《最新6套汇总》江西省景德镇市2019-2020学年中考数学第一次模试卷
【精选3份合集】江西省景德镇市2020年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+解析:A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.2.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.3C3D.2解析:B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC 所以∠EOC=2∠D=60°,所以△ECO 为等边三角形.又因为弦EF∥AB 所以OC 垂直EF 故∠OEF=30°所以EF=3OE=23.3.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .解析:C【解析】【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形,又是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.如图,在Rt△ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .4解析:A 【解析】 试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB , ∴DA=DB,∴∠B=∠DAB,∵AD 平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°, ∴∠CAD=30°, ∵AD 平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD , ∵BC=3, ∴CD=DE=1 考点:线段垂直平分线的性质5.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .解析:D【解析】【分析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合,故选D .【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.6.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯-解析:C【解析】【分析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,依题意可列方程()21645100x x ⨯=-故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.7.下列计算正确的是( )A .(﹣2a )2=2a 2B .a 6÷a 3=a 2C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 2 解析:C【解析】【详解】解:选项A ,原式=24a ;选项B ,原式=a 3;选项C ,原式=-2a+2=2-2a ;选项D , 原式=3a故选C8.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( )A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =32 解析:D【解析】【分析】A 、由a=1>0,可得出抛物线开口向上,A 选项错误;B 、由抛物线与y 轴的交点坐标可得出c 值,进而可得出抛物线的解析式,令y=0求出x 值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、由抛物线开口向上,可得出y 无最大值,C 选项错误;D 、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D 选项正确. 综上即可得出结论.【详解】解:A 、∵a=1>0,∴抛物线开口向上,A 选项错误;B 、∵抛物线y=x 1-3x+c 与y 轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x 1-3x+1.当y=0时,有x 1-3x+1=0,解得:x 1=1,x 1=1,∴抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、∵抛物线开口向上,∴y 无最大值,C 选项错误;D 、∵抛物线的解析式为y=x 1-3x+1,∴抛物线的对称轴为直线x=-b 2a =-321⨯=32,D 选项正确. 故选D .【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.9.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >4解析:C【解析】【分析】 看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.。
江西省景德镇市2020版数学中考模拟试卷(一)A卷

江西省景德镇市2020版数学中考模拟试卷(一)A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)-2的倒数是().A . -2B . -C .D . 22. (2分)(2016·海拉尔模拟) 在正方形、等腰三角形、矩形、菱形中,既是中心对称图形又是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分)一个几何体的表面展开图如图所示,则这个几何体是()A . 四棱锥B . 四棱柱C . 三棱锥D . 三棱柱4. (2分)中国第一座跨海大桥﹣﹣杭州湾跨海大桥全长36千米,其中36千米属于()A . 计数B . 测量C . 标号D . 排序5. (2分) (2018七上·大石桥期末) 由四舍五入法得到的近似数8.8×103 ,下列说法中正确的是()A . 精确到十分位B . 精确到个位C . 精确到百位D . 精确到千位6. (2分) (2016高一下·台州期末) 从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是A . 0.62B . 0.38C . 0.02D . 0.687. (2分)如单项式2x3n-5与-3x2(n-1)是同类项,则n为()A . 1B . 2C . 3D . 48. (2分)如图所示,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为()A . 70°B . 80°C . 90°D . 100°9. (2分) (2017九上·莒南期末) 如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A . ①②③B . ②③④C . ①②④D . ①③④10. (2分) (2017八下·港南期中) 一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A . 6条B . 7条C . 8条D . 9条11. (2分) (2017九上·吴兴期中) 如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E 在优弧AB上.若∠AOD=52°,则∠DEB的度数为()A . 52°B . 40°C . 26°D . 45°12. (2分) (2019七上·万州月考) 有理数a、b在数轴上的位置如图所示,且|a|<|b|,下列各式中正确的个数是()①a+b<0;②b﹣a>0;③ ;④3a﹣b>0;⑤﹣a﹣b>0.A . 2个B . 3个C . 4个D . 5个13. (2分) (2019九上·道里期末) 如图,⊙ 的直径为10,弦的长为8,且,垂足为,则的长为()A . 1B . 2C . 3D . 414. (2分)下列约分正确的是()A . =x3B . =0C . =D . =15. (2分)(2018·东莞模拟) 如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B .C .D .二、解答题 (共9题;共86分)16. (5分) (2017七上·三原竞赛) 计算:17. (10分)(2017·丹阳模拟) 计算题(1)解方程:﹣ =0;(2)解不等式组:.18. (10分) (2019九上·开州月考) 今年上半年,住房和城乡建设等9部门决定在全国地级以上城市全面启动生活垃分类工作.圾分类有利于对垃圾进行分流处理,势在必行.为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,西街中学团委对七年级一,二两班各69名学生进行了垃极分类相关知识的测试,并分别抽取了15份成绩,整理分析过程如下,请补充完整.(收集数据)一班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80二班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(1)【整理数据】按如下分数段整理、描述这两组样本数据组别65.5~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5频数一224511二11a b20在表中,a=________,b=________.(2)【分析数据】份两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差一80x8047.6二8080y z在表中:x=________,y=________.(3)若规定得分在80分及以上(含80分)为合格,请估计二班69名学生中垃极分类及投放相关知识合格的学生有________人.(4)你认为哪个班的学生掌握垃圾分类相关知识的整体水平较好,说明理由.19. (10分) (2017八下·安岳期中) 工厂需要某一规格的纸箱x个.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由工厂租赁机器加工制作.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)请直接写出方案一的费用y1(元)和方案二的费用y2(元)关于x(个)的函数关系式;(2)请你根据纸箱的个数选择哪种方案费用更少?并说明理由.20. (10分)(2018·苏州模拟) 如图,菱形的边长为2,对角线,、分别是、上的两个动点,且满足 .(1)求证: ;(2)判断的形状,并说明理由,同时指出是由经过如何变换得到.21. (5分)如图,已知二次函数y=ax2+bx+c的图象的顶点为M(2,1),且过点N(3,2).(1)求这个二次函数的关系式;(2)若一次函数y=x-4的图象与x轴交于点A,与y轴交于点B,P为抛物线上的一个动点,过点P作PQ∥y 轴交直线AB于点Q,以PQ为直径作圆交直线AB于点D.设点P的横坐标为n,问:当n为何值时,线段DQ的长取得最小值?最小值为多少?22. (6分) (2018九上·宜兴月考) 某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:项目第一年的工资(万元)一年后的计算方法基础工资1每年的增长率相同住房补贴0.04每年增加0.04医疗费0.1384固定不变(1)设基础工资每年的增长率为x,用含x的代数式表示第三年的基础工资,为 ________ 万元.(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18%,问基础工资每年的增长率是多少?23. (10分) (2016九上·石景山期末) 如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.24. (20分) (2017九上·陆丰月考) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、解答题 (共9题;共86分)16-1、17-1、17-2、18-1、18-2、18-3、18-4、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、。
江西省景德镇市2019-2020学年中考数学模拟试题(1)含解析

江西省景德镇市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元2.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b -- 3.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0 C .x=﹣23 D .x=﹣14.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A .56B .58C .63D .725.下列多边形中,内角和是一个三角形内角和的4倍的是( )A .四边形B .五边形C .六边形D .八边形6.已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形7.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm ,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )A .12cmB .122cmC .24cmD .242cm8.如果m 的倒数是﹣1,那么m 2018等于( )A .1B .﹣1C .2018D .﹣20189.若关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43- 10.一艘轮船和一艘渔船同时沿各自的航向从港口O 出发,如图所示,轮船从港口O 沿北偏西20°的方向行60海里到达点M 处,同一时刻渔船已航行到与港口O 相距80海里的点N 处,若M 、N 两点相距100海里,则∠NOF 的度数为( )A .50°B .60°C .70°D .80° 11.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)12.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.14.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,那么围成的圆锥的高度是cm.15.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.16.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.17.半径是6cm的圆内接正三角形的边长是_____cm.18.分解因式:2m2-8=_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)20.(6分)在正方形ABCD 中,M 是BC 边上一点,且点M 不与B、C 重合,点P 在射线AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ ,连接BP ,DQ .(1)依题意补全图 1;(2)①连接 DP ,若点 P ,Q ,D 恰好在同一条直线上,求证:DP 2+DQ 2=2AB 2;②若点 P ,Q ,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .21.(6分)已知关于x 的一元二次方程()2()20(x m x m m ---=为常数). ()1求证:不论m 为何值,该方程总有两个不相等的实数根;()2若该方程一个根为5,求m 的值.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,AB=CD=13,AD=11,BC=21,E 是BC 的中点,P 是AB 上的任意一点,连接PE ,将PE 绕点P 逆时针旋转90°得到PQ .(1)如图2,过A 点,D 点作BC 的垂线,垂足分别为M ,N ,求sinB 的值;(2)若P 是AB 的中点,求点E 所经过的路径弧EQ 的长(结果保留π);(3)若点Q 落在AB 或AD 边所在直线上,请直接写出BP 的长.23.(8分)如图,以△ABC 的一边AB 为直径作⊙O , ⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E .(1) 求证:DE ⊥AC ;(2) 连结OC 交DE 于点F ,若3sin 4ABC ∠=,求OF FC 的值.24.(10分)如图,在平面直角坐标系xOy 中,直线y =kx+m 与双曲线y =﹣2x 相交于点A (m ,2). (1)求直线y =kx+m 的表达式;(2)直线y =kx+m 与双曲线y =﹣2x的另一个交点为B ,点P 为x 轴上一点,若AB =BP ,直接写出P点坐标.25.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?26.(12分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.(1)求证:;(2)当AC=2,CD=1时,求⊙O的面积.27.(12分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD 于点C.(1)若∠DAB=50°,求∠ATC的度数;(2)若⊙O半径为2,TC=,求AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.2.C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b ++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.3.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x 2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23, 检验:当x=-23时,(x+1)2≠0, 故x=-23是原方程的根. 故选C .【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.4.B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n 个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个. 考点:规律题5.C【解析】【分析】利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n .由题意得:(n ﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C .【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.6.D【解析】【分析】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7.D【解析】【分析】过A 作AD ⊥BF 于D,根据45°角的三角函数值可求出AB 的长度,根据含30°角的直角三角形的性质求出斜边AC 的长即可.【详解】如图,过A 作AD ⊥BF 于D ,∵∠ABD=45°,AD=12,∴sin 45AD AB ︒=, 又∵Rt △ABC 中,∠C=30°,∴,故选:D .【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.8.A【解析】【分析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m 的倒数是﹣1,则m=-1,然后再代入m 2018计算即可.【详解】因为m 的倒数是﹣1,所以m=-1,所以m 2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则. 9.B【解析】【分析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值.【详解】解:59x y k x y k +=⎧⎨-=⎩①②, ①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-,将7x k =,2y k =-代入236x y +=得:1466k k -=, 解得:34k =. 故选:B .【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.10.C【解析】【详解】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM 2+ON 2=MN 2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C .【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.11.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.12.C【解析】【分析】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,根据角平分线的性质得到OD=OE=OF ,根据三角形的面积公式计算即可.【详解】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC ,∴OD=OE=OF,∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,故选C.【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m14.4【解析】【分析】已知弧长即已知围成的圆锥的底面半径的长是6πcm,这样就求出底面圆的半径.扇形的半径为5cm就是圆锥的母线长是5cm.就可以根据勾股定理求出圆锥的高.【详解】设底面圆的半径是r,则2πr=6π,∴r=3cm,∴圆锥的高=2253-=4cm.故答案为4.15.a+b=1.【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.16.2 3【解析】【分析】画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【详解】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为62 93 ,故答案为:23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.63【解析】【分析】根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.【详解】如图所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圆的圆心,且正三角形三线合一,所以BO是∠ABC的平分线;∠OBD=60°×12=30°,BD=cos30°×6=6×323根据垂径定理,BC=2×3,故答案为3.【点睛】本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.18.2(m+2)(m-2)【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m 2-8,=2(m 2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.51.96米.【解析】【分析】先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt △BDC 中,sin60CD BC︒=,即可求出CD 的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt △BDC 中, sin60CD BC︒=∴sin606051.96CD BC =⋅︒==≈(米). 答:文峰塔的高度CD 约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.20.(1)详见解析;(1)①详见解析;②BP=AB .【解析】【分析】(1)根据要求画出图形即可;(1)①连接BD ,如图1,只要证明△ADQ ≌△ABP ,∠DPB=90°即可解决问题;②结论:BP=AB ,如图3中,连接AC ,延长CD 到N ,使得DN=CD ,连接AN ,QN .由△ADQ ≌△ABP ,△ANQ ≌△ACP ,推出DQ=PB ,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN ,可得DQ=CD=DN=AB ;【详解】(1)解:补全图形如图1:(1)①证明:连接BD,如图1,∵线段AP 绕点 A 顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD 中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:结论:BP=AB.理由:如图 3 中,连接AC,延长CD 到N,使得DN=CD,连接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN ,∴DQ=CD=DN=AB ,∴PB=AB .【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴21.(1)详见解析;(2)的值为3或1.【解析】【分析】(1)将原方程整理成一般形式,令0V >即可求解,(2)将x=1代入,求得m 的值,再重新解方程即可. 【详解】()1证明:原方程可化为()222220x m x m m -+++=,1a Q =,()22b m =-+,22c m m =+,()()2224[22]4240b ac m m m ∴=-=-+-+=>V ,∴不论m 为何值,该方程总有两个不相等的实数根. ()2解:将5x =代入原方程,得:()2(5)250m m ---=,解得:13m =,25m =.m ∴的值为3或1.【点睛】本题考查了参数对一元二次方程根的影响.中等难度.关键是将根据不同情况讨论参数的取值范围. 22.(1) ;(2)5π;(3)PB 的值为或.【解析】【分析】(1)如图1中,作AM ⊥CB 用M ,DN ⊥BC 于N ,根据题意易证Rt △ABM ≌Rt △DCN ,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM 的值,即可得出结论;(2)连接AC ,根据勾股定理求出AC 的长,再根据弧长计算公式即可得出结论;(3)当点Q 落在直线AB 上时,根据相似三角形的性质可得对应边成比例,即可求出PB 的值;当点Q 在DA 的延长线上时,作PH ⊥AD 交DA 的延长线于H ,延长HP 交BC 于G ,设PB=x ,则AP=13﹣x ,再根据全等三角形的性质可得对应边相等,即可求出PB 的值.【详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【点睛】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.23.(1)证明见解析(2)8 7【解析】【分析】(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.【详解】解:(1)连接OD . ∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90° .∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC .∴∠DEC=∠ODE= 90° .∴DE⊥AC .(2)连接AD . ∵OD∥AC,∴OF OD FC EC=.∵AB为⊙O的直径,∴∠ADB= ∠ADC =90° . 又∵D为BC的中点,∴AB=AC.∵sin∠ABC=ADAB=34,设AD= 3x , 则AB=AC=4x, OD= 2x.∵DE⊥AC,∴∠ADC= ∠AED= 90°.∵∠DAC= ∠EAD,∴△ADC∽△AED.∴AD AC AE AD=.∴2AD AE AC=⋅.∴94=AE x. ∴74=EC x.∴87== OF ODFC EC.24.(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(113-,0).【解析】【分析】(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.【详解】解:(1)∵点A(m,2)在双曲线2yx=-上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2)312y xyx=--⎧⎪⎨=-⎪⎩,解得12xy=-⎧⎨=⎩或233xy⎧=⎪⎨⎪=-⎩,∴B(23,﹣3),∴ABP(n,0),则有(n﹣23)2+32=2509,解得n=5或11 3 -,∴P1(5,0),P2(113-,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键. 25.(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.【解析】【分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【详解】(1)甲的速度为540090=60米/分钟.(2)当20≤t ≤1时,设s=mt+n,由题意得:200 303000 m nm n+=⎧⎨+=⎩,解得:3006000mn=⎧⎨=-⎩,所以s=10t-6000;(3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.26.(1)证明见解析;(2).【解析】【分析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.【详解】证明:连接OD,∵BC为圆O的切线,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,则;(2)解:连接ED,在Rt△ACD中,AC=2,CD=1,根据勾股定理得:AD=,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即AD2=AC•AE,∴AE=,即圆的半径为,则圆的面积为.【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.27.(2)65°;(2)2.【解析】试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT 为⊙O的切线;(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;(2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.。
江西省景德镇市2019-2020学年中考一诊数学试题含解析

江西省景德镇市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.化简(﹣a2)•a5所得的结果是( )A.a7B.﹣a7C.a10D.﹣a102.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为x甲=89分,x乙=89分,S甲2=195,S乙2=1.那么成绩较为整齐的是()A.甲班B.乙班C.两班一样D.无法确定3.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)4.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.5.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°6.下列计算正确的是()A.2x2+3x2=5x4B.2x2﹣3x2=﹣1C.2x2÷3x2=23x2D.2x2•3x2=6x47.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A .(4,﹣3)B .(﹣4,3)C .(5,﹣3)D .(﹣3,4)8.抛物线经过第一、三、四象限,则抛物线的顶点必在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--10.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A .B .C .D .11.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是( ) A .本市明天将有85%的地区下雨 B .本市明天将有85%的时间下雨 C .本市明天下雨的可能性比较大D .本市明天肯定下雨12.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .15二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在等腰Rt ABC △中,22AC BC ==P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是________.14.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.15.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于____;(2)在△ABC的内部有一点P,满足S△PAB S△PBC S△PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______16.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 200 500 1000 2000 出芽种子数96 165 491 984 1965A发芽率0.96 0.83 0.98 0.98 0.98出芽种子数96 192 486 977 1946B发芽率0.96 0.96 0.97 0.98 0.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).17.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.18.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF=CE.20.(6分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒135个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.21.(6分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC 是等边三角形,点D 为BC 的中点,且满足∠ADE=60°,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.(1)小明发现,过点D 作DF//AC ,交AC 于点F ,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD 与DE 的数量关系: ;(2)(类比探究)如图2,当点D 是线段BC 上(除B ,C 外)任意一点时(其它条件 不变),试猜想AD 与DE 之间的数量关系,并证明你的结论.(3)(拓展应用)当点D 在线段BC 的延长线上,且满足CD=BC (其它条件不变)时, 请直接写出△ABC 与△ADE 的面积之比.22.(8分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.23.(8分)如图1,在长方形ABCD 中,12AB cm =,BC 10cm =,点P 从A 出发,沿A B C D →→→的路线运动,到D 停止;点Q 从D 点出发,沿D C B A →→→路线运动,到A 点停止.若P 、Q 两点同时出发,速度分别为每秒lcm 、2cm ,a 秒时P 、Q 两点同时改变速度,分别变为每秒2cm 、54cm (P 、Q 两点速度改变后一直保持此速度,直到停止),如图2是APD ∆的面积2()s cm 和运动时间x (秒)的图象.(1)求出a 值;(2)设点P 已行的路程为1()y cm ,点Q 还剩的路程为2()y cm ,请分别求出改变速度后,12,y y 和运动时间x (秒)的关系式;(3)求P 、Q 两点都在BC 边上,x 为何值时P ,Q 两点相距3cm ?24.(10分)已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F. (1)如图1,当AB=AC,且sin ∠BEF=35时,求BF CF的值; (2)如图2,当tan ∠ABC=12时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G ,当2FG BF CG =⋅时,求矩形BCDE 的面积25.(10分)有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么? 26.(12分)已知四边形ABCD 为正方形,E 是BC 的中点,连接AE ,过点A 作∠AFD ,使∠AFD=2∠EAB ,AF 交CD 于点F ,如图①,易证:AF=CD+CF .(1)如图②,当四边形ABCD 为矩形时,其他条件不变,线段AF ,CD ,CF 之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD 为平行四边形时,其他条件不变,线段AF ,CD ,CF 之间又有怎样的数量关系?请直接写出你的猜想.图①图②图③27.(12分)如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据同底数幂的乘法计算即可,计算时注意确定符号.详解: (-a2)·a5=-a7.故选B.点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键. 2.B【解析】【分析】根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论.【详解】∵S甲2>S乙2,∴成绩较为稳定的是乙班。
江西省景德镇市2019-2020学年中考数学仿真第一次备考试题含解析

江西省景德镇市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,42.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=12,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(52,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )A.②③④B.①②③C.①④D.①②④3.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹4.下列图案中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.5.比1小2的数是()A.3-B.2-C.1-D.16.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=cx在同一坐标系中的图象可能是()A .B .C .D .7.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤o o )近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18oB .36oC .41oD .58o8.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A .8,9B .8,8.5C .16,8.5D .16,10.59.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .45°B .60°C .70°D .90°10.两个有理数的和为零,则这两个数一定是( )A .都是零B .至少有一个是零C .一个是正数,一个是负数D .互为相反数11.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°12.若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若分式22x x +的值为正,则实数x 的取值范围是__________________. 14.分解因式2242xy xy x ++=___________15.已知二次函数2y ax bx c =++的图象如图所示,若方程2ax bx c k ++=有两个不相等的实数根,则k的取值范围是_____________.16.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20°17.对角线互相平分且相等的四边形是( )A .菱形B .矩形C .正方形D .等腰梯形18.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:131|13|2sin 60(2016)83π-︒︒⎛⎫+--+-- ⎪⎝⎭.先化简,再求值:2344111x x x x x ++⎛⎫-+÷ ⎪++⎝⎭,其中22x =-. 20.(6分)如图,四边形 ABCD 中,对角线 AC 、BD 相交于点 O ,若22OA OB OC OD ==== AB ,求证:四边形 ABCD 是正方形21.(6分)如图,在△ABC 中,AB AC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交AB 于点F . (1)求证:AE 为⊙O 的切线;(2)当BC=4,AC=6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.22.(8分)如图,在Rt △ABC 中,∠C=90°,翻折∠C ,使点C 落在斜边AB 上某一点D 处,折痕为EF (点E 、F 分别在边AC 、BC 上)若△CEF 与△ABC 相似.①当AC=BC=2时,AD 的长为 ;②当AC=3,BC=4时,AD 的长为 ;当点D 是AB 的中点时,△CEF 与△ABC 相似吗?请说明理由.23.(8分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.24.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.25.(10分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:26.(12分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?27.(12分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】 试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.2.D【解析】【分析】根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y 1),(52,y 2)到对称轴的距离即可判断④.【详解】∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=12, ∴a=-b,∴b>0,∴abc<0,故①正确;∵a=-b, ∴a+b=0,故②正确;把x=2代入抛物线的解析式得,4a+2b+c=0,故③错误; ∵()151-2222->- , 12,y y <∴故④正确;故选D..【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力. 3.B【解析】【分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体. 4.B【解析】【分析】根据轴对称图形与中心对称图形的概念解答.【详解】A.不是轴对称图形,是中心对称图形;B.是轴对称图形,是中心对称图形;C.不是轴对称图形,也不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.C【解析】1-2=-1,故选C6.C【解析】【分析】根据二次函数图像位置确定a<0,c>0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a<0,c>0,∴正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.7.C【解析】【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.8.A【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.9.D【解析】已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.10.D【解析】解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.11.D【解析】【分析】根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键. 12.B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y =mx (m 是常数,m≠0)的图象经过点A (m ,4),∴m 2=4,∴m =±2,∵y 的值随x 值的增大而减小,∴m <0,∴m =﹣2,故选:B .【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x >0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得. 【详解】∵分式2x x 2+的值为正, ∴x 与x 2+2的符号同号,∵x 2+2>0,∴x>0,故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.14.22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.5k <【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.。
江西省景德镇市数学中考一模试卷

江西省景德镇市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯 (共10题;共30分)1. (3分)(2020·南湖模拟) 下列各组数中,互为相反数的是()A . 4与-4B . 与4C . 4与D . -4与2. (3分)(2020·南湖模拟) 下列图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A . 赵爽弦图B . 笛卡尔心形线C . 科克曲线D . 斐波那契螺旋线3. (3分)(2020·南湖模拟) 下列运算正确的是()A . a+a=a²B . x².x3=x5C . (a+1)²=a2+1D . (2x)3=6x34. (3分)(2020·南湖模拟) 有10位同学参加歌唱比赛,成绩各不相同,按成绩取前5位进入决赛,一位选手知道了自己的成绩后,要判断能否进入决赛,则他还需知道这10位同学成绩的()A . 平均数B . 中位数5. (3分)(2020·南湖模拟) 已知正方形的面积为50,则该正方形的边长介于()A . 6与7之间B . 7与8之间C . 8与9之间D . 9与10之间6. (3分)(2020·南湖模拟) 车队运送一批货物.若每车装4吨,剩下8吨未装;若每车装5吨,则剩余1辆车。
甲、乙两人设该车队有x辆车,丙、丁两人设这批货物有y吨,分别列出如下方程:甲:4x+8=5(x-1);乙:4x-8=5(x+1);丙: +1;丁: -1。
其中所列方程正确的是()A . 甲、丙B . 甲、丁C . 乙、丙D . 乙、丁7. (3分)(2020·南湖模拟) 图1是一张圆形纸片,直径AB=4,现将点A折叠至圆心O形成折痕CD,再把点C,D都折叠至圆心O处,最后将图形打开铺平(如图2所示),则弧EF的长为()A . πB . πC . πD . π8. (3分)(2020·南湖模拟) 已知抛物线y=ax2+bx+c(u>0)交x轴于点A(x1 , 0),B(x2 , 0),且x1<x2 ,点P(m,n)(n<0)在该抛物线上.下列四个判断:①b²-4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程a2+bx+c=n的解是x=m;④当m=时,△PAB的面积最大。
2020江西省景德镇市中考数学教学质量检测试题
【解析】
【分析】
分别根据合并同类项、完全平方公式、积的乘方、单项式的乘法法则进行计算即可.
【详解】
A、a6和a2不是同类项,无法合并,故本项错误;
B、 ,故本项错误;
C、 ,故本项错误;
D、 ,故本项正确;
故本题答案应为:D.
【点睛】
合并同类项、完全平方公式、积的乘方、单项式的乘法是本题的考点,熟练掌握运算法则是解题的关键.
参考答案
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.D
【解析】
【分析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
∵△AFG与△BFD相似
∴AG=3y,BD=5y
由题意BC:CD=3:2则CD=2y
∵△AEG与△CED相似
∴AE:EC=AG:DC=3:2.
【点睛】
本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.
16.(-2 ,6)
【解析】
分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2 ,得到答案.
14.
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】60000小数点向左移动4位得到6,
江西省景德镇市名校2019-2020学年中考数学模拟试卷
江西省景德镇市名校2019-2020学年中考数学模拟试卷一、选择题1.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是()A.27B.37C.47D.672.如图,⨀O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC的长为()A.B.2 C.4 D.23.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为484.图为歌神KTV的两种计费方案说明.若嘉淇和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务员试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们同一间包厢里欢唱的人数至少有( )A.6人B.7人C.8人D.9人5.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()C.26.已知AB 是圆O 的直径,AC 是弦,若AB =4,AC =,则sin ∠C 等于( )A B .12 C D 7.下列几道题目是小明同学在黑板上完成的作业,他做错的题目有( )①a 3÷a ﹣1=a 2②(2a 3)2=4a 5③(12ab 2)3=16a 3b 6④2﹣5=132⑤(a+b )2=a 2+b 2 A .2道B .3道C .4道D .5道 8.如图,已知⊙O 的半径为6cm ,两弦AB 与CD 垂直相交于点E ,若CE =3cm ,DE =9cm ,则AB =( )cm 9.由6个完全相同的小正方体组成的立体图形如图所示,其主视图是( )A .B .C .D .10.如图,直线y=-x+2分别交x 轴、y 轴于点A ,B ,点D 在BA 的延长线上,OD 的垂直平分线交线段AB 于点C .若△OBC 和△OAD 的周长相等,则OD 的长是( )A .2B .C .2D .411.下列计算正确的是( )A .a 3+a 2=a 5B .a 8÷a 4=a 2C .(2a 3)2﹣a•a 5=3a 6D .(a ﹣2)(a+3)=a 2﹣612.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .二、填空题13.若反比例函数k y x=的图象经过点()1,2-,则k 的值是__________. 14.不等式组5234x x -≤-⎧⎨-<⎩的解集是______________.15有意义,则字母x 的取值范围是 .16.正方形ABCD 的边长为10,点M 在AD 上,8AM =,过M 作MN AB ∥,分别交AC 、BC 于H 、N 两点,若E 、F 分别为(3)(2)x x f f ≤、BM 的中点,则EF 的长为_________________17.如图,Rt ⊿ABC 中,∠C=90º,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC,已知AC=6,OC=BC的长为______.18.已知三角形两边的长分别为5、2,第三边长为奇数,则第三边的长为_____.三、解答题19.(1)计算:﹣π)0﹣4cos45°﹣|﹣3|;(2)解分式方程:4122x x=-+.20.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(143),F(624);(2)若m是“相异数”,m的百位上的数字为7,十位上的数字比个位上的数字多3,且F(m)=22,“相异数”m是多少?(3)若s,t都是“相异数”,其中s=100a+35,t=160+b(1≤a≤9,1≤b≤9,a,b都是正整数),当F(s)+F(t)=22时,求a+b的值.21.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C(0,﹣3),点E是抛物线上的一个动点,过点E作EF⊥x轴于点F,已知点A的坐标为(﹣1,0)(1)求点B的坐标;(2)当点F在OB段时,△BCE的面积是否存在最大值?若存在,求出最大值;若不存在,请说明理由.22.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.23.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=_____;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.24.先化简,再求值: 1-21x x -+÷2433x x -+,其中 2. 25.为了解家长关注孩子成长方面的状况,某学校开展了针对家长的“您最关心孩子哪方面的成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取了部分家长进行调查,要求家长只能选择其中一个项目,根据调查结果绘制了如下两幅不完整的统计图.(1)本次调查共抽取了多少名学生家长?(2)通过计算补全条形统计图;(3)若全校共有2000名学生家长,估计有多少位学生家长最关心孩子“情感品质”方面的成长?【参考答案】*** 一、选择题13.-214.-1<x≤3 15.x≥﹣5.1617.818.三、解答题19.(1)-2;(2)x=-103..【解析】【分析】(1)本题涉及零指数幂、二次根式化简、特殊角三角函数、绝对值化简等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)通过去分母,两边同乘以(x+2)(x-2),即可将原分式方程转化为一个整式方程,解整式方程后要注意检验,即可得到正确结果.【详解】(1)原式=+1﹣3=1﹣3=﹣2;(2)方程两边同乘以(x+2)(x﹣2),得4(x+2)=x﹣2,解得:x=﹣103,检验:将 x=﹣103代入(x+2)(x﹣2)中,(x+2)(x﹣2)≠0∴x=﹣103是原分式方程的根.故原分式方程的根为 x=﹣103.【点睛】本题主要考查了实数的综合运算能力以及解分式方程.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角三角函数等考点的运算.20.(1)F(143)=8;F(624)=12;(2)m为796;(3)a+b=7【解析】【分析】(1)根据“相异数”的定义求解即可;(2)设m的个位上的数字为x,十位上的数字为y,根据相异数定义可得F (m )=x+y+7,根据题意可得方程组,解出x ,y 的值,则可求m 的值.(3)根据题意可求F (s )=a+8,F (t )=b+7,根据F (s )+F (t )=22时,可求a+b 的值.【详解】(1)F (143)=(413+341+134)÷111=8,F (624)=(264+642+426)÷111=12,(2)设m 的个位上的数字为x ,十位上的数字为y ,则F (m )=(100y+70+x+100x+10y+7+700+10x+y )÷111=x+y+7,根据题意可得,3722x y x y +=⎧⎨++=⎩, 解得:69x y =⎧⎨=⎩, ∴m 为796;(3)∵s ,t 都是“相异数”,s =100a+35,t =160+b ,∴F (s )=(305+10a+530+a+100a+53)÷111=a+8,F (t )=(610+b+100b+61+106+10b )÷111=b+7,∵F (s )+F (t )=22,∴a+8+b+7=22,∴a+b =7.【点睛】本题是阅读理解题,正确利用“相异数”的定义进行计算是解决本题的关键.21.(1)(3,0),(2)278【解析】【分析】(1)将点C (0,﹣3),A (﹣1,0)代入y =x 2+bx+c 中求出二次函数解析式,从而求出点B 的坐标;(2)设点F (x ,0)(0<x <3),则点E (x ,x 2﹣2x ﹣3),根据三角形面积公式可用含x 的代数式表示出△BCE 的面积,再利用配方法即可求出最值.【详解】解:(1)将点C (0,﹣3),A (﹣1,0)代入y =x 2+bx+c 中得: 310,c b c =-⎧⎨-+=⎩ 解得: 23.b c =-⎧⎨=-⎩∴y =x 2﹣2x ﹣3,令y =0,得x =﹣1或3,∴点B 的坐标为(3,0);(2)设点F (x ,0)(0<x <3),则点E (x ,x 2﹣2x ﹣3),∵B (3,0),C (0,﹣3),∴直线BC :y =x ﹣3,∴H (x ,x ﹣3),∴△BCE 的面积=△CEH 的面积+△BEH 的面积()()()22113233323,22x x x x x x x x =⨯---+---⨯--- ()213323,2x x x ⎡⎤=-⨯⨯---⎣⎦ 23327,228x ⎛⎫=--+ ⎪⎝⎭ ∴△BCE 的面积()23327,03228x x ⎛⎫=--+<< ⎪⎝⎭, ∴当32x =时,△BCE 的面积取最大值,最大值为278. 【点睛】本题考查了二次函数的应用,正确使用割补法表示出三角形的面积是解题的关键.22.(1)花园的面积为192m 2,x 的值为12m 或16m ;(2)x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)当x =28﹣a 时,函数有最大值,y=﹣(14﹣a )2+196.【解析】【分析】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S =x (28−x )=−x 2+28x =−(x −14)2+196,再利用二次函数的性质求解;(3)根据题意确定x 的取值范围,利用二次函数增减性计算即可.【详解】解:(1)依题意得 S =x (28﹣x ),当S =192时,有S =x (28﹣x )=192,即x 2﹣28x+192=0,解得:x 1=12,x 2=16,答:花园的面积为192m 2,x 的值为12m 或16m ;(2)由题意可得出:S =x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196,答:x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)依题意得:286x a x -≥⎧⎨≥⎩, 解得:6≤x≤28﹣a ,S =x (28﹣x )=﹣x 2+28x =﹣(x ﹣14)2+196,∵a =﹣1<0,当x≤14,y 随x 的增大而增大,又6≤x≤28﹣a ,∴当x =28﹣a 时,函数有最大值,∴y =﹣(28﹣a ﹣14)2+196=﹣(14﹣a )2+196.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出S 与x 的函数关系式是解题关键.23.(1)35(2)详见解析;(3)1<t≤1.5;(4)22.5万人.【解析】【分析】(1)用样本总数100减去A 、B 、D 、E 类的人数即可求出a 的值;(2)由(1)中所求a 的值得到C 类别的人数,即可补全条形统计图;(3)根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可;(4)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.【详解】解:(1)a=100-(5+20+30+10)=35;(2)补全条形统计图如图所示:(3)根据中位数的定义可知,这组数据的中位数落在C 类别,所以小王每天进行体育锻炼的时间范围是1<t≤1.5;(4)3530103022.5100++⨯=(万人). 即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.【点睛】本题考查的是条形统计图和频数分布表的综合运用,用样本估计总体.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数的定义以及利用样本估计总体.24.1【解析】【分析】按照运算顺序,先算除法,再算减法化简后代入数值即可.【详解】原式=()()()3121122xxx x x+--?++-=3 12x-+=12 xx-+当2时,原式31 =-【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则及正确的分解因式并约分是关键.25.(1)100人;(2)见解析;(3)160人.【解析】【分析】(1)依据“健康安全”一项的人数以及百分比,即可得到抽取的家长数量;(2)求得“习惯养成”一项的人数,即可补全条形统计图;(3)依据“情感品质”一项所占的百分比,即可估计有多少位学生家长最关心孩子“情感品质”方面的成长.【详解】(1)本次调查共抽取家长人数为:30÷30%=100(人);(2)100﹣30﹣52﹣8=10(人),如图所示:(3)2000×8100=160(人),答:估计有160位学生家长最关心孩子“情感品质”方面的成长.【点睛】本题主要考查了条形统计图以及扇形统计图,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.。
江西省景德镇市中考数学一模试卷
江西省景德镇市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)计算6﹣(﹣4)+7的结果等于()A . 5B . 9C . 17D . ﹣92. (2分)在Rt△ABC中,若,则∠A的度数是().A . 30°B . 45°C . 60°D . 90°3. (2分)下列图形中是中心对称图形,而不是轴对称图形的是()A . 等边三角形B . 平行四边形C . 矩形D . 菱形4. (2分)保护水资源,人人有责,我国是缺水国家,目前可利用淡水资源总量仅约为899000亿立方米,899000亿用科学记数法表示为()A . 8.99×B . 0.899×C . 8.99×D . 89.9×5. (2分)(2016·温州) 三本相同的书本叠成如图所示的几何体,它的主视图是()A .B .C .D .6. (2分) (2019七下·景县期末) 下列在数轴上所表示的解集中,不包括的是()A .B .C .D .7. (2分)化简:=()A . 0B . 1C . xD .8. (2分)方程的解是()A .B .C .D .9. (2分)下列各数中最小的数是()A . ﹣8B . ﹣4C . 0D . 710. (2分)一个图形无论经过平移还是旋转,有以下说法()①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化A . ①②③B . ①②④C . ①③④D . ②③④11. (2分) (2017九下·福田开学考) 若A(1,y1)、B(2,y2)、C(﹣3,y3)为双曲线上三点,且y1>y2>0>y3 ,则k的范围为()A . k>0B . k>1C . k<1D . k≥112. (2分)(2017·深圳模拟) 已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A . 5B . 4C . 3D . 2二、填空题 (共6题;共10分)13. (1分) (2017七上·常州期中) 若a+b+c=0,则(a+b)(b+c)(c+a)+abc=________.14. (1分)计算:(﹣)÷+2= ________ .(结果保留根号)15. (1分)(2017·百色) 一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是________.16. (1分) (2019九下·温州竞赛) 如图,一次函数y=-2x+b与反比例函数y= (x>0)的图象交于A,B两点,连结OA,过B作BD⊥x轴于点D,交OA于点C,若CD:CB=1:8,则b=________.17. (1分) (2015八下·蓟县期中) 如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF ,其中正确的是________(只填写序号).18. (5分) (2016八下·枝江期中) 如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,求BC的长.三、解答题: (共7题;共35分)19. (1分)(2018·崇阳模拟) 对于满足0≤p≤4的一切实数,不等式x2+px>4x+p﹣3恒成立,则实数x 的取值范围是________20. (4分)(2017·河东模拟) 为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(Ⅰ)被抽样调查的学生有 ________ 人,并补全条形统计图________ ;(Ⅱ)每天户外活动时间的中位数是________ (小时);(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有________ 人?21. (10分)如图,点O在∠APB的平分线上,⊙O与PA相切于点C(1)求证:直线PB与⊙O相切。
江西省景德镇市2019-2020学年中考数学一模考试卷含解析
江西省景德镇市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-2.函数22ayx--=(a为常数)的图像上有三点17()2y-,,21()2y-,,33()2y,,则函数值123,,y y y的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y13.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:3B.2:3:4 C.1:3:2 D.1:2:34.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5705.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④6.下列二次根式中,最简二次根式的是()A 15B0.5C5D507.据统计, 2015年广州地铁日均客运量均为6590 000人次,将6590 000用科学记数法表示为()A.46.5910⨯B.465910⨯C.565.910⨯D.66.5910⨯8.下列计算正确的是()A.2x2-3x2=x2B.x+x=x2C.-(x-1)=-x+1 D.3+x=3x9.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是( )A.B.C.D.10.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣1611.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130°D.120°12.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.3C.33D.32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.14.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.15.如图,⊙O的直径CD垂直于AB,∠AOC=48°,则∠BDC=度.16.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.17.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P 重合,折痕所在直线交矩形两边于点E,F,则EF长为________.18.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(6分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.21.(6分)如图,在平面直角坐标系中,圆M 经过原点O ,直线364y x =--与x 轴、y 轴分别相交于A ,B 两点.(1)求出A ,B 两点的坐标;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在圆M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D 、E 两点,在抛物线上是否存在点P ,使得S △PDE =110S △ABC ?若存在,请求出点P 的坐标;若不存在,请说明理由.22.(8分)先化简再求值:2()(2)x y y y x -++,其中2x 3y =23.(8分)对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于1.(1)分别判断函数y =﹣x+1,y =1x-,y =x 2有没有反向值?如果有,直接写出其反向距离; (2)对于函数y =x 2﹣b 2x ,①若其反向距离为零,求b 的值;②若﹣1≤b≤3,求其反向距离n 的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.24.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.25.(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.26.(12分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)连接AC、BC,判断△ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.27.(12分)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2-.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.2.A【解析】试题解析:∵函数y=2-2ax(a为常数)中,-a1-1<0,∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,∵32>0,∴y3<0;∵-72<-12,∴0<y1<y1,∴y3<y1<y1.故选A.3.D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.考点:正多边形和圆.4.A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.5.B【解析】【详解】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.6.C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A,被开方数含分母,不是最简二次根式;故A选项错误;B,被开方数为小数,不是最简二次根式;故B选项错误;2C C选项正确;D D选项错误;故选C.考点:最简二次根式.7.D【解析】【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】解:6 590 000=6.59×1.故选:D.【点睛】本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.8.C【解析】【分析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A.2x2-3x2=-x2,故此选项错误;B.x+x=2x,故此选项错误;C.-(x-1)=-x+1,故此选项正确;D.3与x不能合并,此选项错误;故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.9.C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.10.B【解析】【分析】先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【点睛】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.11.A【解析】【分析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.12.B【解析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,33,根据题意得:AD=BC=x,3,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=1323xAMAE x==;故选B.【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2.35×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将235000000用科学记数法表示为:2.35×1.故答案为:2.35×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.∠A=∠C或∠ADC=∠ABC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年数学中考模拟试卷一、选择题1.每到四月,许多地方的杨絮、柳絮如雪花漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000115m ,该数值用科学记数法表示为( )A .1.15×105B .0.115×10﹣4C .1.15×10﹣5D .115×10﹣72.如图,正△AOB 的边长为5,点B 在x 轴正半轴上,点A 在第一象限,反比例函数y =k x(x >0)的图象分别交边AO ,AB 于点C ,D ,若OC =2BD ,则实数k 的值为( )A .BCD .3.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x ,那么x 满足的方程为( )A .10(1+x )2=42B .10+10(1+x )2=42C .10+10(1+x )+10(1+2x )=42D .10+10(1+x )+10(1+x )2=424.若m >n ,则下列不等式正确的是( )A .m+2<n+2B .m ﹣2<n ﹣2C .﹣2m <﹣2nD .m 2>n 2 5.如图,在四边形ABCD 中,∠DAB=90°,∠DCB=90°,E 、F 分别是BD 、AC 的中点,AC=6,BD=10,则EF 的长为( )A .3B .4C .5 D6.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2); B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 7.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( )A .m 1≥B .1m £C .1m >D .1m < 8.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A .10m 或5mB .5m 或8mC .10mD .5m9.如图是某款篮球架的示意图,已知底座BC =0.60米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF 的长为2.50米,篮板顶端F 点到篮框D 的距离FD =1.35米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,求篮框D 到地面的距离(精确到0.01米)(参考数据:cos75°≈0.26,sin75°≈0.97,)A .3.04B .3.05C .3.06D .4.40 10.下列图形中,是中心对称图形但不是轴对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆 11.如图,在同一直角坐标系中,函数y kx =与()0k y k x=≠的图象大致是( ).A .①②B .①③C .②④D .③④12( )A .2和3B .3和4C .4和5D .5和6 二、填空题13.式子2x - 在实数范围内有意义,则x 的范围是___________.14.计算:2﹣1=_____.15.已知2m -3n=-4,则代数式m(n -4)-n(m -6)的值为 .16.如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,EC=2,∠AEP=90°,且EP 交正方形外角的平分线CP 于点P ,则PC 的长为_____.17.一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有____个.18.如图,反比例函数图象经过点A ,过点A 作AB ⊥x 轴,垂足为B ,若△OAB 的面积为3,则该反比例函数的解析式是_____.三、解答题19.解不等式组42233x x x+≥⎧⎨-+⎩>,并将解集在数轴上表示出来.20.如图,在一笔直的海岸线l 上有A B 、两个观测站,2AB km =,从A 测得船C在北偏东45︒的方向,从B 测得船C 在北偏东22.5︒的方向,求船C 离海岸线l 的距离(即CD 的长).21.3(1)55(1)3(5)x y y x -=+⎧⎨-=+⎩22.如图,在平面直角坐标系中,直线122y x =-+分别交x 轴,y 轴于点A ,B 抛物线2322y ax x =--经过点A ,且交x 轴于另外一点C ,交y 轴于点D . (1)求抛物线的表达式;(2)求证:AB ⊥BC ;(3)点P 为x 轴上一点,过点P 作x 轴的垂线交直线AB 于点M ,交抛物线于点Q ,连结DQ ,设点P 的横坐标为m ,当以B ,D ,Q ,M 为顶点的四边形是平行四边形时,求m 的值.23.某书店购进甲、乙两种图书共100本,甲、乙两种图书的进价分别为每本15元、35元,甲、乙两种图书的售价分别为每本20元、45元.(1)若书店购书恰好用了2300元,求购进的甲、乙图书各多少本?(2)销售时,甲图书打8.5折,乙图书不打折.若甲、乙两种图书全部销售完后共获利15,求购进的甲、乙图书各多少本?24.(初步认识)(1)如图,将△ABO绕点O顺时针旋转90°得到△MNO,连接AM、BM,求证△AOM∽△BON.(拓展延伸)(2)如图,在等边△ABC中,点E在△ABC内部,且满足AE2=BE2+CE2,用直尺和圆规作出所有的点E (保留作图的痕迹,不写作法).25.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO 交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sin∠PAB的值.【参考答案】***一、选择题13.x≥1且x≠2.14.5 215.16 17.18.6 yx三、解答题19.﹣2≤x<3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+4≥2,得:x≥﹣2,解不等式2x>﹣3+3x,得:x<3,则不等式组的解集为﹣2≤x<3,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.船C离海岸线l的距离为()km.【解析】【分析】根据题意在CD上取一点E,使BD=DE,根据等腰三角形的性质得到AD=CD,进而求得CE=AB=2km,然后再根据图中的角度得到BE=CE=2km,再根据勾股定理求得BD的长,最后代入即可求得CD的长.【详解】在CD上取一点E,使BD=DE,∵CD⊥AB,∴∠EBD=45°,AD=DC,∵AB=AD﹣BD,CE=CD﹣DE,∴CE=AB=2km,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC=2km,∴BD=ED km,∴CD=(km).答:船C离海岸线l的距离为()km.【点睛】本题主要考查了方向角,等腰三角形的性质与判定,及勾股定理的应用,正确作出辅助线是解答本题的关键.21.57x y =⎧⎨=⎩ 【解析】【分析】先将原方程组中的每个方程整理后利用加减消元法即可解答.【详解】原方程组可整理为:383520x y x y -=⎧⎨-+=⎩①② ①+②得:4y=28y=7把y=7代入①得:3x-7=8x=5∴原方程组的解为:57x y =⎧⎨=⎩【点睛】本题考查解一元一次方程组,对于较复杂的方程组要先整理成一般形式再解方程组.掌握解一元一次方程组的方法:代入消元法、加减消元法是关键.22.(1)y =12x 2﹣32x ﹣2;(2)见解析;(3)m 的值是2或或1. 【解析】【分析】(1)令y =﹣12x+2=0,解得:x =4,即可求解,然后把点A 的坐标代入抛物线解析式,借助于方程求得a 的值即可;(2)把由函数图象上点的坐标特征求得点B 、C 的坐标,然后利用两点间的距离公式和勾股定理的逆定理证得结论;(3)以B 、D 、Q ,M 为顶点的四边形是平行四边形时,利用|MQ|=BD 即可求解.【详解】(1)令y =﹣12x+2=0,解得:x =4,y =0,则x =2, 即:点A 坐标为:(4,0). 代入2322y ax x =--中,得16a ﹣8=0,得a =12. ∴该抛物线解析式为:y =12x 2﹣32x ﹣2. (2)由(1)知,抛物线解析式为:y =12x 2﹣32x ﹣2. ∴当y =0时,x 1=﹣1,x 2=4,的C (﹣1,0).故OC =1.于是AB 2=20,BC 2=5,AC 2=25.从而AB 2+BC 2=AC 2.(3)由(1)知,抛物线解析式为: 213222y x x =--. 当x =0时,y =2,得D (0,﹣2),∴BD =4.当MQ =(﹣12m+2)﹣213222m m ⎛⎫-- ⎪⎝⎭=212m -﹣m ﹣4=4时,得m =2或m =0(舍去).当MQ =(12m 2﹣32m ﹣2)﹣(﹣12m+2)=212m ﹣m ﹣4=4时,得m =m =1.综上所述,m 的值是2或1.【点睛】主要考查了二次函数综合题,需要注重二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23.(1)甲图书60本,乙图书40本;(2)甲图书75本,乙图书25本【解析】【分析】(1)设购进甲图书x 本,乙图书y 本,根据总价=单价×数量结合用2300元购进甲、乙两种图书共100本,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进甲图书m 本,则购进乙图书(100-m )本,根据利润=销售收入-成本,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:(1)设购进甲图书x 本,乙图书y 本,依题意,得:10015352300x y x y +=⎧⎨+=⎩ , 解得:6040x y =⎧⎨=⎩ . 答:购进甲图书60本,乙图书40本.(2)设购进甲图书m 本,则购进乙图书(100﹣m )本,依题意,得:20×0.85m+45(100﹣m )﹣15m ﹣35(100﹣m )=15[15m+35(100﹣m )], 解得:m =75,∴100﹣m =25答:购进甲图书75本,乙图书25本.【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程24.(1)详见解析;(2)【解析】【分析】(1)利用旋转的性质可也得到AO =OM ,BO =ON ,∠AOM =∠BON =90°,即可解答(2)根据题意以AB,AC 作为半径做圆,使得B,C 两点落在圆上,点E 在弧BC 上(不包括B,C 两点)【详解】(1)证明:∵△ABO 绕点O 顺时针旋转90°得到△MNO ,∴AO =OM ,∠AOM=∠BON=90°.∵AO MO BO NO,∴△AOM∽△BON.(2)画图正确∴点E在弧BC上(不包括B,C两点)理由要点:(1)将△ACE旋转60°;则∠FAE=60°,AE=AF=EF,EC=FB.(2)∠BEC=150°.则可得旋转后∠FBE=90°,则有FB2+EB2=EF2.【点睛】此题考查了三角形相似,图形的旋转,和尺规作图,解题关键在于熟练掌握相似三角形的证明25.(1)详见解析;(2)4 5【解析】【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可;(2)证明∠PAB=∠AOC即可得到结论.【详解】(1)证明:连接OB,∵PA为⊙O相切于点A,∴∠OAP =90°∵PO ⊥AB ,∴AC =BC ,∴PA =PB ,在△PAO 和△PBO 中PA PB AO B0PO P0=⎧⎪=⎨⎪=⎩,∴△PAO ≌△PBO (SSS ),∴∠OBP =∠OAP =90°,即PB ⊥OB ,∵OB 为⊙O 的半径,∴PB 是⊙O 的切线;(2)在Rt △ACO 中,OC =3,AC =4,∴AO =5,∵∠PAB+∠CAO =90°,∠AOC+∠CAO =90°∴∠PAB =∠AOC ,∴sin ∠PAB =AC AO =45. 【点睛】本题考查了切线的判定以及求三角函数值.能够通过角转移到相应的直角三角形中,是解答此题的关键.2019-2020学年数学中考模拟试卷一、选择题1.不等式组211(2)13x x x -≤⎧⎪⎨-+⎪⎩的所有整数解的和为( ) A .0B .1C .3D .2 2.已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积是( )A.24cm 2B.24πcm 2C.48cm 2D.48πcm 2 3.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是红球的概率是( )A. B. C. D.4.已知一元二次方程22410x x +-=的两个根为1x ,2x ,且12x x <,下列结论正确的是( )A .122x x +=B .121x x =-C .12x x <D .211122x x += 5.在一个不透明的口袋中装有2个绿球和若干个红球,这些球除颜色外无其它差别,从这个口袋中随机摸出一个球,摸到绿球的概率为14,则红球的个数是( ) A.2 B.4 C.6 D.86.如图,在ABCD 中,E 为边CD 上一点,将ADE 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40° 7.据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( )A .1.05×105B .0.105×10–4C .1.05×10–5D .105×10–7 8.下列计算正确的是( )A .23a a a ⋅=B .(a 3)2=a 5C .23a a a +=D .623a a a ÷=9.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定( )A .与x 轴相切,与y 轴相切B .与x 轴相切,与y 轴相离C .与x 轴相离,与y 轴相切D .与x 轴相离,与y 轴相离 10.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是( )A. B. C. D.11.如图,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,使得C′C∥AB,则∠CAB等于()A.50°B.60°C.65°D.70°12.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=52二、填空题13.如果一个多边形的内角和是1080°,则这个多边形是________边形.14.如图,点M(2,m)是函数y与y=kx的图象在第一象限内的交点,则k的值为_____.15.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连接AD1,BC1.若∠ACB=30°,AB=1,CC1=x,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形.其中正确的是______(填序号).16.计算(-3x 2y)•(13xy 2)=_____________. 17.在数轴上,实数2﹣对应的点在原点的_____侧.(填“左”、“右”)18.21322--⨯=______.三、解答题19.已知两个函数:y 1=ax+4,y 2=a (x ﹣12)(x ﹣4)(a≠0). (1)求证:y 1的图象经过点M (0,4);(2)当a >0,﹣2≤x≤2时,若y =y 2﹣y 1的最大值为4,求a 的值;(3)当a >0,x <2时,比较函数值y 1与y 2的大小.20.甲市居民生活用水收费按阶梯式水价计量:20立方米及以下,按基本水价计收,20﹣30立方米(包括30立方米)的部分,按基本水价的1.5倍计收,30立方米以上的部分,按基本水价的2倍计收.从2018年7月1日起,该市居民生活用水基本水价将进行调整,收费方式仍按原来阶梯式水价计量.小明读到有关新闻后立刻对他家两个月的水费进行计算,得到下表:请根据以上信息,回答以下问题:(2)小明家07年7月的水费是128.25元,该月用水量若按调整后水价计费需缴多少元?(3)小明又上网查了有关资料发现:甲市取水点分散,引水管线合计350千米,而同类城市乙市只有一座水库供水,引水管线合计70千米.若两市每年每千米引水管线的运行成本都为150万元,乙市的现行基本水价为2.35元,甲市共有200万户家庭,乙市共有180万户家庭.若甲乙两市都按平均每户每月用水量为11.21立方米计算,请你确定出甲市的基本水价至少调整为多少时甲市自来水公司的年收入(全市居民总水费﹣引水管线运行成本)不低于乙市?(保留3个有效数字)21.如图,正方形ABCD 中,AB =O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE ,CF(1)如图1,求证:AE =CF ;(2)如图2,若A ,E ,O 三点共线,求点F 到直线BC 的距离.22.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,tan ∠DBC=43,且BC=6,AD=4.求cosA 的值.23.某幼儿园购买了A ,B 两种型号的玩具,A 型玩具的单价比B 型玩具的单价少9元,已知该幼儿园用了3120元购买A 型玩具的件数与用4200元购买B 型玩具的件数相等.(1)该幼儿园购买的A ,B 型玩具的单价各是多少元?(2)若A ,B 两种型号的玩具共购买200件,且A 型玩具数量不多于B 型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?24.如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.( π取3)(1)若设扇形半径为x ,请用含x 的代数式表示出AB .并求出x 的取值范围.(2)当x 为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)25.如图,在Rt △ABC 中,∠C =90°,以AC 为直径的⊙O 交AB 于点D ,点Q 为CA 延长线上一点,延长QD 交BC 于点P ,连接OD ,∠ADQ =12∠DOQ .(1)求证:PD 是⊙O 的切线;(2)若AQ =AC ,AD =2时,求BP 的长.【参考答案】***一、选择题13.八14.15.①②③16.33x y17.左18.5三、解答题19.(1)证明见解析;(2)817a =;(3)见解析. 【解析】【分析】(1)只需要把M 的坐标带入到1y 即可 (2)把1y ,2y 代入到等式化简取y 最大值时,即可解答 (3)由(2)可知当a >0,x <2时,随x 的增大而减小,然后再根二次函数的增减性可解此题【详解】解:(1)证明:当x =0时,y 1=0+4=4,∴点M (0,4)在y 1的图象上,即y 1的图象经过点M (0,4);(2)∵y 1=ax+4,y 2=a (x ﹣12 )(x ﹣4)(a≠0). ∴y =y 2﹣y 1=a (x ﹣12 )(x ﹣4)﹣(ax+4), 即y =211242ax ax a -+- , ∵a >0,对称轴为x =114 >2, ∴当﹣2≤x≤2时,y 随x 的增大而减小,∴当x =﹣2时,y 取最大值为4a+11a+2a ﹣4=17a ﹣4,∵y =y 2﹣y 1的最大值为4,∴17a ﹣4=4,解得,a =817; (3)由(2)知y =y 2﹣y 1=211242ax ax a -+-, 当a >0,x <2时,随x 的增大而减小,当x =2时,y =y 2﹣y 1=4a ﹣11a+2a ﹣4=﹣5﹣4<0,又当y =0时,211242ax ax a -+-=0,即2ax 2﹣11ax+4a ﹣8=0,x , ∵△=121a 2﹣32a 2+64a =89a 2+64a >0,∴1124a a, 根据二次函数的增减性可得,当x >2时,y 2﹣y 1<0,即y 2<y 1;当x =1124a a-时,y 2﹣y 1=0,即y 2=y 1;当x <1124a a-时,y 2﹣y 1>0,即y 2>y 1. 【点睛】此题主要考察函数解析式的求解及常用方法,需要把已知的点,带入到函数解析式里面进行求解20.(1)15.8%;(2)148.5元;(3)甲市的基本水价至少调整为3.68元/立方米时,甲市自来水公司的年收入不低于乙市.【解析】【分析】(1)基本水价调整提幅的百分率为:(3月份的基本水价−2月份的基本水价)÷2月份的基本水价×100%;(2)应先判断出是否超过基本用水单位,若超过基本用水单位,应先算出用水量,则:新付费为:3.3×20+3.3×10×1.5+(用水数-30)×3.3×2;(3)关系式为:甲市水费收入-运营成本≥乙市水费收入-运营成本.【详解】解:(1)调整前基本水价为:45.6÷16=2.85(元);调整后基本水价为:52.8÷16=3.3(元); ∴本次水价调整提幅为:3.3 2.852.85-×100%≈15.8%; (2)∵2.85×20+2.85×1.5×10=99.75<128.25,∴用水量超过30m 3,设小明家09年7月的用水量为x 立方米.2,85×20+2.85×10×1.5+(x ﹣30)×2.85×2=128.25,解得:x =35,∴新付费为:3.3×20+3.3×10×1.5+(35﹣30)×3.3×2=148.5(元);(3)设基本水价为y 元/立方米,则11,21×12×y×200﹣350×150≥11.21×12×2.35×180﹣70×150,解得y≥3.68,答:甲市的基本水价至少调整为3.68元/立方米时,甲市自来水公司的年收入不低于乙市.【点睛】此类题目是一元一次方程和不等式的综合题目,旨在考查学生对一元一次方程和不等式求解的掌握程度,所以掌握解一元一次方程和不等式的一般步骤是解题的关键.21.(1)详见解析;(2)点F 到直线BC 的距离为5. 【解析】【分析】(1)由旋转的性质可得∠EDF =90°,DE =DF ,由正方形的性质可得∠ADC =90°,DE =DF ,可得∠ADE =∠CDF ,由“SAS”可证△ADE ≌△CDF ,可得AE =CF ;(2)由勾股定理可求AO 的长,可得AE =CF =3,通过证明△ABO ∽△CPF ,可得CF PF AO BO=,即可求PF 的长,即可求点F 到直线BC 的距离.【详解】证明:(1)∵将线段DE 绕点D 逆时针旋转90°得DF ,∴∠EDF=90°,DE=DF.∵四边形ABCD是正方形,∴∠ADC=90°,DE=DF,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE=2,∴AE=AO﹣OE=3.∵△ADE≌△CDF,∴AE=CF=3,∠DAO=∠DCF,∴∠BAO=∠FCP,且∠ABO=∠FPC=90°,∴△ABO∽△CPF,∴CF PF AO BO=,∴35 =∴PF,∴点F到直线BC.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO∽△CPF是本题的关键.22【解析】【分析】先在Rt△BDC中,利用锐角三角函数的定义求出CD的长,由AC=AD+DC求出AC的长,然后在Rt△ABC 中,根据勾股定理求出AB的长,从而求出 cosA的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】 本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.23.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元.【解析】【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元;(2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题.【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元,312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解,∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元,w =26a+35(200﹣a )=﹣9a+7000,∵a≤3(200﹣a ),∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650,答:购买这些玩具的总费用最少需要5650元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答.24.(1)0<x <35;(2)当x =617时,S 最大=1817. 【解析】【分析】(1)根据2AB +7半径+弧长=6列出代数式即可;(2)设面积为S ,列出关于x 的二次函数求得最大值即可.【详解】解:(1)根据题意得:2AB+7x+πx =2AB+10x =6,整理得:AB =3﹣5x ;根据3﹣5x>0,所以x的取值范围是:0<x<35;(2)设面积为S,则S=222317176182(35)62221717x x x x x x⎛⎫-+=-+=--+⎪⎝⎭,当x=617时,S最大=1817.【点睛】本题考查的是二次函数的实际应用等知识,解题的关键是理解题意,学会构建二次函数解决最值问题,会用方程的思想思考问题,属于中考常考题型.25.(1)见解析;(2)BP【解析】【分析】(1)连接DC,根据圆周角定理得到∠DCA=12∠DOA,由于∠ADQ=12∠DOQ,得到∠DCA=∠ADQ,根据余角的性质得到∠ADQ+∠ADO=90°,于是得到结论,(2)根据切线的判定定理得到PC是⊙O切线,求得PD=PC,连接OP,得到∠DPO=∠CPO,根据平行线分线段长比例定理得到OP=3,根据三角形的中位线的性质得到AB=6,根据射影定理即可得到结论.【详解】解:(1)连接DC,∵AD AD=,∴∠DCA=12∠DOA,∵∠ADQ=12∠DOQ,∴∠DCA=∠ADQ,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DCA+∠DAC=90°,∵∠ADQ+∠DAC=90°,∠ADO=∠DAO,∴∠ADQ+∠ADO=90°,∴DP是⊙O切线.(2)∵∠C=90°,OC为半径.∴PC是⊙O切线,∴PD=PC,连接OP,∴∠DPO=∠CPO,∴OP⊥CD,∴OP∥AD,∵AQ=AC=2OA,∴QA ADQO OP==23,∵AD=2,∴OP=3,∵OP是△ACB的中位线,∴AB=6,∵CD⊥AB,∠C=90°,∴BC2=BD•BA=24,∴BC=,∴BP.【点睛】本题考查了切线的判定和性质,圆周角定理,平行线分线段长比例定理,三角形的中位线的性质,射影定理,正确的作出辅助线是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.已知方程x 2﹣4x+2=0的两根是x 1,x 2,则代数式2212212420112x x x x +-++的值是( ) A .2011B .2012C .2013D .2014 2.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在直线n ,m 上,且∠ACB =90°,若∠1=30°,则∠2的度数为( )A .140°B .130°C . 120°D .110° 3.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为( )A. B. C.6 D.4.如图,在Rt △ABC 中,∠C =90°,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ;③连接AP ,交BC 于点E .若CE =3,BE =5,则AC 的长为()A .4B .5C .6D .75.若二次函数2(2)4y ax a x a =+++的图像与x 轴有两个交点12(,0),(,0)x x ,且121x x <<,则a 的取值范围是()A .2153a -<<-B .103a -<<C .203a <<D .1233a << 6.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠CAB =30°,AC =( )A .32π-B .32π C .3924π- D .3π-7.如图是将一多边形剪去一个角,则新多边形的内角和( )A .比原多边形少180°B .与原多边形一样C .比原多边形多360°D .比原多边形多180°8.如图,等边三角形ABC ,B 点在坐标原点,C 点的坐标为(4,0),则点A 的坐标为( )A .(2,3)B .(2,)C .(2)D .(2,)9.下列计算正确的是( ) A.224·x x x -= B.()224x x -=C.234·x x x =D.()222m n m n -=-10.如图,在Rt ABC ∆中,90ACB ∠=︒,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .158B .103C .2512D .12511.如图所示,□ABCD 中,EF 过对角线的交点O ,如果AB=6cm ,AD=5cm ,OF=2cm ,那么四边形BCEF 的周长为( )A .13cmB .15cmC .11cmD .9.5cm12.将一张宽为5cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A.3cm2B.252cm2C.25cm2D2二、填空题13.分式方程121x x=-的解是_____.14.请写出一个图象经过点(1,1),且函数值随着自变量的增大而减小的一次函数解析式:______ 15.如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在射线OB上有一点P,从点P点射出的一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是___________16.如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D 不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为________.17.如图,点P在平行四边形ABCD的边BC上,将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线上,如果AB=5,AD=8,tanB =,那么BP的长为_____.18.在△ABC中,AB=2,AC=3,cos∠ACB=3,则∠ABC的大小为________度.三、解答题19.求不等式组3(1)2531342x xxx x-++⎧⎪⎨-+≥-⎪⎩<的解集,并将解集在数轴上表示出来.20.已知关于x的不等式组523(-1),138222x xx x a+>⎧⎪⎨≤-+⎪⎩有四个整数解,画出数轴求实数a的取值范围.21.为减少雾霾对人体的伤害,某企业计划购进一批防霾口罩免费发放给市民使用,现甲、乙两个口罩厂有相同的防霾口罩可供选择,其具体销售方案如下表.设购买防霾口罩x个,到两家口罩厂购买所需费用分别为y甲(元),y乙(元).(1)该企业发现若从两厂分别购买防霾口罩各2500个共花费9750元,若从两厂分别购买防霾口罩各3000个共花费11600元,请求出m,n的值;(2)请直接写出y甲,y乙与x之间的函数关系式;(3)如果你是该企业的负责人,你认为到哪家口罩厂购买防霾口罩才合算,为什么?22.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣3,﹣2,﹣1,0,且任意相邻四个台阶上数的和都相等.(1)求第五个台阶上的数x是多少?(2)求前21个台阶上的数的和是多少?(3)发现:数的排列有一定的规律,第n个﹣2出现在第个台阶上;(4)拓展:如果倩倩小同学一步只能上1个或者2个台阶,那么她上第一个台阶的方法有1种:1=1,上第二个台阶的方法有2种:1+1=2或2=2,上第三个台阶的方祛有3种:1+1+1=3、1+2=3或2+1=3,…,她上第五个台阶的方法可以有种.23.某校为了调查初三男生和女生周日学习用时情况,随机抽取了初三男生和女生各50人,对他们的周日学习时间进行了统计,分别得到了初三男生的学习时间的频率分布表和女生学习时间的频率分布直方图(学习时间x,单位:小时,0≤x≤6).男生周日学习时间频率表(2)从这100名学生中周日学习用时在5≤x≤6内的学生中抽取2人,求恰巧抽到一男一女的概率.24.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD 是矩形;(2)若BF =8,DF =4,求CD 的长.25.车辆经过润扬大桥收费站时,4个收费通道A 、B 、C 、D 中,可随机选择其中一个通过. (1)一辆车经过此收费站时,选择A 通道通过的概率是 .(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.【参考答案】*** 一、选择题13.x=﹣114.答案不唯一,如:y =-x +2 15.80° 16.4π 17.或7 18.30或150 三、解答题 19.﹣2<x≤73【解析】 【分析】分别解两个不等式得到x >﹣2和x≤73,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集. 【详解】3(1)2531342x x x x x <①②-++⎧⎪⎨-+≥-⎪⎩, 解①得x >﹣2, 解②得x≤73, 所以不等式组的解集为﹣2<x≤73.用数轴表示为:.【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集. 20.-3≤a<-2 【解析】 【分析】先分别解两个不等式,分别求出它们的解集,再根据不等式组有四个整数解列出关于a 的不等式求解即可. 【详解】解:523(-1),1382,22x x x x a +>⎧⎪⎨≤-+⎪⎩①② 解不等式①得:x>-52, 解不等式②得:x≤a+4, ∵不等式组有四个整数解, ∴不等式组的解集在数轴上表示为:∴1≤a+4<2,解得:-3≤a<-2. 【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点. 21.(1)m 的值是1.9,n 的值是1.8;(2)y 甲=2(01000)1.9100(1000)x x x x ≤≤⎧⎨+>⎩,y 乙=2(02000)1.8400(2000)x x x x ≤≤⎧⎨+>⎩;(3)当0≤x≤1000时,在两家口罩厂购买防霾口罩一样,当1000<x <3000时,在甲口罩厂购买防霾口罩才合算,当x =3000时,在两家口罩厂购买防霾口罩一样,当x >3000时,在乙口罩厂购买防霾口罩才合算. 【解析】 【分析】(1)根据题目中的数据和表格中的数据可以列出关于m 、n 的二元一次方程组,从而可以求得m 、n 的值;(2)根据(1)中的m 、n 的值和题意,可以分别求出y 甲,y 乙与x 之间的函数关系式;(3)设y 甲与y 乙的差为y ,可分段得出y 与x 的关系式,先求出y 甲=y 乙时x 的值,再根据一次函数的性质解答即可. 【详解】(1)由题意可得,10002(25001000)20002(25002000)975010002(30001000)20002(30002000)1160m n m n ⨯+-+⨯+-=⎧⎨⨯+-+⨯+-=⎩,解得,1.91.8mn=⎧⎨=⎩,即m的值是1.9,n的值是1.8;(2)由题意可得,y甲与x之间的函数关系式是:当0≤x≤1000时,y甲=2x,当x>1000时,y甲=1000×2+ (x﹣1000)×1.9=1.9x+100,y乙与x之间的函数关系式是:当0≤x≤2000时,y乙=2x,当x>2000 时,y乙=2000×2+ (x﹣2000)×1.8=1.8x+400,由上可得,y甲与x之间的函数关系式是:y甲=2(01000)1.9100(1000)x xx x≤≤⎧⎨+>⎩,y乙与x之间的函数关系式是:y乙=2(02000)1.8400(2000) x xx x≤≤⎧⎨+>⎩;(3)设y甲与y乙的差为y,当0≤x≤1000时,y=2x-2x=0,在两家口罩厂购买防霾口罩一样,当1000<x≤2000时,y=1.9x+100-2x=-0.1x+100<0,在甲口罩厂购买防霾口罩合算,当x>2000时,y=1.9x+100-1.8x-400=0.1x-300,令0.1x-300=0解得,x=3000,在两家口罩厂购买防霾口罩一样,∵0.1>0,∴y随x的增大而增大,∴2000<x<3000时,y<0,在甲口罩厂购买防霾口罩合算,x>3000时,y>0,在乙口罩厂购买防霾口罩合算.综上所述:当0≤x≤1000时,在两家口罩厂购买防霾口罩一样,当1000<x<3000时,在甲口罩厂购买防霾口罩合算,当x=3000时,在两家口罩厂购买防霾口罩一样,当x>3000时,在乙口罩厂购买防霾口罩合算.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用方程的思想、函数的性质解答.22.(1)第五个台阶上的数x是﹣3(2)-33(3)(4n﹣2)(4)8【解析】【分析】(1)将两组相邻4个数字相加可得;根据“相邻四个台阶上数的和都相等”列出方程求解可得x;(2)根据“台阶上的数字是每4个一循环”求解可得;(3)台阶上的数字是每4个一循环,根据规律可得结论.(4)根据第一步上1个台阶和2个台阶分情况讨论可得结论.【详解】(1)由题意得:﹣3﹣2﹣1+0=﹣2﹣1+0+x,x=﹣3,答:第五个台阶上的数x是﹣3;(2)由题意知:台阶上的数字是每4个一循环,﹣3﹣2﹣1+0=﹣6,∵21÷4=5…1,∴5×(﹣6)+(﹣3)=﹣33,答:前21个台阶上的数的和是﹣33;(3)第一个﹣2在第2个台阶上,第二个﹣2在第6个台阶上,。