕变性能是岩石长期稳定性的重要指标之一,对于地下工程的安全运营和设计起着至关重要的作用。

2. 岩石蠕变性能的测试方法(1)直接剪切试验法:通过对岩石样品施加恒定剪切应力,观察岩石的剪切应变随时间的变化,以评估岩石的蠕变性能。

(2)恒定应力压缩试验法:通过施加恒定应力对岩石样品进行压缩,观察岩石的应变随时间的变化,以评估岩石的蠕变性能。

(3)恒定应力拉伸试验法:通过施加恒定应力对岩石样品进行拉伸,观察岩石的应变随时间的变化,以评估岩石的蠕变性能。

3. 岩石蠕变性能的分析方法(1)蠕变曲线分析:根据岩石蠕变性能测试获得的实验数据,构建蠕变曲线,分析曲线的特征,如蠕变速率、蠕变应变等,以评估岩石的蠕变性能。

(2)蠕变模型分析:将蠕变性能的实验数据输入到合适的蠕变模型中,通过模型仿真分析,得到岩石的蠕变特性和变形规律,以评估岩石的蠕变性能。

二、岩石徐变性能的测试方法与分析1. 岩石徐变性能的定义及重要性岩石徐变性是指在恒定应力条件下,岩石随时间的延续而发生的可逆性变形。

徐变性能是评估岩石短期变形特性和应力松弛程度的指标。

2. 岩石徐变性能的测试方法(1)应力松弛试验法:通过施加恒定应力,观察岩石应变随时间的变化,以评估岩石的徐变性能。

(2)弛豫试验法:通过施加瞬时应力,观察岩石应变随时间的变化,再施加恒定应力,观察应变的进一步变化,以评估岩石的徐变性能。

3. 岩石徐变性能的分析方法(1)弛豫-徐变模型分析:根据弛豫试验与徐变试验的实验数据,将其输入到合适的模型中,通过模型分析得到岩石的徐变特性和变形规律,以评估岩石的徐变性能。

蠕变试验步骤

蠕变试验步骤

蠕变试验步骤全文共四篇示例,供读者参考第一篇示例:蠕变试验是一种常用的材料力学性能测试方法,用于评估材料在高温和恶劣环境下的变形行为。

蠕变试验通常用于金属、陶瓷和聚合物等材料的研究和评估,能够帮助工程师和研究人员更好地了解材料在真实工作环境中的性能表现。

蠕变试验是通过施加一定大小的应力和温度条件下持续加载材料一段时间,观察材料在这种条件下的变形行为。

这种试验模拟了材料在高温和高应力环境中的实际工作情况,可以帮助预测材料的长期性能和寿命。

蠕变试验的步骤通常包括以下几个关键环节:1. 样品制备:首先需要准备好符合标准要求的试样,一般为柱状或圆盘状的标准试样。

试样的制备需要严格按照标准规范进行,以确保试验结果的准确性和可比性。

2. 设置试验条件:在进行蠕变试验之前,需要确定试验的应力和温度条件。

通常会根据材料的实际工作情况和要求来确定试验条件,以保证试验结果具有代表性和实用性。

3. 进行试验:将样品放置在试验机中,施加一定大小的应力,并在设定的温度条件下持续加载一段时间。

试验过程中需要实时监测材料的变形情况,并记录试验数据。

4. 数据分析:根据试验结果和数据分析材料的变形行为和性能特点。

可以通过绘制应力-应变曲线、蠕变速率曲线等图表来分析材料的蠕变特性和性能表现。

5. 结果评估:最后根据试验结果对材料的性能进行评估和预测。

可以根据试验数据来研究材料的寿命预测、设计参数优化等工作。

蠕变试验是一种重要的材料性能测试方法,能够帮助工程师和研究人员更好地了解材料在高温和高应力环境下的变形行为和性能,为材料的设计和选型提供重要参考。

希望通过不断的研究和实践,能够进一步完善蠕变试验方法,提高试验数据的准确性和可靠性,为材料科学领域的发展做出更大的贡献。

第二篇示例:蠕变试验是一种用于评估材料在高温、高应力条件下的变形性能的测试方法。

在工程领域中,蠕变试验常用于评价材料的稳定性和持久性能,特别是在航空航天、能源等高温环境下的应用中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见 图4-18a 。

图4-18 应力松弛和蠕变 蠕变的三个阶段如 图4-18b 所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。

由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。

在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。

4.4.1.2 理论介绍

蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下:

上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。

对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为:

经过修改的等效总应变为:

其等效应力由下式算出: 其中:G=剪切模量= 等效蠕应变增量 由程序给出的某一种公式进行计算,一般为正值,如果在数据表中 ,则使用的是衰减的蠕应变率而不是常蠕变率,但这个选项一般不被推荐,因为在初始蠕变所产生的应力为主的情况下,它可能会严重的低估蠕变值。如果 ,程序使用修正的等效蠕应变增量来代替蠕应变增量。

其中:e=(自然对数的底数) 下面是计算积分点的蠕应变率与弹性应变比率的公式:

将本次迭代的所有单元的所有积分点的的最大值记为 ,并且作为“CREEPRATIO”输出。 计算出等效蠕应变增量后,可将它转换成分量的形式,假设 Nc 是某个特定单元类型的应变分量的个数。 如果 则有:

如果 ,则有:

上式中,前三个为正应变分量,第四个是剪应变分量。 如果 ,前四个分量与上式相同,另两个剪应变分量为:

接下来,可以按下式来计算弹性应变和总的蠕应变(以 X 方向的分量为例):

为了从标量 来计算分量 , , ,程序使用相关流动准则:Prandtl-Reuss方程,与塑性应变相同,蠕应变只有偏差分量(剪分量),没有由于蠕变引起的体积应变。 为了考虑应力随时间的变化,使用两种强化准则,时间强化和应变强化。我们以一简单拉伸试验来说明:刚开始时,杆被加载到应力为 ,在时间 它被卸载到应力为 。 (a) 时间强化 (b) 应变强化 图4-19 典型的单轴蠕变曲线

时间强化假定蠕应变率仅仅依赖于蠕应变过程开始的时间。当应力从 变到 时,材料的蠕变率由点A表示(相当于曲线向上移动)。

应变强化假定蠕应变率仅仅依赖于材料中的应变,当应力从 变到 时,材料的蠕变率由点B表示(相当于曲线左移)。大多数实验数据与应变强化准则吻合得更好。

4.4.2 求解算法 ANSYS使用隐式和显式积分二种方法来进行蠕变分析,均可应用于静态和瞬态分析。隐式蠕变分析方法更强大、更快、更精确,一般推荐使用隐式蠕变分析。它可以处理温度相关蠕变常数,同时模拟蠕变与等向强化塑性模型。

对于需要很小时间步的情况,显式蠕变分析就非常有用。蠕变常数不能有温度相关性,而与其他塑性材料模型的耦合只能应用迭加法。

注意 --蠕变分析中的“隐式”和“显式”,与“显式动力分析”或“显式单元”没有任何关系。 隐式蠕变分析方法支持下列单元:PLANE42,SOLID45,PLANE82,SOLID92, SOLID95,LINK180,SHELL181,PLANE182,PLANE183,SOLID185,SOLID186,SOLID187,BEAM188 和 BEAM189。

显式蠕变分析方法支持下列单元:LINK1,PLANE2,LINK8,PIPE20,BEAM23, BEAM24,PLANE42,SHELL43,SOLID45,SHELL51,PIPE60,SOLID62,SOLID65,PLANE82,SOLID92 和 SOLID95。

蠕变应变率可以是应力、应变、温度、电子流水平的函数。蠕变应变率方程已按初始蠕变、第二期蠕变和辐射引起的蠕变在ANSYS中建立。参见《ANSYS Elements Reference》中关于这些蠕变方程的讨论和输入方法。有一些方程需要特殊的单位。特别是,对于显式蠕变选项,蠕变方程中的温度应当基于绝对温度。 4.4.2.1 隐式蠕变方法 隐式蠕变方法的基本步骤包括应用 TB 命令( Lab =CREEP),通过 TBOPT 值选择蠕变方程。TBOPT的输入值对应于特定的蠕变方程, ANSYS程序所提供的隐式蠕变方程如下:

· TBOPT=1 所对应的蠕变方程(初始蠕变方程):

· TBOPT=2 所对应的蠕变方程(初始蠕变方程):

· TBOPT=3 所对应的蠕变方程(初始蠕变方程):

, · TBOPT=4 所对应的蠕变方程(初始蠕变方程):

· TBOPT=5 所对应的蠕变方程(初始蠕变方程):

, , · TBOPT=6 所对应的蠕变方程(初始蠕变方程):

· TBOPT=7 所对应的蠕变方程(初始蠕变方程): · TBOPT=8 所对应的蠕变方程(初始蠕变方程): · TBOPT=9 所对应的蠕变方程(二期蠕变方程):

· TBOPT=10 所对应的蠕变方程(二期蠕变方程):

· TBOPT=11 所对应的蠕变方程(初始蠕变+二期蠕变方程):

· TBOPT=12 所对应的蠕变方程(初始蠕变+二期蠕变方程):

· TBOPT=100 所对应的蠕变方程: 用户自定义的蠕变方程 在以上方程中:

=等效蠕应变 =等效蠕应变对时间的变化率 =等效应力 T=绝对温度, 程序内部温度偏移量(TOFFST)被加到所有的温 度上。

=通过TBDADA命令所输入的材料常数 t=子步的结束时间。 下例说明隐式蠕变分析方法。 TBOPT =2表示将应用初始蠕变方程于模型2。温度相关性通过 TBTEMP 命令来指定,与此方程有关的4个常数作为 TBDATA 命令的参数。

TB,CREEP,1,1,4,2 TBTEMP,100 TBDATA,1,C1,C2,C3,C4 用户也可以应用ANSYS的可编程特性,并设置 TBOPT =100 来输入其他蠕变表达式。可以用 TB 命令( Lab =STATE)来定义状态变量数。下例是如何定义5个状态变量的例子:

TB,STATE,1,,5 用户可以同时模拟蠕变[ TB, CREEP]和各向同性强化、双线性随动强化和HILL各向异性塑性来考察更复杂的材料行为。参阅《ANSYS Element Reference》中的《Material Model Combination》部分来了解可用的联合使用。另外参阅本书§《Material Model Combination》中材料联合使用的输入命令。

为了执行隐式蠕变分析,用户必须应用求解 RATE 命令( Option =ON或1)。下面的例子说明一个时间强化蠕变分析,见图4-20 。

图4-20 时间强化蠕变分析 用户在第1荷载步施加机械荷载,并把 RATE 命令设为 OFF,这样绕过(忽略)蠕变应变效应。由于在这一荷值步的时间间隔将影响其后的总时间,因此这一荷载步的时间间隔要充分小。例如,用户可指定时间值为1E-8秒。第2荷载步是蠕变分析。这时应把 RATE 命令设为ON。这里机械荷载保持为常数,而材料随时间增量而发生蠕变。

/SOLU !First load step, apply mechanical loading RATE,OFF !Creep analysis turned off TIME, !Time period set to a very small value ... SOLV !Solve this load step !Second load step, no further mechanical load RATE,ON !Creep analysis turned on TIME,100 !Time period set to desired value ... SOLV !Solve this load step RATE命令仅对采用von Mises 和Hill势的隐式蠕变有效。 当采用von Mises势模拟隐式蠕变时,可以对如下单元运用RATE命令:LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM88, BEAM189。

当模拟各向异性蠕变时( TB , CREEP 和 TB , HILL),可以对如下单元运用RATE命令:PLANE42, SOLID45, PLANE82, SOLID92, SOLID95, LINK180, SHELL181, PLANE182, PLANE183, SOLID185, SOLID186, SOLID187, BEAM88, BEAM189。

对于大多数材料,在早期阶段,蠕变应变率显著改变。因为这一原因,通常建议应用很小的初始时间步增量,然后应用求解命令 DELTIM 或 NSUBST 指定较大的最大增量时间步。对于隐式蠕变,用户可能需要在结果中仔细检验时间增量的影响,因为ANSYS缺省并不提供任何蠕变率的控制。用户可以应用 CRPLIM 或 CUTCONTROL ,CRPLIMIT 命令中的蠕变率控制选项来总是强迫采用一个蠕变极限比率。蠕变极限比率的推荐值是1~10。该比率可以随材料而变化,以便用户可以根据自己的经验来决定一个最佳值,从而获得需要的运行和精度。对于大型分析,建议首先在一个小模型中对时间增量收敛分析进行测试。

4.4.2.2 显式蠕变方法

显式蠕变方法求解蠕应变使用了欧拉朝前法,以时间步开始时的应力、应变为基础计算出蠕应变率,在每个时间步长内,蠕应变率被假定是常数,因此有:

相关文档
最新文档