燃烧过程自动控制系统
燃气锅炉的控制系统及其操作方法

燃气锅炉的控制系统及其操作方法随着我国经济的快速发展,燃气锅炉的应用越来越广泛。
燃气锅炉控制系统是整个锅炉系统的关键所在,能够确保燃气锅炉的安全、高效、稳定地运行。
本文将对燃气锅炉控制系统及其操作方法进行探讨。
一、燃气锅炉控制系统的组成燃气锅炉控制系统主要由以下几个部分组成:自动控制系统、填料控制系统、液位控制系统、排污控制系统、加药控制系统、给水控制系统和燃气供应系统。
这些系统在燃气锅炉的生产过程中,相互协调作用,以确保锅炉的安全、稳定、高效运行。
1.自动控制系统自动控制系统是燃气锅炉的核心,主要由控制器、执行机构、传感器和通讯线路等组成。
其主要功能是监测锅炉出水温度、烟气温度、压力等参数,根据这些参数来指挥燃烧器的工作,并对锅炉的运行状态进行调整。
自动控制系统可以实现批量自动生产,提高生产效率,降低人工干预的可能性,大大提高了燃气锅炉的安全性和稳定性。
2.填料控制系统燃气锅炉填料控制系统主要用于控制内部填料的加注量和压力,确保填料的均匀分布以及压力的平衡。
填料控制系统主要由控制器、执行机构、传感器和通讯线路等组成。
在锅炉生产过程中,系统可以根据锅炉负荷的变化来调整填料的量和压力,从而保证锅炉的工作效率和稳定性。
3.液位控制系统液位控制系统主要用于控制锅炉水位以及补给水的流量。
它主要由控制器、执行机构、传感器和通讯线路等组成。
它可以精确地控制锅炉内部水位,确保锅炉的充水量和污水排放的流量。
液位控制系统的合理设计和操作,可以保证锅炉的稳定性、安全性和高效性。
4.排污控制系统燃气锅炉排污控制系统主要用于控制废气排放和污水排放的流量。
它主要由控制器、执行机构、传感器和通讯线路等组成。
排污控制系统的作用非常重要,一般情况下污水和废气排放对环境造成的危害很大。
通过排污控制系统的运行,可以减少对环境的污染,保证锅炉运行环境的清洁和安全。
5.加药控制系统加药控制系统主要用于对锅炉内部水进行磷酸盐和硫酸盐等药品的添加。
锅炉自动控制系统原理

锅炉自动控制系统原理由于控制器+变频调速装置在风机和泵类负载上的应用具有显著的节能效果,并且具有无冲击启动和软停起的优良控制特性,可极大地延长机械设备的使用寿命,减少设备的维护量,故随着新型电力电子器件和高性能微处理器的新型控制器应用及控制技术的发展,变频器的性能价格比也越来越高、体积越来越小、运行可靠性越来越高,并且集成了实用的PI调节功能、简易PLC、灵活的输入/输出端子、脉冲频率给定、停电和停机参数存储选择等功能,为变频控制装置纳入自动控制系统、降低系统成本、提高系统可靠性具有极大价值。
我公司的新型的STEC 控制器+变频器已广泛地应用于在冶金、电气、石化、供热和民用风机水泵的控制领域。
链条炉是一种应用最广泛的火床炉,至今已有100余年的历史。
煤在火床—水平运动的炉排上燃烧,空气从炉排下方自下而上引入。
煤从煤斗落到炉排上,经过炉闸门时被刮成一定的厚度,随后进入炉膛,在炉排上分段燃烧成渣。
目前在我国小型电厂及工、矿和供热企业中使用很普遍,运行经验也比较丰富。
但目前国内在链条炉运行中风机和泵类负载控制器+变频调速装置应用程度不够普遍,锅炉运行过程能源浪费严重,出力不能随着外界温度的变化而及时变化,炉膛温度低,排烟温度较高,负煤比不能及时调整,炉膛换热效率低,锅炉鼓引峥嵘还采用闸板控制风量,循环水泵、补水泵采用工频运行,炉排机、刮煤器采用差速装置等,因此用先进的新型以太网控制器来设计出合理化的控制方法,不管是对旧有锅炉的改造还是新炉的制造都具有很大的现实意义。
链条炉燃烧变频控制的基本任务既要使用权供热量适应负荷需要,还要保证燃烧的经济性和锅炉运行的安全性。
因而燃烧控制要通过复杂的数学运算来调节给煤量,保持锅炉分配到的负荷,调节送风量使其随时与给煤量保持恰当的比例,即风煤比,以保证燃料完全的燃烧和最小的热损失。
调节引风使其随时与送风相适应,保持炉膛负压在一定的范围内,可保证锅炉燃烧的安全性和燃煤燃烧的充分性。
电厂热工自动控制系统

电厂热工自动控制系统电厂热工自动控制系统单元机组的自动调节系统¾ ¾ ¾ ¾ ¾机组功率-转速调节系统汽温控制系统(过热、再热)水位控制系统(凝汽器、除氧器、汽包)燃烧控制系统(燃料、风量、炉膛压力及一、二次风配比控制)其它单回路控制系统第一部分汽温控制系统一、过热汽温控制系统1. 任务温度过高,可能造成过热器、蒸气管道和汽轮机的高压部分金属损坏;温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大造成推力轴承过载,还会引起汽轮机末级叶片蒸汽湿度增加,降低汽轮机内效率,加剧对叶片的腐蚀控制要求:最大控制偏差不超过±10℃,长期偏差不超过±5℃规定要求:2. 静态特性过热器的传热形式、结构、布置将直接影响其静态特性。
大容量锅炉一般采用对流过热器、辐射过热器和屏式过热器交替串连布置。
过热器出口温度对流式3. 动态特性蒸汽流量变化、热烟气的热量变化、减温水流量变化相同点:均为有迟延的惯性环节辐射式不同点:特性参数有较大区别蒸汽流量变化扰动下,汽温的迟延和惯性较小烟气扰动与蒸汽流量扰动相似,汽温反映较快减温水流量扰动由于管道较长,汽温反应较慢4. 控制方案串级控制导前微分控制过热器减温器出口温度TE4001TE4025末级过热器出口温度TE4024LDC指令过热器减温水阀控制逻辑静态特性:纯对流特性动态特性:更容易受负荷、燃烧工况等干扰的影响,温度变化幅度较大调节手段:烟气再循环、尾部烟道挡板、喷燃器摆角、喷水减温烟气再循环:尾部烟道烟气抽至炉膛底部,降低炉膛温度,减少炉膛的辐射传热,从而提高炉膛出口烟气的温度和流速。
使再热器的对流传热加强,达到调温的目的。
优点:反应灵敏,调温幅度大。
缺点:系统结构复杂尾部烟道挡板:尾部烟道被分割为两部分,主烟道中布置低温再热器,旁路烟道中布置低温过热器,烟气挡板布置在温度较低的省煤器下面。
优点:结构简单,操作方便缺点:调温灵敏度差,幅度小,挡板开度与汽温不成线性关系。
燃油锅炉燃烧过程的PLC控制

目录目录 (I)摘要 (II)1 PLC的概述 (1)1.1可编程控制器的基本结构 (1)1.2可编程控制器的工作原理 (2)2 锅炉控制系统概况 (7)2.1燃油锅炉结构示意图 (7)2.2燃油锅炉工作原理 (7)2.3控制要求 (8)3 总体方案的确定 (9)3.1PLC控制系统与继电器控制系统的比较 (9)3.2PLC控制系统与微型计算机控制系统的比较 (9)3.3控制系统总体框架设计 (10)4 PLC的选型及硬件电路的设计 (12)4.1I/O地址分配 (12)4.2设计PLC的外部接线 (12)4.3主控制电路的设计 (13)4.4外部电路设计、器件选择 (13)5 软件的设计 (15)5.1程序设计流程图 (15)5.2梯形图及基本逻辑指令编程 (15)6 燃油锅炉控制系统的抗干扰措施 (20)6.1硬件抗干扰措施 (20)6.2软件抗干扰措施 (22)7 总结与展望 (23)致谢 (24)参考文献 (25)摘要锅炉是一次性能源煤炭石油天然气转换成二次能源蒸汽量的重要动力设备。
据有关数据统计,目前我国有各类工业锅炉约25万多台。
每年耗煤量占全国产量的1/3,同时还消耗大量的石油和天然气。
工业锅炉是生产过程中重要的动力设备。
在石油化工领域,它的主要作用是向生产装置提供所需要的合格蒸汽,其控制质量的优劣不仅关系到锅炉自身运行的效果,而且还将直接影响道相关装置生产过程的稳定性。
现代燃油燃烧机多为自动控制的燃烧机,一般采用工业程序控制器、火焰检测器以及温度传感器等组成自动控制系统。
燃油锅炉和建筑物自备发电机随着城市发展而越来越多地应用。
以前使用燃煤锅炉由于其在燃烧时产生大量的CO2和粉尘污染环境而逐渐被淘汰,相对应的用燃油锅炉来代替燃煤锅炉已被广泛用于宾馆、大型商场等建筑。
由PLC组成的燃油锅炉控制系统适用于配用各种进口及国产燃烧器的燃油锅炉,对锅炉实行全自动控制,包括锅炉水位、蒸汽压力、燃烧系统的参数检测、指示、报警、调节等进行控制。
火电厂DCS系统介绍

DCS系统通过计算机网络技术将各个控制 器连接起来,实现集中管理和监控,方便 了操作和管理。
开放性
DCS系统采用开放式设计和标准化的通信 协议,方便与其他系统和设备的连接和集 成。
实时性
DCS系统具有快速的数据处理能力和实时 响应能力,能够及时处理生产过程中的各 种信号和数据。
DCS系统的应用范围
工程师可以使用工程师站进行系统配置、控制逻辑设 计、图形界面制作等任务,以满足生产工艺的需求。
操作站是DCS系统中用于监控现场设备运行状 况的人机界面。
工程师站是用于组态和维护DCS系统的计算机。
通讯设备
01
通讯设备是DCS系统中用于实现各硬件设备之间信 息传输的设备。
02
它包括通讯卡、交换机、中继器等设备,以确保系 统各部分之间的可靠通讯。
蒸汽。
蒸汽驱动涡轮机
蒸汽进入涡轮机,驱动 涡轮机旋转,从而产生
电力。
蒸汽冷凝和回收
蒸汽在涡轮机中释放完 能量后,被冷凝成水, 经过处理后再次循环利
用。
DCS系统在火电厂的配置方案
控制单元
DCS系统通过控制单元实现对火电厂设备的 远程控制和监测。
数据采集
DCS系统实时采集火电厂设备的运行数据, 如温度、压力、流量等。
智能运维
DCS系统将实现智能运维管理,通过实时监测和数据分析, 自动预测设备维护需求和故障风险,提高运维效率和安全 性。
DCS系统的安全性提升
安全防护
DCS系统将加强安全防护措施,采用更加先进的安全技术和加密算 法,保护系统免受网络攻击和恶意软件的侵害。
容错与冗余设计
DCS系统将采用容错与冗余设计,确保系统在发生故障时能够快速 恢复运行,降低对火电厂生产的影响。
燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统李凯凯(山东建筑大学热能工程学院山东省济南市 250101)摘要:此次论文主要目的是以标准燃烧器为基本设备,结合汽包压力控制、炉膛压力控制的特点和需要,设计燃气锅炉燃烧控制系统。
主要方法是通过锅炉情况介绍、燃烧器类型选择、燃烧与汽压控制设计、节炉膛压力控制设计、仪表装置选型等步骤,逐一计算所需数据并选择设备类型,然后根据所得参数查阅有关资料按标准设计符合设备的控制系统。
由最终设计结果可知此方法可行。
关键词:燃气锅炉、燃气控制、汽包压力、炉膛压力0 引言近几年来,我国城市燃气结构有了很大变化,尤其是西气东输工程的加速实施,以及不断签署的燃气协议,为长期受限制的燃气锅炉的应用推广创造了条件。
一方面,燃气锅炉的燃料价格相对较高,因此应尽量提高燃料的利用效率;另一方面,气体燃料易燃易爆,燃气锅炉的危险性大,控制系统的生产保证和安全保障要求严格。
国外燃气锅炉的研究历史较长,燃气燃烧控制技术比较成熟,但是燃气锅炉的燃烧控制,多为单回路常规控制,远不能适应我国各地区及各部门条件多变的需要。
为了提高燃气锅炉的热效率和安全生产水平,有必要对燃所锅炉的燃烧控制技术进行研究。
1 锅炉情况本次论文采用一台卧式三回程火管式燃气蒸汽锅炉,使用天然气为燃料,额定蒸发量2T/h,额定汽压1.25MPa,额定蒸汽温度194℃;额定耗气量160Nm³/h,排烟温度230℃,热效率90%。
1.1 燃气蒸汽锅炉的组成结构组成:具体结构由主要部件和辅助设备组成。
主要部件有炉膛、省煤器、锅筒、水冷壁、燃烧设备、空气预热器、炉墙构架组成;辅助设备主要有引风设备、除尘设备、燃料供应设备、除尘除渣设备、送风设备、自动控制设备组成。
系统组成:燃气锅炉主要是由燃烧器和控制器两个大的部分组成,其中燃烧器又能分为五个小的系统,分别为送风系统,点火系统,监测系统,燃料系统和电控系统。
1.2 燃气蒸汽锅炉的工作原理燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料在炉内燃烧放出来的热量加热锅内的水,并使其汽化成蒸汽的热能转换设备。
直燃机的工作原理

直燃机的工作原理直燃机是一种常见的燃气锅炉,广泛应用于工业、商业和家庭等领域。
它采用燃气作为燃料,通过燃烧产生的热能来加热水或者产生蒸汽。
直燃机的工作原理可以简单概括为燃气燃烧产生热能,热能通过传导、对流和辐射等方式传递给工作介质。
1. 燃气供应系统:直燃机的燃气供应系统包括燃气管道、调压阀、燃气计量装置等。
燃气从管道进入直燃机,通过调压阀调整燃气的压力,确保燃气的稳定供应。
2. 点火系统:直燃机的点火系统主要包括电极和点火变压器。
当燃气进入燃烧室时,点火系统会产生高压电弧,点燃燃气。
点火后,燃气会继续燃烧,产生火焰。
3. 燃烧室:燃烧室是直燃机燃烧过程中的关键部份。
燃气在燃烧室中与空气混合后,通过点火系统点燃。
燃烧室内的火焰将燃烧产生的热能传递给工作介质。
4. 热交换器:热交换器是直燃机中的核心部件,用于将燃烧产生的热能传递给工作介质。
热交换器通常由管道和翅片组成,燃烧产生的热气经过管道,热量通过翅片传递给水或者空气。
通过热交换器,水可以被加热成为热水,或者产生蒸汽。
5. 排烟系统:排烟系统用于将燃烧产生的废气排出。
废气中含有一些有害物质,如一氧化碳和氮氧化物等。
排烟系统通过烟囱将废气排放到室外,确保室内空气的质量。
6. 控制系统:直燃机的控制系统用于控制燃气的供应、点火、燃烧和住手等过程。
控制系统通常由传感器、控制器和执行器等组成,可以实现自动控制和调节。
总结:直燃机的工作原理是通过燃气的燃烧产生热能,热能通过热交换器传递给工作介质。
燃烧产生的废气通过排烟系统排放到室外。
控制系统可以实现对燃气供应、点火和燃烧过程的自动控制。
直燃机具有高效、环保、安全等特点,被广泛应用于各个领域。
火烧试验自动控制系统设计

关键词 : 火烧 试 验 ; 液 删 昂 ; 自动 控 制 中 I 炎 : ) 到分 T} 9 2 文 献 : B 文章 编 ‘l0 74 (0 0l 0 0 0 :0 3 2 1 1)1—0 4 4 2
6 m、9 油池 , m 池底 水平 , 池深分别为 3 0 0 mm、4 0 m、 5r a
必要 进行火 烧 试验 、跌 落试验 等异 常环 境试 验来 考核
60 0 mm, 可根据产品大小选择相应的油池 ; 控制间主要由
其贮运安全特性…。火烧试验 的主要 特点是要求精确控
制油 池燃烧 时间 , 为此 研发 了油池 自动 控制 系统 , 能 它 灵活 、可靠地完成 自动点火 、加油 、补油 的试验控 制过 程 。试验 中 , 由于 油品 、气候 、天气 、风速 大小 、环境 温度 等影响 , 油池 的燃 烧速度 会产生一 定变化 , 此系 为
自 化 术与 用 21 年 9 第1 期 动 技 应 00 第2 卷 1
工 业 控 制 与 应 用
n s  ̄ Con r l d App ia i s du t to an l t c on
火 烧 试 验 自动 控 制 系 统 设 计
张 毅, 宁 菲 , 小伶 , 宝 良 甘 牛
a a t e c n r lb r a l i e a c r t l Th u oma i a c lto n o to fo l u n i a e c e k d t r u h d p i o t u n b e t c u a e y. e a t v o m t c l u a i n a d c n r l i q a t y c n b h c e h o g c o t a t a ie t s , swe la h n i e rn p lc t n r la i t c u l r e t a l st e e g n e i g a p i a i e i b l y. f o i Ke r s ie t s; i u d l v l a u e e t a t ma i o to y wo d :f e t l i — e r q e me s r m n ; u o t cnrl c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
燃烧过程自动控制系统
院系 能源与动力学院
专业 热能与动力工程
班级 热动本121
姓名 陈伯霖
学号 2012101132
2
第1章 前 言
1.1课题的背景和意义
锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、
自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万
台,每年耗煤量占我国原煤产量的1/3,目前大多数工业锅炉仍处于能耗高、浪
费大、环境污染严重的生产状态。提高热效率,降低耗煤量,降低耗电量,用微
机进行控制是一件具有深远意义的。工业控制自动化技术是一种运用控制理论、
仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调
度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合
性技术,主要解决生产效率与一致性问题。虽然自动化系统本身并不直接创造效
益,但它对企业生产过程有明显的提升作用。目前,工业控制自动化技术正在向
智能化、网络化和集成化方向发展。
1.2 锅炉控制系统的总体流程
根据设计要求将整个锅炉运行控制的全过程分成多个阶段:运行参数的初始
化过程,在这个过程中调用系统启动的函数;燃烧室中燃烧器的控制过程;废液
输送泵、酸碱液喷嘴、风机等执行机构的控制;通信过程;故障的处理过程;模
拟量信号的采集过程。锅炉燃烧自动控制系统流程图如图1-1所示。
PLC控制锅炉的工艺流程
1.启动:按一定的时间间隔起燃。起燃顺序是:燃油预热---间隔1分钟----送风,
子火燃烧, 母火燃烧-间隔5秒钟-----子火,母火同时关闭。
2.停止:停止燃烧时,要求:燃油预热关闭,喷油关闭,送风(将废气,杂质吹
去)-------间隔20秒----送风停止(清炉停止)。
3.异常状况自动关火:燃油燃烧过程中,当出现异常状况时(即蒸汽压力超过允
许值或水位超过上限,或水位低于下限),能自动关火进行清炉;异常状况消失
后,又能自动按起燃程序重新点火起燃。即:异常状况----燃油预热关闭,喷油
3
关闭,送风----间隔20秒----清炉停止-----异常状况消失------起燃。4.锅炉
水位控制:锅炉工作启动后,当水位低于下限时,进水阀打开,排水阀关闭。当
水位高于上限时,排水阀打开,进水阀关闭。
图1-1 锅炉燃烧自动控制系统流程图
1.3 设计的主要工作
通过PLC与上位机之间的通信对锅炉燃烧进行监控,把锅炉仪表上的信息及
时进行采集,然后经过PLC进行数据和图象处理,再通过通信协议和串口通信端
启动主程序
运行参数初
始化
1#—3#燃烧
器控制
废液输送泵等
执行机构控制
通信处理
故障处理
模拟量信号采集
主程序结束
4
口把信息传送到上位机中,上位机把反映出来的数据和图象再与参数进行调适,
并发送到PLC,PLC再对锅炉进行调节,达到及时监控的目的。
主要工作是对通信模块、通信协议、通信格式、通信端口、通信硬软件以
及通信程序进行设计。
燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制
系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID
控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃
烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通
过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。
图1 燃烧控制系统结构图
2、控制方案
锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉
输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、
送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控
制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度的情况,则需
要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存
在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全
和环境卫生。
2.1 控制系统总体框架设计
燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,
对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对
象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符
合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框
架如图2所示。
图2 单元机组燃烧过程控制原理图
P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计
算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、
负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸
汽压力控制系统采用常规串级PID控制结构。
5