离子注入简介

离子注入简介
离子注入简介

离子注入简介

我们设想在真空中有一束离子束射向一块固体材料时会发生哪些现象呢?离子束把固体材料的原子或分子撞出固体材料表面,这个现象叫做溅射;而当离子束射到固体材料时,从固体材料表面弹了回来,或者穿出固体材料而去,这些现象叫做散射;另外有一种现象是,离子束射到固体材料以后,受到固体材料的抵抗而速度慢慢减低下来,并最终停留在固体材料中,这一现象就叫做离子注入。

离子注入技术又是近30年来在国际上蓬勃发展和广泛应用的一种材料表面改性高新技术。其基本原理是:用能量为100keV量级的离子束入射到材料中去,离子束与材料中的原子或分子将发生一系列物理的和化学的相互作用,入射离子逐渐损失能量,最后停留在材料中,并引起材料表面成分、结构和性能发生变化,从而优化材料表面性能,或获得某些新的优异性能。此项高新技术由于其独特而突出的优点,已经在半导体材料掺杂,金属、陶瓷、高分子聚合物等的表面改性上获得了极为广泛的应用,取得了巨大的经济效益和社会效益。作为一种材料表面工程技术,离子注入技术具有以下一些其它常规表面处理技术难以达到的独特优点:(1)它是一种纯净的无公害的表面处理技术;(2)无需热激活,无需在高温环境下进行,因而不会改变工件的外形尺寸和表面光洁度;(3)离子注入层由离子束与基体表面发生一系列物理和化学相互作用而形成的一个新表面层,它与基体之间不存在剥落问题;(4)离子注入后无需再进行机械加工和热处理。

离子注入机是由于半导体材料的掺杂需要而于上世纪60年代问世。虽然有一些不同的类型,但它们一般都由以下几个主要部分组成:(1)离子源,用于产生和引出某种元素的离子束,这是离子注入机的源头;(2)加速器,对离子源引出的离子束进行加速,使其达到所需的能量;(3)离子束的质量分析(离子种类的选择);(4)离子束的约束与控制;

(5)靶室;(6)真空系统。

非半导体材料离子注入表面改性研究对离子注入机提出了一些新的要求。大家知道,半导体材料的离子注入所需的剂量(即单位面积上打进去了多少离子,单位是:离子/平方厘米)比较低,而所要求的纯度很高。非半导体材料离子注入表面改性研究所需的剂量很高(比半导体材料离子注入高1000倍以上),而纯度不要求像半导体那么高。

在非半导体材料离子注入表面改性研究的初始阶段,主要是沿用半导体离子注入机所产生的氮离子束来进行。这主要是因为氮等气体离子在适用于半导体离子注入的设备上容易获得比较高的离子束流。氮离子注入在金属、硬质合金、陶瓷和高分子聚合物等的表面改性的研究与应用中取得了引人注目的成功。因此这个阶段被称为氮离子注入阶段。

金属离子注入是新一代的材料表面处理高技术。它利用具有很高能量的某种金属元素的离子束打入固体材料所引起的一系列物理的与化学的变化,来改善固体材料的某些表面性能。研究结果表明,金属离子注入在非半导体材料离子注入表面改性研究与应用

中效果更加显著,应用范围更加广泛,许多氮离子注入无法实现的,金属离子注入可以很好地实现。但是,基于半导体离子注入需要的传统离子注入机,要想获得比较强束流的金属离子束是比较困难的,进行非半导体材料离子注入表面改性所需的费用也是比较昂贵的。

M EVVA源离子注入———强流金属离子注入的一场革命

M EVVA源是金属蒸汽真空弧离子源的缩称。这是上世纪80年代中期由美国加州大学伯克利分校的布朗博士由于核物理研究的需要发明研制成功的。这种新型的强流金属离子源问世后很快就被应用于非半导体材料离子注入表面改性,并引起了强流金属离子注入的一场革命,这种独特的离子注入机被称为新一代金属离子注入机。M EVVA源离子注入机的突出优点有以下几点:(1)对元素周期表上的固体金属元素(含碳)都能产生10毫安量级的强束流;(2)离子纯度取决于阴极材料的纯度,因此可以达到很高的纯度,同时可以省去昂贵而复杂的质量分析器;(3)金属离子一般有几个电荷态,这样可以用较低的引出电压得到较高的离子能量,而且用一个引出电压可实现几种能量的叠加(离子)注入;

(4)束流是发散的,可以省去束流约束与扫描系统而达到大的注入面积。其革命性主要表现在两个方面,一是它的高性能,另一是使离子注入机的结构大大简化,主要由离子源、靶室和真空系统这三部分组成。

在国家863计划的大力支持下,经过十多年的研究和开发,M EVVA源金属离子注入表面技术在硬件(设备)和软件(工艺)两方面均已取得了重要的突破和进展,并已具备了实现产业化的基础。在设备方面,完成了M EVVAIIA-H、MEVVAII-B和MEVVA50型3种不同型号M EVVA源的研制,主要性能达到国际先进水平。仅“九五”期间,就已先后为台湾地区、香港地区和国内大学研究所和工厂生产了15台M EVVA源离子注入机或M EVVA 源镀膜设备。

M EVVA源离子注入机的应用,使强流金属离子注入变得更简便、更经济,效率大大提高,十分有利于这项高新技术的产业化。在表面优化工艺方面,钢制切削工具、模具和精密运动耦合部件3大类、7个品种的M EVVA源离子注入表面处理,取得了延寿3-30倍的显著优化效果,并已通过国家部委级技术鉴定,成果属国际先进水平。

这项高新表面处理技术的优越性、实用性及其广阔的市场前景已被越来越多的部门和单位所赏识,得到越来越广泛的应用。

根据我们多年来的研究与开发,同时借鉴近年来国际上的新进展,M EVVA源金属离子注入特别适用于以下几类工模具和零部件的表面处理:(1)金属切削工具(包括各种用于精密加工和数控加工中使用的钻、铣、车、磨等工具和硬质合金工具),一般可以提高使用寿命3-10倍;(2)热挤压和注塑模具,可使能耗降低20%左右,延长使用寿命10倍左右;(3)精密运动耦合部件,如抽气泵定子和转子,陀螺仪的凸轮和卡板,活塞、轴承、齿轮、涡轮涡杆等,可大幅度地降低摩擦系数,提高耐磨性和耐蚀性,延长使用寿命最

多可以达到100倍以上;(4)挤压合成纤维和光导纤维的精密喷嘴,可以大大提高其抗磨蚀性和使用寿命;(5)半导体工业中的精密模具,罐头工业中的压印和冲压模具等,可显著提高这些贵重、精密模具的工作寿命;(6)医用矫形修复部件(如钛合金人工关节)和手术器具等,其经济效益和社会效益非常好。

这项高技术是一个方兴未艾的新兴产业,硬件设备的处理能力和效率有待进一步提高,在软件(离子注入材料表面改性技术)方面,也有待进一步深化和细化,其应用范围也有待不断扩大。

国内外发展概况美国的I SM Tech.公司是国际上生产M EVVA源离子注入机的专业公司,在综合技术水平上处于国际领先。上世纪90年代以来先后研制生产了几种不同类型的商用M EVVA源离子注入机。最近报道的一种多M EVVA源离子注入机,在真空室里配备了4台AVIS80-75MEV- VA源,总束流可达300mA,总束斑面积可打12,000cm2,是目前世界上束流最强的M EVVA源离子注入机。欧美工业发达国家的离子注入表面处理技术这一新兴产业发展情况良好,如美国的S PIRE公司和ISM Tech.公司、英国的A EA Industrial Tech.,Tec Vac和Tech-Ni-Plant、法国的N itruvid和IBS、西班牙的INASMET 和AIN、德国的M AT和丹麦D TI Tribology Centre等均已经取得了可观的经济效益和社会效益,起了很好的示范作用。他们已经将金属离子注入的费用降低到$0.05-0.5/cm2的水平,可以被包括医疗、航空、航天、机械等广泛的领域和部门所接受。

知识链接

离子注入:离子注入技术是近30年来在国际上蓬勃发展和广泛应用的一种材料表面改性高新技术。其基本原理是:用能量为100keV量级的离子束入射到材料中去,离子束与材料中的原子或分子将发生一系列物理的和化学的相互作用,入射离子逐渐损失能量,最后停留在材料中,并引起材料表面成份、结构和性能发生变化,从而优化材料表面性能,或获得某些新的优异性能。

瓦利安-离子注入机工作原理01解析

第三部分原理 瓦利安半导体设备有限公司 VIISta HCS 目录 章节章节编号 原理介绍…………………………………………………………………E82291210 控制原理………………………………………………---………………E82291220 离子注入操作原理………………………………………………………E82291230 第1页

介绍 第1页

VIISta HCS型高束流离子注入机是高自动化的生产工具。此离子注入机可以将单一离子类别掺杂剂的离子束注入到硅片中。 首先利用Varian 控制系统(VCS)产生工艺配方,在配方的基础上制定产生离子束的确切标准。工艺配方的设计目的包括:控制掺杂剂种类的选择,控制剂量、控制离子束的能量、注入角度等以及工艺步骤等等。 在阅读本章之前,请阅读第二章安全方面内容。 一、系统单元组成 VIISta HCS 可以分为三个有用的重要的单元:离子源单元、离子束线单元、工作站单元。 1、离子源单元 离子源子单元包括产生,吸出、偏转、控制,和聚焦,离子是有间接加热的阴极产生再由吸极取出(由D1电源与吸级装置构成),在取出工艺过程中,为了得到离子束更好的传输和低的离子束密度,离子束将被垂直聚焦。被取出的离子束通过一个四极的透镜,在进入90度离子束磁分析器之前离子束被聚焦,在磁分析器中,绝大多数不需要的离子将被分离出去。 离子源模块的主要结构,包括离子源围栏内部分和安全系统,支持分布各处的主要动力组件。还有离子源控制模块,源初始泵抽,涡轮分子泵抽,工艺气体柜,离子源和(套)管路。离子源围栏与安全系统要互锁,这是为了防止在正常注入操作过程中有人员接近。如果任何一扇门打开,或者任何维护、伺服面板被移动,高压电源和有害气体流就会通过互锁系统关闭。VIISts HCS 系统使用的不是高压工艺气体,就是需要安全输送系统的工艺气体。VSEA提供的标准工艺气体有三氟硼烷、砷烷和磷烷。 2、离子束线控制单元 离子束线控制子系统包括从90度磁偏转区域到70度磁偏转区域,在这些区域,离子束将会被减速、聚焦、分析、测量以及被修正为平行、均匀的离子束。从90度磁偏转区域到70度磁偏转区域中,离子束先被增速,再被减速。离子源与控制离子束线的四极透镜,协同D1、D1抑制极,D2、D2抑制极动力一起,提供水平与垂直聚焦控制。90度磁偏转协同判决光圈一起实现对离子的筛选分析。预设法拉第杯测量离子束强度。最终,离子束在70度偏转磁场中,协同多组磁极和顶部和底部的磁棒,被调整为方向平行,分布均匀的离子束。 离子束离开离子源模块之后进入离子束线模块。离子束首先通过离子源四极透镜(源四极透镜,Q1)调整离子束使其竖直方向 第1页

功能离子液体

功能离子液体的合成及其应用 刘雪琴 (武汉科技大学化学工程与技术学院,湖北武汉,430081) 摘要:离子液体作为一类新型的环境友好的“绿色溶剂”,具有很多独特的性质,在很多领域有着诱人的应用前景。由于离子液体的众多优点,人们越来越多地将离子液体作为一种可设计和修饰的功能型分子,以便从这一新型溶剂中获得更大的应用价值。本文对功能离子液体的合成及应用等方面的研究进展进行了综述。 关键词:离子液体;合成;应用;功能 Synthetic Methods and Applications for the Functionalized Ionic Liquids. Xueqin Liu (College of Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China) Abstract: Ionic liquids, as a class of novel environmental benign “green solvents”that have remarkable new properties and promising applications in many fields, are receiving more and more attentions. Because of the numerous advantages of the ionic liquid, ionic liquid is widely used as a kind of functional molecules which can be designed and modified. In this paper, some recent research developments on the synthetic methods and applications of the functionalized ionic liquids. Key Words: ionic liquids; synthetize; application; function 1离子液体简介 离子液体是在室温以及相邻温度下完全由离子组成的有机液体物质。但也不是说有大量离子的液体就叫离子液体。例如无机盐如NaCl-AlCl3系的低共熔点为115℃,而CsF-2.3HF 熔点为-16.9摄氏度,他们都不是我们现在说的离子液体,因为不是有机物。其中AlCl3型离子液体较为特殊,组成不固定。但至少它的正离子是有机物,或者是有机取代的铵离子。 一般可以将离子液体分为三类:1.AlCl3型离子液。2.非AlCl3型离子液体。3.其他特殊离子液体。前两种主要区别是负离子不同,正离子主要是三类季铵:咪唑离子、砒啶离子、一般季铵离子。最稳定的是烷基取代的咪唑阳离子。 2离子液体的合成 离子液体种类繁多,改变阳离子/阴离子的不同组合,可以设计合成出不同的离子液体。一般阳离子为有机成分,并根据阳离子的不同来分类。离子液体中常见的阳离子类型有烷基铵阳离子、烷基鏻阳离子、N-烷基吡啶阳离子和N,N’-二烷基咪唑阳离子等,其中最常见

离子交换设计计算书(有公式)

全自动软水器设计指导手册 (附设计公式)

目录 一、总述 0 1. 锅炉水处理监督管理规则 0 2. 离子交换树脂部结构 0 3. 钠离子交换软化原理及特性: (1) 4. 水质分析测试容 (1) ?PH值(Potential of Hydrogen) (1) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (1) ?铁含量(IRON) (1) ?锰 (2) ?硬度值(HARDNESS) (2) ?碱度 (2) ?克分子(mol) (2) ?当量 (3) ?克当量 (3) ?硬度单位 (3) ?我国江河湖泊水质组成 (5) 二、全自动软水器 (5) 三、影响软水器交换容量的因素 (7) 1. 流速(gpm/ft,m/h) (7) 2. 水与树脂的接触时间:(gpm/ft3) (7) 3. 树脂层的高度 (8) 4. 进水含盐量 (9) 5. 温度 (11) 6. 再生剂质量(NaCl) (11) 7. 再生液流量 (12) 8. 再生液浓度 (13) 9. 再生剂用量 (14) 10. 树脂 (14) 四、自动软水器设计 (14) 1. 软水器设备应遵循的标准 (14) 2. 全自动软水器主要参数计算 (15) 1) 反洗流速的计算: (15) 2) 系统压降计算 (15) 3. 软水器设计计算步骤 (15) 计算示例 (17)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂部结构 离子交换树脂的部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

离子色谱法测水中阴离子

离子色谱法测水中阴离子 指导老师:郭文英 实验人:王壮 同组实验:余晓波 实验时间:2016.3.21 一. 实验目的 1. 掌握离子色谱法分析的基本原理。 2. 掌握常见阴离子的测定方法。 3. 掌握离子色谱的定性和定量分析方法 二.实验原理 离子色谱法中使用的固定相是离子交换树脂。离子交换树脂上分布有固定的带电荷的基团和能离解的离子。当样品加入离子交换树脂后,用适当的溶液洗脱,样品离子即与树脂上能离解的离子进行交换,并且连续进行可逆交换分配,最后达到 平衡。不同阴离子(32,,,F Cl NO NO ---- 等)与阴离子树脂之间亲和力不同,其在 交换柱上的保留时间不同,从而达到分离的目的。根据离子色谱峰的峰高或峰面积可对样品中的阴离子进行定性和定量分析。离子色谱法应用电导检测器。 三.仪器与试剂 仪器:离子色谱仪;阴离子分析色谱柱;阴离子分析色谱保护柱;超声波发生器;真空过滤装置;注射器 试剂:20ppm 、30ppm 、40ppm 、50ppm Cl -和3NO -标准溶液、未知样。 五.实验内容 1. 打开电脑,打开power ,后打开IC 软件,等power 灯不闪后,就可以使用了。 2. 按下列条件设置仪器参数:淋洗液流量为0.8mL/min ;数据采集时间为10min ,设置完后扫基线。 3. 阴离子的定性分析:分别吸取0.5mL 各浓度的标准溶液,进样,记录保留时间 4. 测定未知水样。取0.5mL 未知样按同样实验进样,记录保留时间。

表1. 不同浓度F-保留时间和出峰面积 表2.不同浓度Cl-保留时间和出峰面积 表3. 不同浓度 NO-保留时间和出峰面积 3 对不同浓度的标准样品所测得的保留时间和出峰面积绘制标准工作曲线:

离子交换器的设计计算

离子交换器的设计计算 1、交换器直径: F=Q/(T×N×V) F---交换器截面积(m2); Q---产水量(T/D); T---工作时间(H/D) N---交换器台数; V-交换流速(M/H). 2、交换器高度: H=Hp+Hr+Hs+Ht(米) Hp---交换器下部排水高度,一般为0.3—0.7m; Hr---交换剂层高度,一般在1.0—2.0之间选择。 Hs---反洗膨胀高度,树脂层高50%左右。 Ht---顶部封头高度。 3、交换器连续工作时间: t=V r×Eg/《q×(H1-H2)》 (小时) V r---交换剂体积; q---交换器流量; Eg---交换剂的工作交换容量,一般阳树脂取1000mol/m3。 H1---原水中硬度,mmol/L. H2---出水残留硬度,mmol/L. 4、再生剂用量:G z=V r×Eg×Bz/(1000×ε)

Gz---再生剂用量; Bz---再生剂实际耗率,g/mol. ε---再生剂纯度,对NaCL,可取0.95。 常用再生剂的实际耗率 顺流再生逆流再生 再生剂:NaCL ;HCL NaCL ; HCL 耗率:120-150 ;60-90 70-90; 30-60混合离子交换器设计计算: Q=3.14R2×V Q--混床的处理能力;单位m3/h R--混床的半径;单位m V--过滤流速,一般普通混床20-30m3/h 精致混床30-40m3/h 抛光混床40-60m3/h 取石英砂10-12m/h; V=3.14R2×H×1000 V--树脂的体积;单位kg R--混床的半径;单位m H--树脂的有效高度;单位m 注:树脂总装高不小于1m 阴阳离子交换树脂比例(阳:阴=1:1.3-2)混床的再生周期:

离子色谱分析方法通则..

离子色谱分析方法通则 1 范围 本标准规定了离子色谱法对仪器的要求和分析方法。所用仪器应具备输液泵、离子交换色谱柱、抑制器以及检测器(电导检测器、安培检测器、吸光度检测器或者其中任一种检测器)等。系统中应含完成分析任务所必需的附件—色谱工作站或积分仪等。 本标准适用于多种阴离子、阳离子、有机酸、糖类的测定。 2.引用标准 GB 1.4-88 标准化工作导则化学分析方法标准编写规定 GB 3102.8-93 物理化学和分子物理学的量和单位 3 定义 3.1 电导 conductance 电阻的倒数称为电导,单位为西门子,符号是S。它的导出单位为微西门子,符号是μS。1S=106μS。 3.2 电导率 conductivity 25℃时,一立方厘米液体的电阻的倒数,以Ω1·cm1或S/cm 表示。 3.3 抑制电导检测 suppressed conductance detection 在分离柱后,采用离子交换膜或离子交换柱将淋洗液中的淋洗离子转变为弱酸、弱碱或水,使淋洗液的背景电导降低,同时提高检测灵敏度的方法称为抑制电导检测。 3.4 分辨率(分离度) resolution 评价色谱柱对相邻双峰分离情况的指示: 分峰的分离情况。分辨率按

式中 R—相邻两组分峰的分辨率 tR1——组分1的保留时间 tR2——组分2的保留时间 W1——组分1的峰底宽度 W2——组分1的峰底宽度 4 方法原理 不同的色谱柱中装填有不同类型的离子交换树脂。离子交换树脂上的活性交换基团能与样品中的离子及流动相中的淋洗离子发生离子交换作用。此种交换作用又因不同离子与树脂上的活性交换基团之间的静电力或亲和力存在差异,与树脂静电力或亲和力大的离子易被保留而难于被洗脱,静电力或亲和力小的离子则易于洗脱。随着淋洗液的流动,样品中的离子与树脂上的交换基团不断地发生交换—洗脱—再交换—再洗脱,最终被淋洗液带到检测器中形成高斯分布型色谱峰。在一定的色谱条件下组分峰的流出时间即保留时间固定,以此作为组分离子的定性依据。在一定的浓度范围内组分的峰面积(或峰高)正比于组分的浓度,积分仪拾得此信号给出组分的定量结果。 图1 分辨率示意图 5 试剂和材料 5.1 配制淋洗液、再生液的试剂纯度应是分析纯(A.R)或分析纯以上试剂。 5.2 去离子水应满足以下要求: 5.2.1 电导率:<1μS/cm(20℃时)。

离子色谱法

一、离子色谱(IC)基本原理 离子色谱是高效液相色谱(HPLC)的一种,其分离原理也是通过流动相和固定相之间的相互作用,使流动相中的不同组分在两相中重新分配,使各组分在分离柱中的滞留时间有所区别,从而达到分离的目的。 二、离子色谱仪的结构 离子色谱仪一般由四部分组成,即输送系统、分离系统、检测系统、和数据处理系统。输送系统由淋洗液槽、输液泵、进样阀等组成;分离系统主要是指色谱柱;检测系统(如果是电导检测器)由抑制柱和电导检测器组成。 离子色谱的检测器主要有两种:一种是电化学检测器,一种是光化学检测器。电化学检测器包括电导、直流安培、脉冲安培、和积分安培;光化学检测器包括紫外-可见和荧光。电导检测器是IC的主要检测器,主要分为抑制型和非抑制型(也称为单柱型)两种。抑制器能够显著提高电导检测器的灵敏度和选择性,其发展经历了四个阶段,从最早的树脂填充的抑制器到纤维膜抑制器,平板微膜抑制器和先进的只加水的高抑制容量的电解和微膜结合的自动连续工作的抑制器。 三、离子色谱基本理论 离子色谱主要有三种分离方式:离子交换离子排斥和反相离子对。这三种分离方式的柱填料树脂骨架基本上都是苯乙烯/二乙烯苯的共聚物,但是树脂的离子交换容量各不相同,以下就主要介绍离子交换色谱的分离机理。 在离子色谱中应用最广的柱填料是由苯乙烯-二乙烯基苯共聚物制得的离子交换树脂。这类树脂的基球是用一定比例的苯乙烯和二乙烯基苯在过氧化苯酰等引发剂存在下,通过悬浮物聚合制成共聚物小珠粒。其中二乙烯基苯是交联剂,使共聚物称为体型高分子。

典型的离子交换剂由三个重要部分组成:不溶性的基质,它可以是有机的,也可以是无机的;固定的离子部位,它或者附着在基质上,或者就是基质的整体部分;与这些固定部位相结合的等量的带相反电荷离子。附着上去的集团常被称作官能团。结合上去的离子被称作对离子,当对离子与溶液中含有相同电荷的离子接触时,能够发生交换。正是后者这一性质,才给这些材料起了“离子交换剂”这个名字。 离子交换法的分离基理是离子交换,用于亲水性阴、阳离子的分离。阳离子分离柱使用薄壳型树脂,树脂基核为苯乙烯/二乙烯基苯的共聚物,核的表面是磺化层,磺酸基以共价键与树脂基核共聚物相连;阴离子分离柱使用的填料也是苯乙烯/二乙烯基苯的共聚物,核外是磺化层,它提供了一个与外界阴离子交换层以离子离子键结合的表面,磺化层外是流动均匀的单层季铵化阴离子胶乳微粒,这些胶乳微粒提供了树脂分离阴离子的能力,其分离基理基于流动相和固定相(树脂)阳离子位置之间的离子交换。 淋洗液中阴离子和样品中的阴离子争夺树脂上的交换位置,淋洗液中含有一定量的与树脂的离子电荷相反的平衡离子。在标准的阴离子色谱中,这种平衡离子是CO 32-和HCO 3-;在标准的阴离子色谱中,这种平衡离子是H +。离子交换进行的过程中,由于流动相可以连续地提供与固定相表面电荷相反的平衡离子,这种平衡离子与树脂以离子对的形式处于平衡状态,保持体系的离子电荷平衡。随着样品离子与连续离子(即淋洗离子)的交换,当样品离子与树脂上的离子成对时,样品离子由于库仑力的作用会有一个短暂的停留。不同的样品离子与树脂固定相电荷之间的库仑力(即亲和力)不同,因此,样品离子在分离柱中从上向下移动的速度也不同。样品阴离子A -与树脂的离子交换平衡可以用下式表示: 阴离子交换 A - +(淋洗离子)-+NR 4-R = A -+NR 4-R + (淋洗离子) 对于样品中的阳离子,树脂交换平衡如下(H +为淋洗离子): 阳离子交换 C + + H +-O 3S-R = C +-O 3S-R + H + 在阴离子交换平衡中,如果淋洗离子是HCO 3-,可以用下式表示阴离子交换平衡: [][][][]4 33 4NH CO H A HCO NR A K + ---+-= K 是选择性系数。K 值越大,说明样品离子的保留时间越常。选择性系数是电荷、离子半径、系统淋洗液种类和树脂种类的函数。 离子半径 样品离子的价数越高,对离子交换树脂的亲和力越大。因此,在一般的情况下,保留时间随离子电荷数的增加而增加。也就是说,淋洗三价离子需要采用高离子强度的淋洗液,二价离子可以用较低浓度的淋洗液,而低于一价离子,所需淋洗液浓度更低。 离子半径

低能强流离子注入机实验装置简介

低能强流离子注入机实验装置简介 3.1仪器的整体结构: 图3.1 仪器实物图 该图为本论文所使用的仪器的整体实物图,如下图示意图所示,该仪器从头到尾依次为离子源,引出系统,聚焦透镜,速度选择器,聚焦透镜,X-Y 偏转系统,聚焦透镜,波恩管,靶室。下文依次介绍各个部件

图3.2 仪器示意图 3.2离子源及引出系统 图3.3 离子源实物图 离子源是加速器的重要部件,它的功能是将样品物质电离成带电的原子离子或分子离子。离子源应具有电离效率高,聚焦性能好,离子初始能量发散小,传输效率高,离子流稳定等特点。

图3.4 离子源及引出剖面示意图 如图所示,离子源内部为真空环境,其内部带有环状灯丝。由样品入口将气体导入,通过加大灯丝电流,由灯丝阴极发射出电子。从阴极发射的电子通过中空的阳极被加速,到达对阴极之前又被减速并反向加速,电子在阴极-阳极-对阴极之间来回振荡,在轴向磁场的作用下作螺旋进动,并在空间上被磁场约束在轴线附近,不致扩散阳极边缘,从而使电子可以经历很长的路程,使气体碰撞游离的几率大大增加。当电子通过电离盒射向阳极时,具有一定能量和几何形状的电子束不断轰击样品气体,可使通入的气体发生电离,产生包括正离子在内的各种产物,正离子被引出极引出离子源。大部分样品气体和电子,离子产物被离子源的真空泵不断抽走。离子源四周带有环形磁场,灯丝与源磁铁之间为绝缘状态。环形磁场可以约束内部离子沿螺旋轨迹前进,增加样品气体与电子束的碰撞机会,提高电离几率,进而提高离子产生率。当样品气体在离子源内被大量电离时,由于引出极与灯丝间有150V的起弧电压差,在电场作用下,大量正离子被引出,同时赋予离子一定的初速度。由于引出口的大小问题,在正离子被导出引出极时,会有大量离子打在引出板上,产生起弧电流。

离子色谱法(IC)

离子色谱法(IC) 一、离子色谱(IC)基本原理 离子色谱是高效液相色谱(HPLC)的一种,其分离原理也是通过流动相和固定相之间的相互作用,使流动相中的不同组分在两相中重新分配,使各组分在分离柱中的滞留时间有所区别,从而达到分离的目的。 二、离子色谱仪的结构 离子色谱仪一般由四部分组成,即输送系统、分离系统、检测系统、和数据处理系统。输送系统由淋洗液槽、输液泵、进样阀等组成;分离系统主要是指色谱柱;检测系统(如果是电导检测器)由抑制柱和电导检测器组成。 离子色谱的检测器主要有两种:一种是电化学检测器,一种是光化学检测器。电化学检测器包括电导、直流安培、脉冲安培、和积分安培;光化学检测器包括紫外-可见和荧光。电导检测器是IC的主要检测器,主要分为抑制型和非抑制型(也称为单柱型)两种。抑制器能够显著提高电导检测器的灵敏度和选择性,其发展经历了四个阶段,从最早的树脂填充的抑制器到纤维膜抑制器,平板微膜抑制器和先进的只加水的高抑制容量的电解和微膜结合的自动连续工作的抑制器。 三、离子色谱基本理论 离子色谱主要有三种分离方式:离子交换离子排斥和反相离子对。这三种分离方式的柱填料树脂骨架基本上都是苯乙烯/二乙烯苯的共聚物,但是树脂的离子交换容量各不相同,以下就主要介绍离子交换色谱的分离机理。 在离子色谱中应用最广的柱填料是由苯乙烯-二乙烯基苯共聚物制得的离子交换树脂。这类树脂的基球是用一定比例的苯乙烯和二乙烯基苯在过氧化苯酰等引发剂存在下,通过悬

浮物聚合制成共聚物小珠粒。其中二乙烯基苯是交联剂,使共聚物称为体型高分子。 典型的离子交换剂由三个重要部分组成:不溶性的基质,它可以是有机的,也可以是无机的;固定的离子部位,它或者附着在基质上,或者就是基质的整体部分;与这些固定部位相结合的等量的带相反电荷离子。附着上去的集团常被称作官能团。结合上去的离子被称作对离子,当对离子与溶液中含有相同电荷的离子接触时,能够发生交换。正是后者这一性质,才给这些材料起了“离子交换剂”这个名字。 离子交换法的分离基理是离子交换,用于亲水性阴、阳离子的分离。阳离子分离柱使用薄壳型树脂,树脂基核为苯乙烯/二乙烯基苯的共聚物,核的表面是磺化层,磺酸基以共价键与树脂基核共聚物相连;阴离子分离柱使用的填料也是苯乙烯/二乙烯基苯的共聚物,核外是磺化层,它提供了一个与外界阴离子交换层以离子离子键结合的表面,磺化层外是流动均匀的单层季铵化阴离子胶乳微粒,这些胶乳微粒提供了树脂分离阴离子的能力,其分离基理基于流动相和固定相(树脂)阳离子位置之间的离子交换。 淋洗液中阴离子和样品中的阴离子争夺树脂上的交换位置,淋洗液中含有一定量的与树脂的离子电荷相反的平衡离子。在标准的阴离子色谱中,这种平衡离子是CO 32-和HCO 3-;在标准的阴离子色谱中,这种平衡离子是H +。离子交换进行的过程中,由于流动相可以连续地提供与固定相表面电荷相反的平衡离子,这种平衡离子与树脂以离子对的形式处于平衡状态,保持体系的离子电荷平衡。随着样品离子与连续离子(即淋洗离子)的交换,当样品离子与树脂上的离子成对时,样品离子由于库仑力的作用会有一个短暂的停留。不同的样品离子与树脂固定相电荷之间的库仑力(即亲和力)不同,因此,样品离子在分离柱中从上向下移动的速度也不同。样品阴离子A -与树脂的离子交换平衡可以用下式表示: 阴离子交换 A - +(淋洗离子)-+NR 4-R = A -+NR 4-R + (淋洗离子) 对于样品中的阳离子,树脂交换平衡如下(H +为淋洗离子): 阳离子交换 C + + H +-O 3S-R = C +- O 3S-R + H + 在阴离子交换平衡中,如果淋洗离子是HCO 3-,可以用下式表示阴离子交换平衡: [][][][]4 33 4NH CO H A HCO NR A K + ---+-= K 是选择性系数。K 值越大,说明样品离子的保留时间越常。选择性系数是电荷、离子半径、系统淋洗液种类和树脂种类的函数。 离子半径 样品离子的价数越高,对离子交换树脂的亲和力越大。因此,在一般的情况下,保留时间随离子电荷数的增加而增加。也就是说,淋洗三价离子需要采用高离子强度的淋洗液,二价离子可以用较低浓度的淋洗液,而低于一价离子,所需淋洗液浓度更低。

阴阳离子交换计算

阴阳离子交换计算集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第一步,计算原水的总离子浓度C,并转换成meq/L单位 1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。如下: 2.直接计算,公式如下: 单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价 如:Ca浓度(meq/L)= 70÷40×2 = ,Na浓度(meq/L)= 52÷23×1 = SO4浓度(meq/L)= 127÷96×2 = ,Cl浓度(meq/L)= 104÷×1 = 阳离子的总浓度C A(meq/L= eq/m3)为各种阳离子浓度之和; 阴离子的总浓度C C(meq/L= eq/m3)为各种阴离子浓度之和。 第二步,计算树脂的总交换当量Q 一般,阳树脂的实际交换当量以900 meq/L,即900 eq/m3为准; 阴树脂的实际交换当量以350 meq/L,即350 eq/m3为准。 根据树脂的体积即可计算出阳树脂的总交换当量Q A(eq)和阴树脂的总交换当量Q C (eq)。 第三步,计算树脂的再生周期T 对阳树脂和阴树脂的再生周期分别计算: 阳树脂再生周期:T A = Q A÷(C A× F) 阴树脂再生周期:T C = Q C÷(C C× F) 式中,T A和T C的单位为小时(h);Q A和Q C的单位为eq;C A和C C的单位为eq/m3;F为离子交换柱每小时的处理水量,单位为m3/h。 经过计算后,在T A和T C中选择一个小的数值作为树脂再生的周期,一般T C的数值比较小。

离子液体论文

题目:离子液体 学院:化学与材料工程学院 专业:无机功能材料 班级:无机121 学号:1510612130 姓名:张鹏程 时间:2014.4.13 摘要: 离子液体是近10年来在绿色化学的框架下发展起来的全新功能材料,具有不挥发、不可燃、液态范围宽、热稳定性好、溶解性好、物化性质可调等优点,已被作为催化剂、反应介质成功地应用于有机合成、电化学、分离提取及材料科学等领域。研究开发新型离子液体并扩展其应用范围,具有重要意义。近年来其应用领域不断扩大并迅猛发展,目前已从化学制备扩展到材料科学、环境科学、工程技术、分析测试等诸多领域,并迅速在各领域形成研究热点。 一:离子液体简介 1.离子液体的定义 离子液体是指全部由离子组成的液体,如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐(室温离子液体常伴有氢键的存在,定义为室温熔融盐有点勉强)、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。 2.离子液体的发展历史 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+ HNO3-的合成(熔点12℃) 。这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体。

1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体。他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) 。但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用。 直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽。1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃。在这以后,离子液体的应用研究才真正得到广泛的开展。 3.离子液体的分类 正离子:烷基季铵离子、烷基季瞵离子、1, 3 -二烷基取代的咪唑离子、N - 烷基取代的吡啶离子; 负离子的不同可将离子液体分为两大类:一类是卤化盐。其制备方法是将固体的卤化盐与AlCl3混合即可得液态的离子液体,但因放热量大,通常可交替将2种固体一点一点地加入已制好的同种离子液体中以利于散热。此类离子液体被研究得较早,对以其为溶剂的化学反应研究也较多。此类离子液体具有离子液体的许多优点,其缺点是对水极其敏感,要完全在真空或惰性气氛下进行处理和应用,质子和氧化物杂质的存在对在该类离子液体中进行的化学反应有决定性的影响。 另一类离子液体,也被称为新离子液体,是在1992年发现BF4的熔点为 12 ℃以来发展起来的。这类离子液体不同于AlCl3离子液体,其组成是固定 的,而且其中许多品种对水、对空气稳定,因此近几年取得惊人进展。其正离子多为烷基取代的咪唑离子 + ,如 + ,负离子多用BF4- 、PF6- ,也有CF3 SO3- 、(CF3 SO2 ) 2N- 、C3 F7 COO- 、C4 F9 SO3、CF3 COO- 、(CF3 SO2 ) 3 C- 、(C2 F5 SO2 ) 3 C- 、(C2 F5 SO2 ) 2N- 、SbF6- 、AsF6、为负离子的离子液体要注意防止爆炸(特别是干燥时)。 二:离子液体研究现状与前景

离子色谱法测定水中的阴离子

实验五离子色谱法测定水中的阴离子 环境工程李婷婷2110921109 一、实验目的 1、了解离子色谱分析的基本原理及操作方法; 2、掌握离子色谱法的定性和定量分析方法。 二、实验原理 离子色谱(Ion Chromatography,IC)是色谱法的一个分支,离子色谱法(IC)是利用被分离物质在离子交换树脂(固定相)上交换能力的不同,从而连续对共存多种阴离子或阳离子进行分离、定性和定量的方法。 阴阳离子的交换方程可以表示为: 阴离子交换:R+Y-+X-=R+X-+Y- 阳离子交换:R-Y++X+=R-X++Y+ 其中:R+,R-为固定相上的离子交换基团; Y+,Y-为可交换的平衡离子,例如H+,Na+或OH-,Cl-; X+ ,X-为组分离子。 如下图所示:

IC仪器主要测定流程:

测定步骤: (1)进样:水样待测离子首先与分离柱的离子交换树脂之间直接进行离子交换(即被保留在分离柱上); (2)淋洗:如用NaOH作淋洗液分析样品中的F-、Cl-和SO42-等,保留在分离柱上的阴离子即被淋洗液中的OH-基置换并从分离柱上被洗脱。对树脂亲和力弱的待分析离子(如F-)则先于对树脂亲和力强的待分析离子(如 SO42- )被依次洗脱; (3)阻留:淋出液经过抑制柱,将来自淋洗液的背景电导抑制到最小(即去除NaOH),这样当待测离子离开抑制柱进入电导池时就有较大的可准确测量的电导信号。 (4)测定:根据依次进入电导检测器的待测离子电导率差异,可进行定量测定。 三、实验步骤 1、过滤:用0.45μm过滤膜过滤。 目的是:去除样品中所包含的,有可能损坏仪器或者影响色谱柱/抑制器性能的成分——有机大分子;去除有可能干扰目标离子测定的成分。 2、进样: 手动进样。用针管吸取1mL水样推进进样口。 注意:水样不要交叉污染,清洗针管 3、分析水样: 自动分析水中的氟离子、氯离子、硝酸根离子、亚硝酸根离子、磷酸根离子、硫酸根离子。

离子交换设计计算书..

混合离子交换器 详 细 设 计 计 算 书 宜兴市华电环保设备有限公司

1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生 -含量为水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO 3 器除去重碳酸20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO 2 根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱

→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

离子色谱原理

离子色谱基础 离子色谱(Ion Chromatography)是高效液相色谱(HPLC)的一种,是分析阴离子和阳离子的一种液相色谱方法。 一、离子色谱的基本原理 离子色谱的分离机理主要是离子交换,有3种分离方式,它们是高效离子交换色谱(HPIC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)。用于3种分离方式的柱填料的树脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但树脂的离子交换功能基和容量各不相同。HPIC 用低容量的离子交换树脂,HPIEC用高容量的树脂,MPIC用不含离子交换基团的多孔树脂。3种分离方式各基于不同分离机理。HPIC的分离机理主要是离子交换,HPIEC主要为离子排斥,而MPIC则是主要基于吸附和离子对的形成。 1、高效离子交换色谱 应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,这在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构,以便于快速达到交换平衡,离子交换树脂耐酸碱可在任何pH范围内使用,易再生处理、使用寿命长,缺点是机械强度差、易溶胀易、受有机物污染。 硅质键合离子交换剂以硅胶为载体,将有离子交换基的有机硅烷与基表面的硅醇基反应,形成化学键合型离子交换剂,其特点是柱效高、交换平衡快、机械强度高,缺点是不耐酸碱、只宜在pH28范围内使用。 离子交换色谱是最常用的离子色谱。 2、离子排斥色谱 它主要根据Donnon膜排斥效应,电离组分受排斥不被保留,而弱酸则有一定保留的原理,制成离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。它主要采用高交换容量的磺化H型阳离子交换树脂为填料以稀盐酸为淋洗液。 3、离子对色谱 离子对色谱的固定相为疏水型的中性填料,可用苯乙烯二乙烯苯树脂或十八烷基硅胶(ODS),也有用C8硅胶或CN,固定相流动相由含有所谓对离子试剂和含适量有机溶剂的水溶液组成,对离子是指其电荷与待测离子相反,并能与之生成疏水性离子,对化合物的表面活性剂离子,用于阴离子分离的对离子是烷基胺类如氢氧化四丁基铵氢氧化十六烷基三甲烷等,用于阳离子分离的对离子是烷基磺酸类,如己烷磺酸钠,庚烷磺酸钠等对离子的非极性端亲脂极性端亲水,其CH2键越长则离子对化合物在固定相的保留越强,在极性流动相中,往往加入一些有机溶剂,以加快淋洗速度,此法主要用于疏水性阴离子以及金属络合物的分

中束流离子注入机

M/C离子注入机 §1. 概述 在半导体行业中,离子注入的机台主要分为高能量(H/E),大束流(H/C),中束流(M/C)三种。这里主要介绍的是中束流的离子注入机台。 中束流机台(Medium Current)一般是单个晶片进行注入,注入的剂量一般在1E11到1E14之间,而能量则在5kev到200kev 之间。 我们经常用到的4种离子为: 1.B 12Kev 1.6E12 30μA 2.B 185Kev 2.254E13 156μA 3.P 20Kev 6E13 850μA 4.As 200Kev 2.7E12 50μA §2. M/C机台介绍 2.1型号 我们常见的M/C型机台是Nissin公司生产的Exceed2000AH型,另外还有Axcelis公司生产的NV-8250型和Varian 公司的EHPi 500型。下面给出的是Nissin 的Exceed2000AH的外观图 机台的基本情况为: 3200W * 6385L * 2600H 重量为17,500Kg, 地板承受的压力为1000Kg/m2

其中,控制面板如图所示。 2.2工作原理 离子植入的基本原理就是把气体或固体源的原子离子化,然后对离子进行选择,把所需的离子进行加速,达到所需的能量,注入到硅片中的过程。 下面就是整个机台的俯视图,主要分为End Station, Beam Line, Ion Source三个大的部分。 2.3主要部件 2.3.1 离子源(Ion Source)。 因为我们要注入的杂质是有一定的能量的,所以必须对杂质进行加减速,而只有带电微粒才能在电场的作用下加减速,因此要使杂质离子化。离子源就是用电子撞击气体分子,得到我们所需要的离子的部件。离子源包括Arc chamber 和Extraction electrode 系统。

离子交换器计算书

项目除盐水处理系统计算书 设计原则 1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO2 器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,

增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括:10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

离子色谱分析

离子色谱分析 科室:姓名:得分: 一、填空题(每题4分,共20分) 1、离子色谱可分为、和三种不同分离方式。 答案:高效离子色谱离子排斥色谱流动相色谱 2、离子色谱系统由、、、、和 等部分组成。 答案:淋洗液存贮器输液泵进样阀分离柱抑制柱检测器数据处理机(或记录仪) 3、各种类型的离子交换剂都是通过其功能基所结合的离子与外界同电荷的其它离子间发生或作用达到分离物质的目的。 答案:取代络合 4、1975年Small等人用型阳离子交换树脂作为离子色谱的分离柱。答案:低容量薄壳 5、为防止输液系统堵塞,水样作离子色谱分析前,必须先行处理后方可进样。 答案:稀释和过滤 二、选择题(每题4分,共20分) 1、离子色谱柱上,下列常见阴离子的保留时间从小到大排列正确的是。 A、F-,Cl-,Br-,I- B、I-,Br-,Cl-,F- C、F-,Cl-, I-,Br- D、Cl-, I-,Br-, F- 答:A 2、对离子色谱下面说法正确的是。 A、配制淋洗液所用的水必须是蒸馏水,且用0.45微米的微孔滤膜过滤 B、离子色谱分析的原理是离子交换原理 C、分析酸雨阴离子时,抑制柱的作用主要是把阴离子转变成相应的酸 D、电导检测器对温度的变化不敏感

答:B 3、高效离子色谱的分离机理属于下列哪一种?。 A、离子排斥 B、离子交换 C、吸附和离子对形成 答案:B 4、离子色谱的淋洗液浓度提高时,一价和二价离子的保留时间的变化是。 A、缩短 B、延长 答:A 5、以下三种离子色谱抑制柱,哪一种柱容量大?。 A、树脂填充抑制柱 B、纤维抑制柱 C、微膜型抑制柱 答:C 三、判断题(每题4分,共20分) 1、高效离子色谱用低容量的离子交换树脂。() 答案(√×) 2、流动相离子色谱(MPIC)用不含离子交换基团的多孔树脂。() 答案(√) 3、离子色谱用的中等强度碳酸盐淋洗液对高亲和力离子的分辨率低。()答案(×) 4、作离子色谱分析用纤维抑制柱时,如淋洗液浓度相同,增加流速,背景电导会减小。() 答案(×) 5、增加进样量可提高离子色谱的灵敏度。() 答案(√) 四、问答题(每题4分,共20分) 1、离子色谱具有哪些优点? 答:快速、灵敏、选择性好、可同时分析多种离子。 2、影响单柱阴离子色谱保留时间的因素有哪些? 答:分离柱树脂交换的容量;淋洗液浓度;淋洗液pH

相关文档
最新文档