动态规划算法
动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。
在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。
本文将详细介绍动态规划算法的难点以及应用技巧。
一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。
状态是指问题在某一阶段的具体表现形式。
在进行状态定义时,需要考虑到问题的最优子结构性质。
状态的定义直接影响到问题的子问题划分和状态转移方程的建立。
2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。
因此,建立合理的状态转移方程是动态规划算法的关键。
在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。
3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。
边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。
二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。
在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。
在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。
其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。
在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
动态规划算法

2级
n=4时:有3大类归并法。前1堆后3堆、前2堆后2堆、前3堆后1堆。
因3堆有2种归并法,所以一共5小类归并法。前1堆第1种情况:
4级 3级 2级 1级 13 序号 1
44 31 15 7
2
f(1, 4) = 15 + 31 + 44 = 90 = f(2, 4) + g(1, 4) w不变 = f(2, 3) + g(2, 4) + g(1, 4)
若f(2,4)越小,则f(1,4)就越小。 8
3
16
4
n=4 时:前1堆的第2种情况。
4级 44 31 24 7 2 8 3 f(1, 4) = 24 + 31 + 44 = 99 = f(2, 4) + g(1, 4) w不变 = f(3, 4) + g(2, 4) + g(1, 4) 若f(2,4)越小,则f(1,4)就越小。 16 4 f(1, 4) = 20 + 24 + 44 = 88
的一种通用方法,对最优化问题提出最优性原则,从而创建最优化问题
的一种新算法设计技术——动态规划,它是一种重要的应用数学工具。 至少在计算机科学圈子里,人们不仅用它解决特定类型的最优化问题, 而最终把它作为一种通用的算法设计技术,即包括某些非最优化问题。 多阶段决策过程最优化: 现实世界里有许多问题属于这种情况:它有很多解,应用要求最优解。 穷举法通过找出全部解,再从中选出最优解。这种方法对于那些计算
动态规划算法原理和实现

动态规划算法原理和实现动态规划是解决某些优化问题的一种算法思想,它主要针对的是那些可以分解成子问题的大问题,因此也被称作分治法。
动态规划算法的核心思想是将大问题分解成一个个小问题,然后逐步求解这些小问题并将它们组合成原问题的解。
本文将简单介绍动态规划算法的原理和实现。
一、动态规划算法的原理为了更好地理解动态规划算法的原理,我们可以以一个实例为例:假设有一个背包,它最多能装W重量的物品,现在有n种不同的物品,每种物品都有自己的重量w和价值v。
我们需要选择哪些物品放入背包中,以使得背包中物品的总价值最大。
这是一个典型的动态规划问题。
首先,我们可以把问题分解成子问题:设f(i,j)表示前i种物品放入一个容量为j的背包可以获得的最大价值。
因此,我们可以得到以下状态方程式:f(i,j) = max{f(i-1,j), f(i-1,j-w[i])+v[i]} (1≤i≤n,1≤j≤W)其中,f(i-1,j)表示不放第i种物品的最大价值,f(i-1,j-w[i])+v[i]表示放入第i种物品的最大价值。
因此,当我们计算出f(i,j)时,我们就得到了「前i种物品放入容量为j的背包的最大价值」,这也就是原问题的解。
这样,我们就可以使用动态规划算法来计算出最优解。
具体来说,我们从0开始,逐个计算出f(i,j)的值,直到计算出f(n,W)为止。
此外,我们还需要注意以下几点:1. 在计算f(i,j)的时候,我们需要使用到f(i-1,j)和f(i-1,j-w[i])这两个状态,因此我们需要先计算出f(1,j),在此基础上计算f(2,j),以此类推。
2. 对于一些特殊的情况,我们需要单独处理。
比如当背包容量小于某种物品重量时,我们就无法放入该物品。
3. 我们在计算f(i,j)时,有许多状态是可以复用的。
比如,当我们计算出f(i-1,j)后,我们就可以直接使用这个值来计算f(i,j),而无需重新计算。
二、动态规划算法的实现上面我们已经介绍了动态规划算法的核心思想和实现原理,下面我们来看看具体的实现过程。
动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划算法原理与的应用

动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。
它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。
动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。
下面将介绍动态规划算法的原理以及一些常见的应用。
1.动态规划算法的原理1)将原问题划分为多个子问题。
2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。
3)解决子问题,并将每个子问题的解保存起来。
4)根据子问题的解,构建整个问题的解。
2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。
2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。
2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。
该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。
2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。
动态规划算法教学PPT

03
动态规划算法的实现步骤
明确问题,建立数学模型
1
确定问题的目标和约束条件,将其转化为数学模 型。
2
理解问题的阶段划分,将问题分解为若干个子问 题。
3
确定状态变量和决策变量,以便描述子问题的状 态和决策。
划分阶段,确定状态变量和决策变量
01
根据问题的阶段划分,将问题分解为若干个子问题。
02
确定状态变量和决策变量,以便描述子问题的状态 和决策。
02
将子问题的最优解组合起来,得到原问题的最优解。
对最优解进行验证和性能评估,确保其满足问题的要求。
03
04
动态规划算法的优化技巧
分支定界法
分支定界法是一种求解优化问题的算 法,它通过不断生成问题的分支并确 定每个分支的界限,来寻找最优解。 在动态规划中,分支定界法可以用来 优化状态转移方程,减少计算量。
详细描述
多目标规划问题在实际生活中应用广泛,如资源分配、项目计划、城市规划等领 域都有涉及。常用的求解多目标规划的方法包括权重和法、帕累托最优解等。
多阶段决策问题
总结词
多阶段决策问题是动态规划中的一类,解决的问题需要在多个阶段做出决策,每个阶段的决策都会影响到后续阶 段的决策。
详细描述
多阶段决策问题在实际生活中应用广泛,如生产计划、库存管理、路径规划等领域都有涉及。常用的求解多阶段 决策问题的方法包括递归法、动态规划等。
特点
动态规划算法具有最优子结构、重叠 子问题和最优解性质等特征。
动态规划算法的应用领域
计算机科学
在计算机科学中,动态规划算法广泛应用于字符 串处理、排序、数据压缩和机器学习等领域。
电子工程
在电子工程中,动态规划算法用于信号处理、通 信和控制系统等领域。
动态规划算法

动态规划算法
动态规划算法(Dynamic Programming)是一种解决多阶段最优化决策问题的算法。
它将问题分为若干个阶段,并按照顺序从第一阶段开始逐步求解,通过每一阶段的最优解得到下一阶段的最优解,直到求解出整个问题的最优解。
动态规划算法的核心思想是将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,而是直接使用已有的计算结果。
即动态规划算法采用自底向上的递推方式进行求解,通过计算并保存子问题的最优解,最终得到整个问题的最优解。
动态规划算法的主要步骤如下:
1. 划分子问题:将原问题划分为若干个子问题,并找到问题之间的递推关系。
2. 初始化:根据问题的特点和递推关系,初始化子问题的初始解。
3. 递推求解:按照子问题的递推关系,从初始解逐步求解子问题的最优解,直到求解出整个问题的最优解。
4. 得到最优解:根据子问题的最优解,逐步推导出整个问题的最优解。
5. 保存中间结果:为了避免重复计算,动态规划算法通常会使
用一个数组或表格来保存已经求解过的子问题的解。
动态规划算法常用于解决最优化问题,例如背包问题、最长公共子序列问题、最短路径问题等。
它能够通过将问题划分为若干个子问题,并通过保存已经解决过的子问题的解,从而大大减少计算量,提高算法的效率。
总之,动态规划算法是一种解决多阶段最优化决策问题的算法,它通过将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,从而得到整个问题的最优解。
动态规划算法能够提高算法的效率,是解决最优化问题的重要方法。
动态规划和贪心算法的时间复杂度分析比较两种算法的效率

动态规划和贪心算法的时间复杂度分析比较两种算法的效率动态规划和贪心算法是常见的算法设计思想,它们在解决问题时具有高效性和灵活性。
但是,两者在时间复杂度上有所不同。
本文将对动态规划和贪心算法的时间复杂度进行详细分析,并比较这两种算法的效率。
一、动态规划算法的时间复杂度分析动态规划是一种通过将问题分解成子问题并保存子问题的解来求解的算法。
其时间复杂度主要取决于子问题的数量和每个子问题的求解时间。
1. 子问题数量动态规划算法通常使用一个二维数组来保存子问题的解,数组的大小与原问题规模相关。
假设原问题规模为N,每个子问题的规模为k,则子问题数量为N/k。
因此,子问题数量与原问题规模N的关系为O(N/k)。
2. 每个子问题的求解时间每个子问题的求解时间通常也与子问题的规模相关,假设每个子问题的求解时间为T(k),则整个动态规划算法的时间复杂度可以表示为O(T(k) * N/k)。
综上所述,动态规划算法的时间复杂度可以表示为O(T(k) * N/k),其中T(k)表示每个子问题的求解时间。
二、贪心算法的时间复杂度分析贪心算法是一种通过选择当前最优的解来求解问题的算法。
其时间复杂度主要取决于问题的规模和每个选择的求解时间。
1. 问题规模对于贪心算法来说,问题的规模通常是不断缩小的,因此可以假设问题规模为N。
2. 每个选择的求解时间每个选择的求解时间可以假设为O(1)。
贪心算法通常是基于问题的局部最优解进行选择,而不需要计算所有可能的选择。
因此,每个选择的求解时间可以认为是常数级别的。
综上所述,贪心算法的时间复杂度可以表示为O(N)。
三、动态规划和贪心算法的效率比较从时间复杂度的分析结果来看,动态规划算法的时间复杂度为O(T(k) * N/k),而贪心算法的时间复杂度为O(N)。
可以发现,在问题规模较大时,动态规划算法的时间复杂度更高。
原因在于动态规划算法需要保存所有子问题的解,在解决子问题时需要遍历所有可能的选择,因此时间复杂度较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21(2+19),28(18+10),19(9+10),21(5+16)。
用同样的方法还可以将4阶数塔问题,变为3阶数塔问题。 …… 最后得到的1阶数塔问题,就是整个问题的最优解。
2.存储、求解: 1) 原始信息存储 原始信息有层数和数塔中的数据,层数用一个整型 变量n存储,数塔中的数据用二维数组data,存储成如
29 19 10
21 4
16
数塔及动态规划过程数据
总结
动态规划=贪婪策略+递推(降阶)+存储递推结果 贪婪策略、递推算法都是在“线性”地解决问题,而动态 规划则是全面分阶段地解决问题。可以通俗地说动态规划是 “带决策的多阶段、多方位的递推算法”。
2、算法框架
1.适合动态规划的问题征
动态规划算法的问题及决策应该具有三个性质:最优 化原理、无后向性、子问题重叠性质。 1) 最优化原理(或称为最佳原则、最优子结构)。 2) 无后向性(无后效性)。 3) 有重叠子问题。
2. 动态规划的基本思想
动态规划方法的基本思想是,把求解的问题分成许多阶 段或多个子问题,然后按顺序求解各子问题。最后一个子问 题就是初始问题的解。
由于动态规划的问题有重叠子问题的特点,为了减少重 复计算,对每一个子问题只解一次,将其不同阶段的不同状 态保存在一个二维数组中。
3. 设计动态规划算法的基本步骤
3、动态规划应用
【例1】 背包问题 给定 n种物品和一个容量为 C的背包,物品 i的重 量是 wi ,其价值为 vi ,背包问题是如何选择装入背包 的物品,使得装入背包中物品的总价值最大?
算法分析
前 i 个物品(1≤i≤n)定义的实例: 物品的重量分别为w1,…,wi, 价值分别为v1,…,vi, 背包的承重量为j(1≤j≤W)。 设V[i,j]为该实例的最优解的物品总价值,也就 是说,是能够放进承重量为j的背包中的前i个物品中 最有价值子集的总价值。 可以把前i个物品中能够放进承重量为j的背包中的 子集分成两个类别: 1、包括第i个物品的子集 2、不包括第i个物品的子集
算法设计与分析
--动态规划算法
动态规划算法
1、认识动态规划算法
2、算法框架
3、动态规划应用
1 认识动态规划
在动态规划算法策略中:
体现在它的决策不是线性的而是全面考虑不同的情况分别 进行决策, 并通过多阶段决策来最终解决问题。 在各个阶段采取决策后, 会不断决策出新的数据,直到找 到最优解.每次决策依赖于当前状态, 又随即引起状态的转移。 一个决策序列就是在变化的状态中产生出来的,故有“动 态”的含义。所以,这种多阶段决策最优化的解决问题的过程称
for (i=n-1; i>=1; i=i-1) {max=0; p=0; for(j=i+1; j<=n; j=j+1) if (a[i]<a[j] and b[j]>max) {max=b[j]; p=j;} if( p<>0 ) { b[i]=b[p]+1; c[i]=p ;} }
max=0; p=0; for (i = 1;i <n;i++) if (b[i]>max) { max:=b[i]; p:=i ; } print('maxlong=',max); print ('result is:'); while (p<>0 ) { print(a[p]); p:=c[p]; } }
为动态规划。
【例1】数塔问题
如图所示的一个数塔,从顶部出发,在每一结点可以选 择向左走或是向右走,一直走到底层,要求找出一条路径,使 路径上的数值和最大。 问题分析 算法设计 小结
问题分析
这个问题用贪婪算法有可能会找不到真正的最大和。 以上图为例就是如此。用贪婪的策略,则路径和分别为: 9+15+8+9+10=51 (自上而下), 19+2+10+12+9=52(自下而上)。 都得不到最优解,真正的最大和是:
算法设计
, i 0或j 0 0 l[i, j ] l[i 1, j 1] 1 , i, j 0且xi yi max(l[i, j 1], l[i 1, j ]) , i, j 0且x y i i
【例4】最长不降子序列
设有由n个不相同的整数组成的数列,记为: a(1)、a(2)、„„、a(n)且a(i)<>a(j) (i<>j) 若存在 i1<i2<i3< „ <ik 且有 a(i1)<a(i2)< „ <a(ik) , 则称为长度为k的不下降序列。请求出一个数列的最长不下降序列。 算法设计 算法
下的下三角阵:
9 12 10 2 19
15 6 18 7
8 9 10
5 4
16
2) 动态规划过程存储 必需用二维数组a存储各阶段的决策结果。二维数组a 的存储内容如下: a[n][j]=data[n][j] j=1,2,„„,n; i=n-1,n-2,„„1,j=1,2,„„,i;时 a[i][j]=max(d[i+1][j],d[i+1][j+1])+data[i][j]
最后a[1][1]存储的就是问题的结果。
3) 最优解路径求解及存储
仅有数组data和数组a可以找到最优解的路径, 但需要 自顶向下比较数组data和数组a是可以找到。
数组data 数组a
9 12 10 2 19
15 6 18 7
8 9 10
5 4
16
59 50 38 21 19
49 34 28 7
有下面的结论: 1. 根据定义,在不包括第i个物品的子集中,最优子集的价
值是V[i-1,j].
2. 在包括第i个物品的子集中(因此,j—w≥0),最优子集 是由该物品和前i-1个物品中能够放进承重量为wj的背包的最 优子集组成。这种最优子集的总价值等于Vi+V[i-1,j-wi]。 因此,在前j个物品中最优解的总价值等于这两个价值中的
较大值。
Max{V[i-1,j],vi+V[i-1,j-wi]} V[i,j] j-wi≥0 j-wi<0
﹛
V[i-1,j]
【例3】求两个字符序列的最长公共字符子序列。
例如: X=“ABCBDAB”, Y=“BCDB”是X的一个子序列
问题分析 算法设计 算法(递归形式) 算法(非递归)
问题分析
设计一个标准的动态规划算法的步骤: 1) 划分阶段 2) 选择状态 3) 确定决策并写出状态转移方程
但是,实际应用当中的简化步骤: 1) 分析最优解的性质,并刻划其结构特征。 2) 递推地定义最优值。 3) 以自底向上的方式或自顶向下的记忆化方法(备忘录 法)计算出最优值. 4) 根据计算最优值时得到的信息,构造问题的最优解。
9+12+10+18+10=59。
算法设计
动态规划设计过程如下: 1.阶段划分: 第一步对于第五层的数据,我们做如下决策: 对经过第四层2的路径选择第五层的19, 对经过第四层18的路径选择第五层的10, 对经过第四层9的路径也选择第五层的10, 对经过第四层5的路径选择第五层的16。
以上的决策结果将五阶数塔问题变为4阶子问题,递推 出第四层与第五层的和为:
此问题不可能简单地分解成几个独立的子问题,也不能用 分治法来解。所以,我们只能用动态规划的方法去解决。
算法设计
1.递推关系分析 设 A=“a0,a1,„,am-1”, B=“b0,b1,„,bn-1”, Z=“z0,z1,„,zk-1” 为它们的最长公共子序列。 有以下结论: 1)如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,„,zk-2” 是“a0,a1,„,am-2”和“b0,b1,„,bn-2”的一个最长公共子 序列; 2)如果am-1≠bn-1,则若zk-1≠am-1,蕴涵“z0,z1,„, zk-1”是"a0,a1,„,am-2"和"b0,b1,„,bn-1"的一个最长公共 子 序列; 3)如果am-1≠bn-1,则若zk-1≠bn-1,蕴涵“z0,z1,„, zk-1”是“a0,a1,„,am-1”和“b0,b1,„,bn-2”的一 个最长公共子序列。
算法设计
1. 递推关系 1) 对a(n)来说,由于它是最后一个数,所以当从a(n)开始查找 时,只存在长度为1的不下降序列; 2) 若从a(n-1)开始查找,则存在下面的两种可能性: (1)若a(n-1)<a(n)则存在长度为2的不下降序列a(n-1),a(n)。 (2)若a(n-1)>a(n)则存在长度为1的不下降序列a(n-1)或a(n)。 3) 一般若从a(i)开始,此时最长不下降序列应该按下列方法求出: 在a(i+1),a(i+2),„,a(n)中,找出一个比a(i)大的且最长的不 下降序列,作为它的后继。
若A的长度为n,若B的长度为m,则
A的子序列共有: Cn B的子序列共有: C
1 2 3 n Cn Cn ...... Cn 2n 1
1 m
C C ...... C 2 1
2 m 3 m m m m
如采用枚举策略,当m=n时,共进行串比较:
1 1 2 2 3 3 n n Cn * Cm Cn * Cm Cn * Cm ...... Cn * Cn 22n
2. 数据结构设计
用数组a[i]记录1到n的不相同的整数数列
用数组b[i],记录点i到n的最长的不降子序列的长度 用数组c[i]分别点i后继接点的编号
算法
int maxn=100; int a[maxn],b[maxn],c[maxn]; main() { int n,i,j,max,p; input(n); for (i = 1;i <n;i++) { input(a[i]); b[i]=1; c[i]=0; }