热管换热器及设计计算

合集下载

(完整版)气气热管换热器计算书

(完整版)气气热管换热器计算书

热管换热器设计计算1 确定换热器工作参数1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度t 2c,饱和蒸汽压力p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成灰堵及低温腐蚀,一般不低于180C .空气入口温度t 1c.所选取的各参数值如下:2 确定换热器结构参数2.1 确定所选用的热管类型 烟气定性温度: t f =t 1+t 22=420°C+200°C2=310°C在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出:烟气入口处: t i =t 1+t 2c ×45=420°C+152°C×45=180°C 烟气出口处:t o =t 2+t 1c ×45=200°C+20°C×45=56°C选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C o o ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。

2.2 确定热管尺寸对于管径的选择,由音速极限确定所需的管径d v =1.64√Q cr(ρv p v )12根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW ,在t o =56°C 启动时ρv =0.1113kg/m 3p v =0.165×105pa r =2367.4kJ/kg因此 d v =1.64√Q cr(ρv p v )12=10.3mm由携带极限确定所要求的管径d v =√1.78×Q entπ∙r(ρL −14⁄+ρv −14⁄)−2[gδ(ρL−ρv ]14⁄ 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent kw 管内工作温度 t i =180℃时ρL =886.9kg/m 3 ρv =5.160kg/m 3r =2013kJ/kg4431.010/N m因此 d v =√1.78×4π×2013×(886.9−14⁄+5.16−14⁄)−2[g×431.0×10−4(886.9−5.160)]14⁄=13.6mm考虑到安全因素,最后选定热管的内径为m m 22d i管壳厚度计算由式][200d P S iV式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm ,而2MAX 1[] 3.5/4kg mm故 0.896mm 3.52000.02228.5S考虑安全因素,取 1.5S mm ,管壳外径:m m 25.51222S 2d d i f . 通常热管外径为25~38mm 时,翅片高度选10~17mm (一般为热管外径的一半),厚度选在0.3~1.2mm 为宜,应保证翅片效率在0.8以上为好.翅片间距对干净气流取2.5~4mm ;积灰严重时取6~12mm ,并配装吹灰装置.综上所述,热管参数如下:翅片节距:'415f f f S S mm 每米热管长的翅片数:'10001000200/5f f n m S 肋化系数的计算:每米长翅片热管翅片表面积22[2()]14f f o f f f A d d d n每米长翅片热管翅片之间光管面积(1)r o f f A d n每米长翅片热管光管外表面积o o A d 肋化系数:22[2()]1(1)4f o f f f o f f f rood d d n d n A A A d22[0.5(0.050.025)0.050.001]2000.025(10.2)8.70.0252.3 确定换热器结构将热管按正三角形错列的方式排列,管子中心距S ′=(1.2~1.5)d f 取S ′=70mm 。

管壳式换热器的设计及计算

管壳式换热器的设计及计算

管壳式换热器的设计及计算管壳式换热器是常见的一种热交换设备,用于在流体之间进行热量传递。

它由一个外壳和多个热交换管组成。

在设计和计算管壳式换热器时,需要考虑以下几个方面:选择换热器类型、确定换热器尺寸、确定流体特性、计算热量传递量和压降等。

下面将详细介绍管壳式换热器的设计及计算过程。

首先,选择适合的换热器类型。

根据具体的应用和流体特性,可以选择不同类型的管壳式换热器,如定压式、定温式、冷凝器和蒸发器等。

每种类型的换热器都有特定的性能和适用范围,需根据实际需求确定。

接下来,确定换热器的尺寸。

首先要确定传热面积,这取决于所需的传热量和两种流体间的温度差。

一般来说,换热器的传热面积越大,传热效果越好。

然后确定换热器的外壳直径和长度,这取决于流体的流速、流量和压降要求。

根据流体速度和流量计算出流道的横截面积,再确定壳程内的流道数量,最后通过换热器的设计公式计算出外壳直径和长度。

确定流体特性是设计换热器的关键一步。

需要收集并分析流体的物性数据,如温度、压力、流速、密度、热容等。

这些参数将用于计算热量传递量和压降。

此外,还需要考虑流体的腐蚀性、粘度和污染物含量等因素,在选择材料时要注意其耐腐蚀性能和抗堵塞能力。

计算热量传递量是设计换热器的核心任务。

可以使用传热计算公式,如奥兹逊公式、Nusselt数公式等,根据流体的特性参数计算出传热系数。

传热系数与换热器的结构、流体速度和物性参数有关。

通过计算热传导、对流和辐射等传热机制,可以得到热量传递量的准确数值。

最后,要计算管壳式换热器的压降。

压降是流体通过换热器时产生的能量损失。

为了保证流体的正常流动和换热效果,需要控制良好的压降。

可以通过实验或计算公式,如达西公式和克尔文公式,预测换热器内的压降情况。

根据流体的流速、流量和物性参数,计算出壳程和管程内的压降,并进行整体的能量平衡计算。

综上所述,管壳式换热器的设计和计算包括选择换热器类型、确定尺寸、确定流体特性、计算热量传递量和压降等步骤。

(完整word版)换热器设计计算.doc

(完整word版)换热器设计计算.doc

换热器设计计算步骤1.管外自然对流换热2.管外强制对流换热3.管外凝结换热3已知:管程油水混合物流量 G ( m/d) ,管程管道长度 L (m) ,管子外径 do (m),管子内径 di (m),热水温度 t ℃,油水混合物进口温度 t1’, 油水混合物出口温度 t2”℃。

1.管外自然对流换热1.1 壁面温度设定首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值, t w℃,热水温度为 t ℃,油水混合进口温度为t1'℃,油水混合物出口温度为t1"℃。

t w 1(t t1" ) 21.2 定性温度和物性参数计算管程外为水,其定性温度为( K 1 ) ℃t2 1(t t w ) 2管程外为油水混合物,定性温度为t2'℃t2 '1(t1' t1" ) 2根据表 1 油水物性参数表,可以查得对应温度下的油水物性参数值一般需要查出的为密度( kg / m3 ), 导热系数(W /(m K )) ,运动粘度 ( m2 / s) ,体积膨胀系数 a ( K1),普朗特数 Pr 。

表 1 油水物性参数表水t ρλv a Pr10 999.7 0.574 0.000001306 0.000087 9.5220 998.2 0.599 0.000001006 0.000209 7.0230 995.6 0.618 0.000000805 0.000305 5.4240 992.2 0.635 0.000000659 0.000386 4.3150 998 0.648 0.000000556 0.000457 3.5460 983.2 0.659 0.000000478 0.000522 2.9970 997.7 0.668 0.000000415 0.000583 2.5580 971.8 0.674 0.000000365 0.00064 2.2190 965.3 0.68 0.000000326 0.000696 1.95100 958.4 0.683 0.000000295 0.00075 1.75油t ρλv a Pr10 898.8 0.1441 0.000564 659120 892.7 0.1432 0.00028 0.00069 333530 886.6 0.1423 0.000153 185940 880.6 0.1414 9.07E-05 112150 874.6 0.1405 5.74E-05 72360 868.8 0.1396 3.84E-05 49370 863.1 0.1387 0.000027 35480 857.4 0.1379 1.97E-05 26390 851.8 0.137 1.49E-05 203100 846.2 0.1361 1.15E-05 1601.3设计总传热量和实际换热量计算Q0Cq m t Cq v t C油 q v油t C水 q v水tC 为比热容j /( kg K ),q v为总体积流量m3/ s,分别为在油水混合物中油和水所占的百分比,t 油水混合物温差,q m为总的质量流量 kg / s。

毕业设计热管换热器设计综述

毕业设计热管换热器设计综述

毕业设计热管换热器设计综述
摘要:本文综述了换热器在热力学计算中的重要性,其中包括传热器
的基本概念、热管换热器(SHR)的种类、传热器的分类及计算方法等。


次介绍了热管换热器的结构特点、工作原理及概念、轴向传热模型、实验
设计、计算方法等。

最后,介绍了热管换热器的应用及其特点,以及研究
展望。

关键词:热力学;热管换热器;结构特点;计算方法;应用
1简介
换热器是一种能够实现两种流体之间的热能交换过程,广泛应用于能
源工程、食品加工等行业中,使得换热器的研究受到了广泛关注。

近年来,热管换热器(SHR)在实验和实践领域均受到了关注,由于其占用空间小、
传热效率高、换热面积小等优点,被越来越多的企业采用。

因此,本文综
述了换热器在热力学计算中的重要性,以及热管换热器的结构特点、工作
原理、计算方法、应用及研究展望等内容。

2换热器热力学计算
2.1传热器的基本概念
传热器是一种利用两种不同流体进行热交换而设计的装置,是能量转
换的重要组成部分。

传热器的作用是:将其中一介质的能量即热量,从一
种流体传递给另一种流体。

管换热器的设计计算书

管换热器的设计计算书

水箱容量:100L一、确定传热系数:计算盘管内和盘管外的传热系数,必须知道下列各参数: 1、 N 圈盘管所需的长度L ;LL =NN�(222222)22+PP 22 (1)=NN �(222222.1122)22+22.22220022=0.7544N 2、 盘管所占的体积V VV CC =(22/00)dd 2222LL (2)C=�2200�22.2211002222.77770000NN =0.152*10-33、 环形区的体积Va:N VV aa =�2200�(CC 22−BB 22)PPNN (3)由于此换热器整体浸入在内胆中,故B 为0,则VV aa =�2200�22.001122∗22.222200NN =3.169*10-34、 在环形区内可供流体流动的空间V NV ff =(3.169-0.152)*10= Va – Vc (4)-3N=3.017*10-35、 盘形管的壳程当量直径DeNDD ee =00VV ff22dd 22LL (5)=(4*3.017*10-3换热器外部的传热系数h0可用下面公式中的来计算。

h 0=λN U /dN )/(22*0.016*0.7544N )=0.3182 m努谢尔特数:N U =c(Pr.Gr)n Pr >0.7根据Pr.Gr 值可以从表中查得c 和n 的取值。

而Gr =βg ∆tL 3γ ,其中g 为重力加速度,L 盘管故:Gr =βg ∆tL 3γ=(4.5*10-4*9.8*10*0.0163)/(5.53*10-7)2则Pr.Gr =3.63*590674.57=2144148.694,将盘管看成是垂直圆柱,查表得:c=0.59 n=1/4。

=590674.57N U =c(Pr.Gr)n =0.59*2144148.6941/4h 0=λN U /d =0.642*22.577/0.016=905.902 w/㎡.k=22.577流体在盘管内流动的传热系数h i 采用以下一种常规方法计算:h i0=λN U /d N U =0.023Re 0.8Pr 0.4Re =du ρ/μ由于系统采用威乐泵RS15/6,泵的流量平均取为:0.417kg/s ,即0.422*10-3m ³/s,则:流速u=0.422*10-3/[(0.0144/2)2Re =du ρ/μ=0.016*2.59*988.1/5.47*10*π]=2.59 m/s-4N U =0.023Re 0.8Pr 0.4=0.023*74857.2=74857.20.8*3.630.4h i0=λN U /d =0.642*305.55/0.016=12260.19 w/㎡.k =305.55总传热系数U 由下式给出1/U=1/h 0+1/h i0+x/K e +R t +R 0 (9)由于污垢系数R t 和R 0取决于流体的特性,即流体中存在的悬浮物质、操作温度、流速等因数,而换热器内外的流体都属于清洁水质,但也存在结垢问题,故污垢系数R t +R 0可取7.052*10-41/U=1/h 0+1/h i0+x/K c +R t +R 0=1/905.902+1/12260.19+0.0008/383+7.052*10。

换热器设计计算范文

换热器设计计算范文

换热器设计计算范文换热器是一种常见的热交换设备,广泛应用于各个工业领域。

它主要用于将热量从一个流体传递到另一个流体,通常是从高温流体到低温流体,以满足工业流程中的能量需求。

在进行换热器设计前,首先需要明确应用场景中的工艺参数,如流体的温度、压力、流量等。

同时,还需要了解流体之间的传热方式,包括对流传热、辐射传热和传导传热。

换热器的设计主要包括以下几个步骤:1.确定换热器的传热面积:通过传热面积的计算可以确定换热器的尺寸。

传热面积的计算可以根据传热功率和传热系数来进行,其中传热功率可以通过流体的温度差和流体的流量来计算,传热系数则与流体的性质有关。

2.确定流体的路径:根据流体之间的传热方式和热量转移的需求,选择合适的流体路径。

常见的有串、并、对流和混合等不同的路径。

3.选择合适的换热器类型:根据工艺参数的要求以及使用场景的特点,选择合适的换热器类型。

常见的换热器类型包括壳管式换热器、板式换热器、管束式换热器等。

4.进行传热和阻力的计算:传热和阻力是换热器设计中的重要参数,它们的合理计算可以保证换热器的工作效率。

传热的计算可以通过流体的温度差、传热系数和传热面积来进行,阻力的计算可以通过流体的流速、管道的摩阻系数和管道的长度来进行。

5.进行换热器的选型和优化:根据以上的计算结果,选择合适的换热器型号,并进行进一步的优化。

优化的内容可以包括换热器的材料选择、传热面积的增加等。

需要注意的是,在进行换热器设计时,还需要考虑到一些特殊情况,如流体的腐蚀性、高温高压等,以确保换热器的安全可靠性。

总之,换热器设计计算是一个相对复杂的过程,需要考虑到流体参数、传热和阻力的计算等多个因素。

通过合理的设计计算,可以为工业生产提供高效、能耗低的热交换解决方案。

换热器设计计算范例

换热器设计计算范例

换热器设计计算范例(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--列管式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。

由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。

根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。

可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。

◎初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数大于,否则应改变流动方式,重新计算。

◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A估。

◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。

◎计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。

或者先选定流速以确定管程数N P 和折流板间距B再计算压力降是否合理。

这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。

◎核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。

如果相差较多,应重新估算。

◎计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。

即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18设计条件数据物料流量kg/h组成(含乙醇量)mol%温度℃操作压力MPa进口出口釜液109779145原料液102680795 128试设计选择适宜的列管换热器。

(完整word版)换热器设计计算

(完整word版)换热器设计计算

换热器设计计算步骤1. 管外自然对流换热2. 管外强制对流换热3. 管外凝结换热已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。

1. 管外自然对流换热1.1 壁面温度设定首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。

"w 11t ()2t t =+1.2 定性温度和物性参数计算管程外为水,其定性温度为1()K -℃21()2w t t t =+管程外为油水混合物,定性温度为'2t ℃''"2111()2t t t =+根据表1油水物性参数表,可以查得对应温度下的油水物性参数值一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ∙,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表水t ρλvaPr10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100958.40.6830.0000002950.000751.75油t ρλva Pr10 898.8 0.1441 0.0005646591 20 892.7 0.1432 0.00028 0.000693335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100846.20.13611.15E-051601.3 设计总传热量和实际换热量计算0m v Q Cq t Cq t ρ=∆=∆v v C q t C q t αρβρ=∆+∆油油水水C 为比热容/()j kg K ∙,v q 为总体积流量3/ms ,αβ分别为在油水混合物中油和水所占的百分比,t ∆油水混合物温差,m q 为总的质量流量/kg s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冷流体4.9t/h 进口温度70℃ 出口温度135℃
热流体速度 0.8m/s
冷流体速度 1.5m/s
螺旋板式换热器板宽 0.3m
? 设计结果
换热面积 8.4m2
螺旋通道长度 14m
THANKS
? 翅片材料-低碳钢 焊接方式-高频焊接
? 光管外径0.032m 热管内径0.027m
? 热管全长2m
翅片高度0.015m
主要设计步骤
? 计算传热量、空气流出口温度和对数平均 温差
? 确定引风面积、迎风面管排数 ? 求总传热系数 ? 求加热侧总传热面积、热管换热器根数 ? 求换热器纵深方向排数 ? 求流体通过热管换热器的压力降
? 常规设计计算法与常规间壁式换热器相似 将热管群看成是一块热阻很小的“间
壁”,热流体通过“间壁”的一侧不断冷却, 冷流体通过“间壁”的另一侧不断被加热。
主要原始数据
? 排烟烟气流量4507m3/h 温度240-260℃
? 预热空气流量3800m3/h
进口温度20℃ 出口温度160-170℃
? 热管工质-水 管壳材料-20号锅炉无缝钢管
主要内容
? 热管介绍 ? 热管换热器分类 ? 热管换热器设计计算 ? 热管技术的应用 ? 螺旋板换热器介绍 ? 螺旋板换热器设计计算
热管的介绍
? 热管一般由管壳、毛细多孔材料 吸液芯和工作介质组成。
? 在蒸发段吸热热量气化成气体; ? 在冷凝段放出气化潜热热凝结成
液体; ? 在工业利用中,工作介质依靠重
螺旋板式换热器较多采用液 -液换热。
螺旋板式换热器分类
1、按流动方式分 ? 逆流型 ? 错流型 ? 混合型 2、按焊接方式分 ? “Ⅰ”型 螺旋体端面全部焊
接 ? “Ⅱ”型 螺旋体端面交错焊
接 ? “Ⅲ”型 四张钢板卷制
螺旋板式换热器设计计算
? 设计条件
热流体5.2t/h 进口温度170℃ 出口温度100℃
力从冷凝段回流到加热段,这种 热管称为重力热管或两相热虹吸 管。
热管换热器分类
? 热管换热器是一种热流体和冷流体互不接触的 表面式换热器。
? 整体式热管换热器
? 分离式热管换热器
? 回转式热管换热器
? 热管余热锅炉
热管换热器设计计算
? 目前热管换热器大多数用作气 -气换热。 ? 主要任务是求总传热系数 U ? 选择适当的标准迎面风速,限制在 2~3m/s ? 管外加翅片,提高气 -气换热时的传热系数
搪瓷热管的制造成本较不锈钢低,抗腐蚀性比不锈钢 高很多,其抗腐蚀性和经济性有很大优势,特别是有很好 的抗硫酸露点腐蚀能力。
螺旋板式换热器
螺旋板式换热器是两张平行的钢板在卷 床上卷制成两个螺旋通道的螺旋体 ,加上顶盖 和接管而构成的。螺旋板式换热器使气体成 螺旋形流动,其内外面间隔通道互相贴近 ,结 构紧凑,在同样体积相同、阻力降相同的情 况下,传热面要较列管换热器为大。
工中的余热回收
热管换热器体积小、布置灵活、可控制露点腐蚀,在 石油化工的加热炉余热利用应用广泛。近年来,随着对能 源利用率的要求提高, 要求排烟温度降低到120℃以下, 设备和热管会遇到露点腐蚀的问题。于是开发了耐腐蚀搪 瓷热管,搪瓷热管式在普通碳钢(翅片管)外涂一层耐酸 搪瓷。搪瓷厚度为0.2mm,不易结垢积灰,耐磨损、抗腐 蚀。
设计计算结果
? 总传热系数 18.5W /(m2??C)
? 加热侧总传热面积 91.7m2
? 热管根数 95根
? 热侧压降 511Pa
? 冷侧压降 290Pa
? 经济性核算
设备初投资 2.9万元 全年操作费用 6300元 年
设备电耗 1.5KW 每年节约油耗 140.77t/
年节约费用 16.1万
相关文档
最新文档