[推荐学习]物理大二轮复习(优选习题):考前基础回扣练9:电场及带电粒子在电场中的运动

合集下载

2022届高考物理二轮复习题:带电粒子在电场中运动

2022届高考物理二轮复习题:带电粒子在电场中运动

2022届高考物理二轮复习题:带电粒子在电场中运动一、单选题1.(2分)飞船在进行星际飞行时,使用离子发动机作为动力。

这种发动机工作时,由电极发射的电子射入稀有气体(如氙气),使气体离子化,电离后形成的离子由静止开始在电场中加速并由飞船尾部高速连续喷出,利用反冲使飞船本身得到加速。

已知氙离子质量为m,带电量大小为e,加速电压为U,飞船单位时间内向后喷射出的氙离子的质量为k,从飞船尾部高速连续喷出氙离子的质量远小于飞船的质量,则飞船获得的反冲推力大小为()A.k√2eUm B.1k√2eUmC.k√eU2mD.1k√eU2m2.(2分)如图所示为一种质谱仪的工作原理示意图,此质谱仪由以下几部分构成:离子源、加速电场、静电分析器、磁分析器、收集器。

加速电场的加速压为U,静电分析器通道中心线半径为R,通道内有均匀辐射电场,在中心线处的电场强度大小为E;磁分析器中分布着方向垂直于纸面,磁感应强度为B的匀强磁场,其左边界与静电分析器的右边界平行。

由离子源发出一个质量为m、电荷量为q的离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN做匀速圆周运动,而后由P点进入磁分析器中,最终经过Q点进入收集器。

下列说法不正确的是()A.磁分析器中匀强磁场方向垂直于纸面向外B.磁分析器中圆心O2到Q点的距离可能为d=1B√2mER qC.不同离子经相同的加速压U加速后都可以沿通道中心线安全通过静电分析器D.静电分析器通道中心线半径为R=2UE3.(2分)如图所示,水平放置的两平行金属板间存在匀强电场,电场沿竖直方向。

两个比荷不同、电性相同的带电粒子a和b,先后从两平行金属板间的P点以相同的水平速度射入。

测得a和b与下极板的撞击点到P点之间的水平距离之比为1:2。

不计粒子重力,则a和b的比荷之比是()A .1:8B .4:1C .2:1D .1:24.(2分)如图所示,加速电场正、负极板之间的电压为 U 1 ,偏转电场板长为 l ,两板间距为d 。

电场及带电粒子在电场中的运动 --2024届新高考物理冲刺专项训练(解析版)

电场及带电粒子在电场中的运动 --2024届新高考物理冲刺专项训练(解析版)

电场及带电粒子在电场中的运动一、单选题1(2024·四川南充·一模)电容器储能已经广泛应用于电动汽车,风光发电储能,电力系统中电能质量调节。

电容器储能的原理是,当电容器充电后,所带电荷量为Q ,两极板间的电势差为U ,则板间储存了电能。

如图是电容为C 的电容器两极板间电势差u 和所带电荷量q 的u -q 图像,则()A.该电容器的电容C 随电荷量q 增大而增大B.图像中直线的斜率等于该电容器电容CC.电源对该电容器充电为Q 时,电源对该电容器做的功为QUD.电源对该电容器充电为Q 时,该电容器储存的电能为Q 22C 【答案】D【详解】A .电容器的电容由电容器本身来决定,与所带电荷量及两端所加电压无关,故A 错误;B .根据电容的定义式可得U =1C×Q 即图像的斜率为电容器电容的倒数,故B 错误;CD .根据电功的计算公式W =UIt =UQ图像的面积表示电功,即储存的电能E p =W =QU2C =Q U 解得E p =W =Q 22C故C 错误,D 正确。

故选D 。

2(2024·江苏南通·一模)莱顿瓶是一种储存电荷的装置,在玻璃瓶外面贴有一层金属篟,内部装食盐水,从瓶口处插入金属探针,下端浸在食盐水中,盐水和金属箔构成电容器的两极。

现要增大电容器的电容,下列操作中可行的是()A.多加入一些食盐水B.减小食盐水的浓度C.将金属探针上移少许D.减小金属箔的高度【答案】A【详解】A.根据电容器电容的物理意义可知,要提升其储存电荷的本领,即要增大电容器的电容C,根据C=εS4πkd往玻璃瓶中再加入一些食盐水,相当于增大了极板之间的正对面积,电容增大,莱顿瓶储存电荷的本领获得提高,故A正确;B.减小食盐水的浓度,相当于介电常数ɛ减小,莱顿瓶储存电荷的本领获得减弱,故B错误;C.把金属探针上移少许,极板之间的正对面积S、极板间距d和介电常数ɛ,均没有发生变化,根据上述可知,电容不变,则这只莱顿瓶储存电荷的本领不变,故C错误;D.减小金属箔的高度,相当于减小了极板之间的正对面积,电容减小,莱顿瓶储存电荷的本领减弱,故D 错误。

统考版2024高考物理二轮专题复习第一编专题复习攻略专题四电场与磁场第8讲电场及带电粒子在电场中

统考版2024高考物理二轮专题复习第一编专题复习攻略专题四电场与磁场第8讲电场及带电粒子在电场中
2πR
B.小球b的周期为
q
3 mR
k
9kq2
C.外力F大小等于mg+ 2
2R
3 kq2
D.小球c的加速度大小为
6mR2
答案:BCD
2
技法点拨
电场中三线问题的解题思路
解决电场中的三线问题,分清电场线、等势线、轨迹线是解题的基
础,做曲线运动的物体一定要受到指向轨迹内侧的合外力是解题的切
入点,功能关系(电场力做的功等于电势能的减少量,合外力的功等
D.由静止突然向前加速时,电流由b向a流过电流表
答案:BD
情境2 [2023·浙江省金华市选考模拟]静电植绒技术,于3 000多年
前在中国首先起步,现代静电植绒于50、60年代在德国首先研制出并
使用,如图所示为植绒流程示意图,将绒毛放在带负电荷的容器中,
使绒毛带负电,容器与带电极板之间加恒定的电压,绒毛成垂直状加
方向的匀强电场,保持细线始终张紧,将小球从A点拉起至与O点处
于同一水平高度的B点,并由静止释放.小球在A点时速度最大,此时
细线与竖直方向夹角为α=37°.已知sin 37°=0.6,cos 37°=0.8,
电场的范围足够大,重力加速度为g.
(1)求匀强电场的电场强度大小E;
3mg
答案:
4q
解析:小球在A点时速度最大,说明A点为等效最低点,受力如图.
速飞到需要植绒的物体表面上.下列判断正确的是(
)
A.带电极板带负电
B.绒毛在飞往需要植绒的物体的过程中,电势能不断增大
C.若增大容器与带电极板之间的距离,植绒效果会更好
D.质量相同的绒毛,带电荷量越多,到达需要植绒的物体表面时
速率越大
答案:D

2019届高三物理二轮复习习题:专题三考点1电场及带电粒子在电场中的运动版含答案(最新整理)

2019届高三物理二轮复习习题:专题三考点1电场及带电粒子在电场中的运动版含答案(最新整理)

专题三 电场和磁场考点1 电场及带电粒子在电场中的运动[限时45分钟;满分100分]一、选择题(每小题7分,共70分)1.(多选)如图3-1-16所示,A 、B 、C 、D 四点构成一边长为L 的正方形,对角线AC 竖直,在A 点固定一电荷量为-Q 的点电荷,规定电场中B 点的电势为零。

现将几个质量均为m 、电荷量均为-q 的带电小球从D 点以大小均为v 0的速度向各个方向抛出,已知重力加速度大小为g ,下列说法正确的是图3-1-16A .通过B 点的小球在B 点时的速度大小为v 0B .通过C 点的小球在C 点时的电势能比通过B 点的小球在B 点时的电势能大C .通过C 点的小球在C 点时受到的库仑力是通过B 点的小球在B 点时受到的库仑力的2倍D .若通过C 点的小球在C 点时的速度大小为v ,则C 点的电势为(v 2-v m 2q gL )202解析 由负点电荷的电场线以及等势面的分布可知,φc >φB =φD =0,对从D点运动到B 点的小球,由动能定理可知qU DB =ΔE k ,由于φB =φD =0,因此ΔE k =0,即通过B 点的小球在B 、D 两点的速度大小相等,A 正确;负电荷在低电势点的电势能大,因此带负电小球在B 点的电势能大于在C 点的电势能,B 错误;由库仑定律F =k 可知,F ∝,又AB ∶AC =1∶,因此小球在B 、C 两点的Qq r 21r22库仑力之比为2∶1,C 错误;对由D 运动到C 的小球,由动能定理得mg ×L +22(-qU DC )=m v 2-m v ,又U DC =φD -φC =0-φC =-φC ,解得φC =(v 2-v -121220m 2q20gL ),D 正确。

2答案 AD2.(2018·陕西质检)如图3-1-17所示,真空中有两个点电荷Q 1=+9.0×10-8 C 和Q 2=-1.0×10-8 C ,分别固定在x 坐标轴上,其中Q 1位于x =0处,Q 2位于x =12 cm 处。

2018版高中物理二轮复习考前基础回扣练 九 含答案 精

2018版高中物理二轮复习考前基础回扣练 九 含答案 精

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

考前基础回扣练九电场及带电粒子在电场中的运动建议用时20分钟1.在静电场中,下列说法中正确的是( )A.电场强度处处为零的区域内,电势一定也处处为零B.电场强度处处相同的区域内,电势一定也处处相同C.电场强度的方向总是跟等势面垂直D.电势降低的方向就是电场强度的方向【解析】选C。

电场强度大小和电势高低没有直接关系,不能根据电场强度大小判断电势高低,也不能根据电势的高低判断电场强度的大小,故选项A、B错误;电场强度的方向一定跟等势面垂直,选项C正确;沿电场强度的方向电势降低的最快,但电势降低的方向不一定是电场强度的方向,选项D错误。

2.(多选)如图所示,两面积较大、正对着的平行极板A、B水平放置,极板上带有等量异种电荷。

其中A板用绝缘线悬挂,B板固定且接地,P点为两板的中间位置。

下列结论正确的是世纪金榜导学号49294319( )A.若在两板间加上某种绝缘介质,A、B两板所带电荷量会增大B.A、B两板电荷分别在P点产生电场的场强大小相等,方向相同C.若将A板竖直向上平移一小段距离,两板间的电场强度将增大D.若将A板竖直向下平移一小段距离,原P点位置的电势将不变【解析】选B、D。

在两板间加上某种绝缘介质时,A、B两板所带电荷量没有改变,故A错误;A、B两板电荷量数量相等,P点到两板的距离相等,根据对称性和电场的叠加可知两板电荷分别在P点产生电场的场强大小相等,方向都向下,故B正确;根据电容的决定式C=、电容的定义式C=和板间场强公式E=得:E=,由题知Q、S、εr均不变,则移动A板时,两板间的电场强度将不变,故C错误;由以上分析可知将A板竖直向下平移时,板间场强不变,由U=Ed分析得知P点与下极板间的电势差不变,P点的电势保持不变,故D正确。

3.如图所示,充电的平行板电容器两板间形成匀强电场,以A点为坐标原点,AB方向为位移x的正方向,能正确反映电势φ随位移x变化的图象是( )【解析】选C。

高考物理二轮复习 专项训练 带电粒子在电场中的运动及解析

高考物理二轮复习 专项训练 带电粒子在电场中的运动及解析

高考物理二轮复习 专项训练 带电粒子在电场中的运动及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直面内有水平线MN 与竖直线PQ 交于P 点,O 在水平线MN 上,OP 间距为d ,一质量为m 、电量为q 的带正电粒子,从O 处以大小为v 0、方向与水平线夹角为θ=60º的速度,进入大小为E 1的匀强电场中,电场方向与竖直方向夹角为θ=60º,粒子到达PQ 线上的A 点时,其动能为在O 处时动能的4倍.当粒子到达A 点时,突然将电场改为大小为E 2,方向与竖直方向夹角也为θ=60º的匀强电场,然后粒子能到达PQ 线上的B 点.电场方向均平行于MN 、PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。

已知粒子从O 运动到A 的时间与从A 运动到B 的时间相同,不计粒子重力,已知量为m 、q 、v 0、d .求:(1)粒子从O 到A 运动过程中,电场力所做功W ; (2)匀强电场的场强大小E 1、E 2; (3)粒子到达B 点时的动能E kB .【答案】(1)2032W mv = (2)E 1=2034m qd υ E 2=2033m qdυ (3) E kB =20143m υ【解析】 【分析】(1)对粒子应用动能定理可以求出电场力做的功。

(2)粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。

(3)根据粒子运动过程,应用动能计算公式求出粒子到达B 点时的动能。

【详解】(1) 由题知:粒子在O 点动能为E ko =2012mv 粒子在A 点动能为:E kA =4E ko ,粒子从O 到A 运动过程,由动能定理得:电场力所做功:W=E kA -E ko =2032mv ;(2) 以O 为坐标原点,初速v 0方向为x 轴正向,建立直角坐标系xOy ,如图所示设粒子从O 到A 运动过程,粒子加速度大小为a 1, 历时t 1,A 点坐标为(x ,y ) 粒子做类平抛运动:x=v 0t 1,y=21112a t 由题知:粒子在A 点速度大小v A =2 v 0,v Ay 03v ,v Ay =a 1 t 1 粒子在A 点速度方向与竖直线PQ 夹角为30°。

(课标版)高考物理二轮复习 专题限时训练9 带电粒子在电磁场中的运动(含解析)-人教版高三全册物理试

专题限时训练9 带电粒子在电磁场中的运动时间:45分钟一、单项选择题 1.如图甲所示,两平行金属板MN 、PQ 的长度和板间距离相等,板间存在如图乙所示的电场强度随时间周期性变化的电场,电场方向与两板垂直.在t =0时刻,一不计重力的带电粒子沿两板中线垂直于电场方向射入电场,粒子射入电场时速度大小为v 0,t =T 时刻粒子刚好沿MN 板右边缘射出电场,如此( A )A .该粒子射出电场时的速度方向一定垂直于电场方向B .在t =T 2时刻,该粒子的速度大小为2v 0 C .假设该粒子在t =T2时刻以速度v 0进入电场,如此粒子会打在板上 D .假设该粒子的入射速度大小变为2v 0,如此该粒子仍在t =T 时刻射出电场解析:由题意,粒子在0~T 2内做类平抛运动,在T2~T 内做类斜抛运动,因粒子在电场中所受的电场力大小相等,由运动的对称性可知,粒子射出电场时的速度方向一定垂直于电场方向,选项A 正确;水平方向上有l =v 0T ,竖直方向上有12l =v y 2T ,在t =T 2时刻粒子的速度大小v =v 20+v 2y =2v 0,选项B 错误;假设该粒子在t =T 2时刻以速度v 0进入电场,粒子先向下做类平抛运动,再向下做类斜抛运动,恰好沿PQ 板右边缘射出电场,选项C 错误;假设该粒子的入射速度变为2v 0,如此粒子在电场中的运动时间t =l 2v 0=T2,选项D 错误. 2.如下列图,电子经电场加速后垂直进入磁感应强度为B 的匀强磁场中,在磁场中转半个圆周后打在P 点,通过调节两极板间电压U 可以控制P 点的位置,设OP =x ,能够正确反映U 与x 关系的图象是如下图中的( C )解析:电子在电场中加速,有qU =12mv 2,进入磁场,有x =2r =2mv qB ,整理可得x 2=8mU qB2,选项C 正确.3.质谱仪是一种测定带电粒子比荷和分析同位素的重要工具.右图中的铅盒A 中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S 1进入电压为U 的加速电场区加速后,再通过狭缝S 2从小孔G 垂直于MN 射入偏转磁场,该偏转磁场是以直线MN 为切线、磁感应强度为B ,方向垂直于纸面向外半径为R 的圆形匀强磁场.现在MN 上的F 点(图中未画出)接收到该粒子,且GF =3R .如此该粒子的比荷为(粒子的重力忽略不计)( C )A.8U R 2B 2B.4UR 2B 2 C.6UR 2B 2 D.2UR 2B 2解析:设粒子被加速后获得的速度为v ,由动能定理有:qU =12mv 2,粒子在磁场中做匀速圆周运动的轨道半径r =3R 3,又qvB =m v 2r ,可求q m =6U R 2B2,选项C 正确. 4.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( B )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB解析:设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如下列图,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力有qvB =m v 2R 、T =2πR v ,可得R 1=mv qB、R 2=2mv qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2,如此粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 均错误. 5.电动自行车是一种应用广泛的交通工具,其速度控制是通过转动右把手实现的,这种转动把手称“霍尔转把〞,属于传感器非接触控制.转把内部有永久磁铁和霍尔器件等,截面如图甲.开启电源时,在霍尔器件的上下面之间加一定的电压,形成电流,如图乙.随着转把的转动,其内部的永久磁铁也跟着转动,霍尔器件能输出控制车速的电压,电压与车速关系如图丙.以下关于“霍尔转把〞表示正确的答案是( B )A .为提高控制的灵敏度,永久磁铁的上、下端分别为N 、S 极B .按图甲顺时针转动电动车的右把手,车速将变快C .图乙中从霍尔器件的左右侧面输出控制车速的霍尔电压D .假设霍尔器件的上下面之间所加电压正负极性对调,将影响车速控制解析:因为霍尔器件的上、下面之间加一定的电压,形成电流,当永久磁铁的上、下端分别为N 、S 极时,磁场与电子的移动方向平行,如此电子不受洛伦兹力作用,那么霍尔器件不能输出控制车速的电势差,A 错误;当按图甲顺时针转动把手,导致霍尔器件周围的磁场增加,那么霍尔器件输出控制车速的电势差增大,因此车速变快,B 正确;根据题意,结合图乙的示意图,那么永久磁铁的N 、S 极可能在左、右侧面,或在前、后外表,因此从霍尔器件输出控制车速的电势差,不一定在霍尔器件的左、右侧面,也可能在前、后外表,C 错误;当霍尔器件的上、下面之间所加电压正负极性对调,因此霍尔器件输出控制车速的电势差正负号相反,但由图丙可以知道,不会影响车速控制,故D 错误.6.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如下列图的长方体流量计.该装置由绝缘材料制成,其长、宽、高分别为a 、b 、c ,左右两端开口.在垂直于上下底面方向加一匀强磁场,前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,接在M 、N 两端间的电压表将显示两个电极间的电压U .假设用Q 表示污水流量(单位时间内排出的污水体积),如下说法中正确的答案是( C )A .M 端的电势比N 端的高B .电压表的示数U 与a 和b 均成正比,与c 无关C .电压表的示数U 与污水的流量Q 成正比D .假设污水中正负离子数一样,如此电压表的示数为0解析:由左手定如此可知正电荷打在N 端,所以M 端的电势比N 端的低,应当选项A 错误;由q U b =qBv ,解得U =Bbv ,应当选项B 、D 错误;污水的流量Q =vS =U Bb bc =U B c ,所以电压表的示数U 与污水的流量Q 成正比,应当选项C 正确.二、多项选择题7.如下列图,一质量为m 的带电小球用长为L 的不可伸长的绝缘细线悬挂于O 点,在O 点下方存在一个水平向右、场强为E 的匀强电场,小球静止时悬线与竖直方向成45°角,重力加速度为g ,不计空气阻力.如下说法正确的答案是( CD )A .假设剪断细线,小球将做曲线运动B .小球带正电C .假设突然将电场方向变为水平向左,小球运动到最低点时的速率为2gLD .假设突然将电场方向变为水平向左,小球一定能运动到O 点右侧与初始位置等高处 解析:假设剪断细线,小球在恒力作用下将做直线运动,选项A 错误;由受力分析与平衡条件可知,小球所受电场力F =qE =mg ,方向水平向左,与电场方向相反,小球带负电,选项B 错误;将电场方向变为水平向左,从图示位置到最低点,由动能定理得mgL (1-cos45°)+EqL sin45°=12mv 2,解得v =2gL ,选项C 正确;将电场方向变为水平向左,O 点右侧与初始位置等高处为速度最大点,如此小球一定能运动到O 点右侧与初始位置等高处,选项D 正确.8.如下列图,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M 点水平射入场区,经一段时间运动到N 点,关于小球由M 到N 的运动,如下说法正确的答案是( BC )A .小球可能做匀变速运动B .小球一定做变加速运动C .小球动能可能不变D .小球机械能守恒解析:小球从M 到N ,在竖直方向上发生了偏转,所以刚开始受到的竖直向下的洛伦兹力、竖直向下的重力和竖直向上的电场力的合力不为零,并且速度方向变化,如此洛伦兹力方向变化,所以合力方向变化,故不可能做匀变速运动,一定做变加速运动,A 错误,B 正确;假设电场力和重力等大反向,如此此过程中电场力和重力做功之和为零,而洛伦兹力不做功,所以小球的动能不变,重力势能减小,这种情况下机械能不守恒,假设电场力和重力不等大反向,如此有电场力做功,所以机械能也不守恒,故小球的机械能不守恒,C 正确,D 错误.9.如图甲所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E ,一质量为m ,电荷量为q 的带正电小球恰好处于静止状态.现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,如图乙所示.如此关于小球的运动,如下说法正确的答案是( AD )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv2BqD .小球第一次运动到最低点历时πm 2qB解析:小球在复合场中处于静止状态,只受两个力作用,即重力和电场力且两者平衡.当把磁场顺时针方向倾斜30°,且给小球一个垂直磁场方向的速度v ,如此小球受到的合力就是洛伦兹力,且与速度方向垂直,所以带电粒子将做匀速圆周运动,选项A 正确;由于带电粒子在垂直于纸面的倾斜平面内做匀速圆周运动过程中受到电场力要做功,所以机械能不守恒,选项B 错误;电场力从开始到最低点抑制电场力做功为W =EqR sin30°=m 2gv 2Bq,所以电势能的增加量为m 2gv 2Bq ,选项C 错误;小球从第一次运动到最低点的时间为14T =πm 2Bq,选项D 正确.10.如图甲所示,两平行金属板A 、B 放在真空中,间距为d ,P 点在A 、B 板间,A 、B 板间的电势差U 随时间t 的变化情况如图乙所示,t =0时,在P 点由静止释放一质量为m 、电荷量为e 的电子,当t =2T 时,电子回到P 点.电子运动过程中未与极板相碰,不计重力,如下说法正确的答案是( BD )A .U 1U 2=1 2 B .U 1U 2=1 3C .在0~2T 时间内,当t =T 时电子的电势能最小D .在0~2T 时间内,电子的电势能减小了2e 2T 2U 21md2 解析:0~T 时间内平行板间的电场强度为E 1=U 1d ,电子以加速度a 1=E 1e m =U 1e dm向上做匀加速直线运动,当t =T 时电子的位移x 1=12a 1T 2,速度v 1=a 1T .T ~2T 时间内平行板间的电场强度E 2=U 2d ,电子加速度a 2=U 2e dm,以v 1的初速度向上做匀减速直线运动,速度变为0后开始向下做匀加速直线运动,位移x 2=v 1T -12a 2T 2,由题意t =2T 时电子回到P 点,如此x 1+x 2=0,联立可得U 2=3U 1,选项A 错误,B 正确.当速度最大时,动能最大,电势能最小,而0~2T 时间内电子先做匀加速直线运动,之后做匀减速直线运动,后又做方向向下的匀加速直线运动,在t =T 时,电子的动能E k1=12mv 21=e 2T 2U 212md2,电子在t =2T 时回到P 点,此时速度v 2=v 1-a 2T =-2U 1eT dm (负号表示方向向下),电子的动能为E k2=12mv 22=2e 2T 2U 21md 2,E k1<E k2,根据能量守恒定律,电势能的减少量等于动能的增加量,在t =2T 时电子的电势能最小,选项C 错误,选项D 正确.三、计算题11.如下列图,在竖直平面内的xOy 直角坐标系中,MN 与水平x 轴平行,在MN 与x 轴之间有竖直向上的匀强电场和垂直于坐标平面水平向里的匀强磁场,电场强度E =2 N/C ,磁感应强度B =1 T .从y 轴上的P 点沿x 轴正方向以初速度v 0=1 m/s 水平抛出一带正电的小球,小球的质量为m =2×10-6 kg ,电荷量q =1×10-5 C ,g 取10 m/s 2.P 点到O 点的距离为d 0=0.15 m ,MN 到x 轴距离为d =0.20 m .(π=3.14,2=1.414,3=1.732,结果保存两位有效数字)(1)求小球从P 点运动至MN 边界所用的时间;(2)假设在小球运动到x 轴时撤去电场,求小球到达MN 边界时的速度大小.答案:(1)0.38 s (2)2.8 m/s解析:(1)由平抛运动的规律,设小球做平抛运动的时间为t 1,进入电磁场时的速度为v ,进入电磁场时速度与水平方向的夹角为θ,如此d 0=12gt 21解得t 1=2d 0g =310s 如此v =(gt 1)2+v 20 cos θ=v 0v解得v =2 m/s ,θ=60°小球在电磁场区域中,有qE =2×10-5 N =mg ,故小球做匀速圆周运动,设轨道半径为r ,如此qvB =m v 2r解得r =mv qB=0.4 m由几何关系知,小球的运动轨迹与MN 相切,在电磁场中运动时间t 2=16×2πr v =π15s 小球从P 点运动到MN 所用时间t =t 1+t 2=0.38 s(2)假设撤去电场,设小球运动至MN 时速度大小为v 1,由动能定理得mgd =12mv 21-12mv 2 解得v 1=2 2 m/s =2.8 m/s12.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如下列图:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行.一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M 点入射时速度的大小;(3)假设该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷与其从M 点运动到N 点的时间.答案:(1)见解析 (2)2El ′Bl(3)43El ′B 2l 2Bl E ⎝ ⎛⎭⎪⎫1+3πl 18l ′ 解析:(1)粒子运动的轨迹如图(a)所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M 点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度的大小为a ;粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ[见图(b)],速度沿电场方向的分量为v 1.根据牛顿第二定律有qE =ma ①式中q 和m 分别为粒子的电荷量和质量.由运动学公式有v 1=at ②l ′=v 0t ③v 1=v cos θ④粒子在磁场中做匀速圆周运动,设其运动轨道半径为R ,由洛伦兹力公式和牛顿第二定律得qvB =mv 2R⑤ 由几何关系得l =2R cos θ⑥联立①②③④⑤⑥式得v 0=2El ′Bl⑦ (3)由运动学公式和题给数据得v 1=v 0tan π6⑧ 联立①②③⑦⑧式得q m =43El ′B 2l2⑨ 设粒子由M 点运动到N 点所用的时间为t ′,如此t ′=2t +2⎝ ⎛⎭⎪⎫π2-π62πT ⑩ 式中T 是粒子在磁场中做匀速圆周运动的周期,T =2πm qB⑪ 由③⑦⑨⑩⑪式得t ′=Bl E ⎝ ⎛⎭⎪⎫1+3πl 18l ′⑫。

高考物理大二轮专题复习 知识回扣清单 倒数第9天 电场和带电粒子在电场中的运动

拾躲市安息阳光实验学校【步步高】(全国通用)高考物理大二轮专题复习 知识回扣清单 倒数第9天 电场和带电粒子在电场中的运动1.请回答库仑定律的内容、公式和适用条件分别是什么?答案 (1)内容:真空中两个静止的点电荷之间的相互作用力,与它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)公式:F =k q 1q 2r2,式中的k =9.0×109 N·m 2/C 2,叫静电力常量.(3)适用条件:①点电荷;②真空中.2.电场强度是描述电场力的性质的物理量,它有三个表达式:E =F q ,E =k Qr2和E =Ud,这三个公式有何区别?如果空间某点存在多个电场,如何求该点的场强?电场的方向如何确定? 答案 (1)区别①电场强度的定义式E =Fq,适用于任何电场,E 由场源电荷和点的位置决定,与F 、q 无关.②真空中点电荷所形成的电场E =k Qr2,其中Q 为场源电荷,r 为某点到场源电荷的距离.③匀强电场中场强和电势差的关系式E =Ud,其中d 为两点沿电场方向的距离.(2)用叠加原理求该点的场强若空间的电场是由几个“场源”共同激发的,则空间中某点的电场强度等于每个“场源”单独存在时所激发的电场在该点的场强的矢量和——叠加原理. (3)电场方向是正电荷的受力方向、负电荷受力的反方向、电场线的切线方向、电势降低最快的方向.3.电场线与等势面间的关系是怎样的?答案 (1)电场线上某点切线的方向为该点的场强方向,电场线的疏密表示场强的大小.(2)电场线互不相交,等势面也互不相交.(3)电场线和等势面在相交处互相垂直.(4)电场线的方向是电势降低的方向,而场强方向是电势降低最快的方向; (5)等差等势面密的地方电场线密,电场线密的地方等差等势面也密.4.比较电势高低的方法有哪些?答案 (1)顺着电场线方向,电势逐渐降低.(2)越靠近正场源电荷处电势越高;越靠近负场源电荷处电势越低.(3)根据电场力做功与电势能的变化比较①移动正电荷,电场力做正功,电势能减少,电势降低;电场力做负功,电势能增加,电势升高.②移动负电荷,电场力做正功,电势能减少,电势升高;电场力做负功,电势能增加,电势降低.5.比较电势能大小最常用的方法是什么?答案不管是正电荷还是负电荷,只要电场力对电荷做正功,该电荷的电势能就减少;只要电场力对电荷做负功,该电荷的电势能就增加.6.电场力做功有什么特点?如何求解电场力的功?答案(1)电场力做功的特点电荷在电场中任意两点间移动时,它的电势能的变化量是确定的,因而电场力对移动电荷所做的功的值也是确定的,所以,电场力对移动电荷所做的功,与电荷移动的路径无关,仅与初、末位置的电势差有关,这与重力做功十分相似.(2)电场力做功的计算及应用①W=Fl cos α,常用于匀强电场,即F=qE恒定.②W AB=qU AB,适用于任何电场,q、U AB可带正负号运算,结果的正负可反映功的正负,也可带数值运算,但功的正负需结合移动电荷的正负以及A、B两点电势的高低另行判断.③功能关系:电场力做功的过程就是电势能和其他形式的能相互转化的过程,如图,且W=-ΔE其他.电势能E 电W>0W<0其他形式的能E其他7.带电粒子在匀强电场中分别满足什么条件可以做加速直线运动和偏转运动?处理带电粒子在电场中运动的方法有哪些?答案(1)加速——匀强电场中,带电粒子的受力方向与运动方向共线、同向.处理方法:①牛顿运动定律和运动学方程相结合.②功能观点:qU=12mv22-12mv21(2)偏转——带电粒子以初速度v0垂直于电场线方向进入匀强电场.处理方法:类似平抛运动的分析方法.沿初速度方向的匀速直线运动:l=v0t沿电场力方向的初速度为零的匀加速直线运动:y=12at2=12·qEm(lv0)2=qUl22mdv20偏转角tan θ=v yv0=qUlmdv208.电容的两个表达式和平行板电容器的两类问题是什么?答案(1)电容:C=QU(2)平行板电容器的电容决定式:C =εr S 4πkd ∝εr Sd.(3)平行板电容器的两类问题:①电键K 保持闭合,则电容器两端的电压恒定(等于电源电动势),这种情况下带电荷量Q =CU ∝C ,而C =εr S 4πkd ∝εr S d ,E =U d ∝1d.②充电后断开K ,则电容器带电荷量Q 恒定,这种情况下C ∝εr S d ,U ∝dεr S ,E ∝1εr S.。

最新【通用版】高考物理二轮专题《电场及带电粒子在电场中的运动(含解析)

通用版高考物理二轮专题专题一《电场及带电粒子在电场中的运动》(含解析)一、选择题(1~5题为单项选择题,6~10题为多项选择题)1.(济宁市高三第二次模拟)如图所示的四条实线是电场线,它们相交于点电荷O,虚线是只在电场力作用下某粒子的运动轨迹,A、B、C、D分别是四条电场线上的点,则下列说法正确的是()A.O点一定有一个正点电荷B.B点电势一定大于C点电势C.该粒子在A点的动能一定大于D点的动能D.将该粒子在B点由静止释放,它一定沿电场线运动C[没有画出电场线的方向,所以O点可能是正电荷,也可能是负电荷,故A错误;由于不知道电场线的方向,所以无法判断B、C两点电势的高低,故B错误;由于做曲线运动的物体受力的方向指向曲线的内侧,可知该粒子在该电场中受到的电场力沿电场线向下,故从A到D电场力对粒子做负功,粒子的动能减小,则粒子在A点的动能较大,故C正确;电场中的带电粒子受力的方向沿电场线的切线方向,由于B点所在电场线为曲线,所以将该粒子在B点由静止释放,它一定不能沿电场线运动,故D错误.故选C.]2.(宁夏银川一中高三质检(二))如图所示,在匀强电场中,场强方向沿△abc 所在平面平行,ac ⊥bc ,∠abc =60°, ac =0.2 m .一个电量q =1×10-5C 的正电荷从a 移到b ,电场力做功为零;同样的电荷从a 移c ,电场力做功为1×10-8J.则该匀强电扬的场强大小和方向分别为( )A .500 V/m 、沿ab 由a 指向bB .500 V/m 、垂直ab 向上C .1000 V/m 、垂直ab 向上D .1000 V/m 、沿ac 由a 指向cC [正电荷从a 移到b ,电场力做功为零,则由电场力做功的特点可知,ab 两点电势相等,故ab 应为等势线;因电场线与等势面相互垂直,故过c 做ab 的垂线,一定是电场线;正电荷从a 到c 过程,由W =Uq 可知,ac 两点的电势差U ac =W q =1.0×10-31×10-5V =100 V ,即a 点电势高于c 点的电势,故电场线垂直于ab 向上;ac 间沿电场线的距离d =ac ·cos 60°= 0.2×0.5 m =0.1 m ,由E =U d 可知:电场强度E =1000.1 V/m =1000 V/m ,方向垂直ab 向上;故C 正确,A 、B 、D 错误;故选C.]3.(山东省潍坊市高三二模)如图甲所示,平行金属板A 、B 正对竖直放置,CD 为两板中线上的两点.A 、B 板间不加电压时,一带电小球从C 点无初速释放,经时间T 到达D 点,此时速度为v 0.在A 、B 两板间加上如图乙所示的交变电压,t =0带电小球仍从C 点无初速释放,小球运动过程中未接触极板,则t =T 时,小球( )A .在D 点上方B .恰好到达D 点C.速度大于v D.速度小于vB[小球仅受重力作用时从C到D做自由落体运动,由速度公式得v0=gT,现加水平方向的周期性变化的电场,由运动的独立性知竖直方向还是做匀加速直线运动,水平方向0~T4沿电场力方向做匀加速直线运动,T4~T2做匀减速直线运动刚好水平速度减为零,T2~3T4做反向的匀加速直线运动,3T4~T做反向的匀减速直线运动水平速度由对称性减为零,故t=T时合速度为v0,水平位移为零,则刚好到达D点,故选B.]4.(山东省淄博市高三三模) 已知一个无限大的金属板与一个点电荷之间的空间电场分布与等量异种电荷之间的电场分布类似,即金属板表面各处的电场强度方向与板面垂直.如图所示MN为无限大的不带电的金属平板,且与大地连接.现将一个电荷量为Q的正点电荷置于板的右侧,图中a、b、c、d是以正点电荷Q为圆心的圆上的四个点,四点的连线构成一内接正方形,其中ab连线与金属板垂直.则下列说法正确的是()A.b点电场强度与c点电场强度相同B.a点电场强度与b点电场强度大小相等C.a点电势等于d点电势D.将一试探电荷从a点沿直线ad移到d点的过程中,试探电荷电势能始终保持不变C[画出电场线如图所示:A.根据对称性可知,b点电场强度与c点电场强度大小相同,方向不同,故A错误;B.电场线密集的地方电场强度大,从图像上可以看出a点电场强度大于b点电场强度,故B错误;C.根据对称性并结合电场线的分布可知a 点电势等于d 点电势,故C 正确;D.由于试探电荷先靠近正电荷后远离正电荷,所以电场力在这个过程中做功,当总功为零,所以试探电荷电势能不是始终保持不变,故D 错误;故选C.]5.(河北衡水中学信息卷)如图所示,边长为L 的等边三角形ABC 的三个顶点上分别固定一个点电荷,所带电荷量依次为+q 、+q 和-q . D 点和M 点分别为AB 边和AC 边的中点,N 点为三角形的中心,静电力常量为k .在该电场中,下列说法正确的是( )A .D 点的电场强度大小为k q L 2,方向为从N 指向DB .N 点的电场强度大小为9k q L 2,方向为从N 指向CC .D 点的电势高于N 点的电势D .若取无穷远处电势为0,则M 点的电势φM 为0C [A 、B 两点处的点电荷在D 点的电场强度的矢量和为0,C 点处的点电荷在D 点处的电场强度为E =q k ⎝ ⎛⎭⎪⎫3L 22=4kq 3L 2,方向为从D 指向N ,A 错误;三个点电荷在N 点的电场强度大小均为3k q L 2,其中两个正点电荷的电场强度矢量合成后大小为3k q L 2,方向为从N 指向C ,与负点电荷电场强度合成,N 点的电场强度大小为6k qL2,方向为从N指向C,B错误;CD连线上电场强度方向由D指向C,可知φD>φN,C正确;若无穷远电势为0,则A、C两点处的等量异种点电荷在M点的电势为0,B处的正点电荷在M点的电势大于0,故φM>0,D错误.] 6.(山东省临沂市高三三模)如图所示,某条电场线上有a、b、c三点,其中b为ac的中点,已知a、c两点的电势分别为φa=10 V,φC=4 V,若将一点电荷从c点由静止释放,仅在电场力作用下沿着电场线向a点做加速度逐渐增大的加速运动,则下列判断正确的是()A.该点电荷带负电B.电场在b点处的电势为7 VC.a、b、c三点c点处的场强最小D.该电荷从c点运动到b点电场力做的功比从b点运动到a点电场力做的功多AC[A项:点电荷从c静止释放向左运动,电场线方向向右,所以点电荷带负电,故A正确;B项:由点电荷从c到a做加速度增大的加速运动,说明从c到a电场强度增大,即cb段平均场强小于ab段的平均强度,根据公式U=E d,可知电场在b点处的电势小于7 V,故B错误;C项:由点电荷从c到a做加速度增大的加速运动,说明从c到a电场强度增大,a、b、c三点c点处的场强最小,故C正确;D项:由C分析可知,从c到a电场强度增大,即电场力增大,ab=bc,根据W=Fx可知,在cb段的电场力小于ab段的电场力,所以该电荷从c点运动到b点电场力做的功比从b点运动到a点电场力做的功少,故D错误.]7.吉林省长春市高考模拟检测理科综合能力测试)如图,电路中A、B、C、D是完全相同的金属极板,P是AB板间的一点,在CD板间插有一块有机玻璃板.闭合开关,电路稳定后将开关断开.现将CD板间的玻璃板抽出,下列说法正确的是()A.金属板CD构成电容器的电容减小B.P点电势降低C.玻璃板抽出过程中,电阻R中有向右的电流D. A、B两板间的电场强度减小AC[A.根据C=εrS4πkd,将CD板间的玻璃板抽出,电介质εr减小,其它条件不变,则金属板CD构成电容器的电容减小,故A正确;BCD.当闭合开关,电路稳定后将开关断开,极板总电荷量不变,金属板CD构成电容器的电容减小,由U=QC可知极板CD电势差变大,极板AB电势差变大,由E=Ud可知极板AB间的场强变大,导致P点与B板的电势差变大,因B板接地,电势为零,即P 点电势升高,因此电容器CD处于放电状态,电容器AB处于充电状态,电阻R 中有向右的电流,故C正确,BD错误;故选AC.]8.(山东省青岛市高考模拟检测理科综合能力测试)通常把电荷在离场源电荷无限远处的电势能规定为零,已知试探电荷q在场源电荷Q的电场中具所有电势能表达式为E r=kqQr(式中k为静电力常量,r为试探电荷与场源电荷间的距离).真空中有两个点电荷Q1、Q2分别固定在x坐标轴的x=0和x=6 cm 的位置上.x轴上各点的电势φ随x的变化关系如图所示.A、B是图线与x的交点,A点的x坐标是4.8 cm,图线上C点的切线水平.下列说法正确的是()A.电荷Q1、Q2的电性相反B.电荷Q1、Q2的电量之比为1∶4 C.B点的x坐标是8 cmD.C点的x坐标是12 cmACD[A.电势φ随x的变化关系图象的斜率ΔφΔx=E,所以C点电场为0,根据电场叠加原理可知电荷Q1、Q2的电性相反,故A正确;B.根据φ=E pq可知,φA=kQ1qr1q+kQ2qr2q=kQ148+kQ212=0,解得Q1∶|Q2|=4∶1,故B错误;C.根据φ=E Pq可知,φB=kQ1qx1q+kQ2qx1-6q=KQ1x1+kQ2x1-6=0,解得B点的坐标是8 cm,故C正确;D.由E=kQr2知,E c=kQ1x22+kQ2(x2-6)2=0解得C点的坐标是x2=12 cm,故D正确;故选ACD.]9.(陕西西北工大附中高三模拟)如图所示,水平面内的等边三角形ABC的边长为L,两个等量异种点电荷+Q和-Q分别固定于A、B两点.光滑绝缘直导轨CD的上端点D位于到A、B中点的正上方,且与A、B两点的距离均为L.在D处质量为m、电荷量为+q的小球套在轨道上(忽略它对原电场的影响),并由静止释放,已知静电力常量为k,重力加速度为g.忽略空气阻力,则下列说法正确的是()A .D 点的场强大小为kQ L 2B .小球到达CD 中点时,其加速度为零C .小球刚到达C 点时,其动能为32mgLD .小球沿直轨道CD 下滑过程中,其电势能先增大后减小AC [根据点电荷产生的电场的性质可知,负电荷在D 处的电场强度沿DB 方向,正电荷在D 处的电场强度沿AD 方向,两个点电荷的电量是相等的,所以两个点电荷在D 点的电场强度的大小相等,则它们的合场强的方向沿AD 、DB的角平分线;由库仑定律得,A 、B 在D 点的场强的大小:E A =E =k Q L 2,则D 点的场强:E D =E A cos 60°+E B cos 60°=k Q L 2,故A 正确;当小球到达CD 中点时,小球受重力、支持力、正电荷的排斥力、负电荷的吸引力,对其受力分析可知,重力和支持力的合力与正电荷的排斥力和负电荷的吸引力的合力不在同一平面上,故两个合力不可能平衡,故加速度不为零,故B 错误;由于C 与D 到A 、B 的距离都等于L ,结合等量异种点电荷的电场特点可知,C 点与D 点在同一等势面上,电场力不做功,故小球的电势能不变,下落过程只有重力做功,即:mg OD =12m v 2,又几何关系可知:OD =L ·sin 60°=32L . 小球的动能E k =12m v 2=32mgL ,故C 正确,D 错误.故选AC.]10.(山东省潍坊市昌乐县二中高三下学期质检)如图所示,粗糙绝缘的水平面附近存在一个平行于水平面的电场,其中某一区域的电场线与x 轴平行,在x 轴上的电势φ与坐标x 的关系用图中曲线表示,图中斜线为该曲线过点(0.15,3)的切线.现有一质量为0.20 kg ,电荷量为+2.0×10-8C 的滑块P (可视作质点),从x =0.10 m 处由静止释放,其与水平面的动摩擦因数为0.02.取重力加速度g =10 m/s 2.则下列说法正确的是 ( )A .滑块运动的加速度先逐渐减小后逐渐增大B .x =0.15 m 处滑块运动的动能最大1.0×10-3JC .滑块运动过程中电势能先减小后增大D .滑块运动过程中克服摩擦力做功8.0×10-3JAB [电势φ与位移x 图线的斜率表示电场强度,则x =0.15 m 处的场强E =3×1050.15 V/m =2×106V/m ,此时的电场力F =qE =2×10-8×2×106N =0.04 N ,滑动摩擦力大小f =μmg =0.02×2 N =0.04 N ,在x =0.15 m 前,电场力大于摩擦力,做加速运动,加速度逐渐减小,x =0.15 m 后电场力小于摩擦力,做减速运动,加速度逐渐增大,故A 正确,在x =0.15 m 时,电场力等于摩擦力,速度最大,根据动能定理得,E km =qU -fx ,因为0.10 m 和0.15 m 处的电势差大约为1.5×105V ,代入求解,最大动能为1.0×10-3J.故B 正确.滑块运动过程中因电势一直降低,可知电势能一直减小,选项C 错误;若滑块运动过程中克服摩擦力做功8.0×10-3J ,则移动的距离为Δx =W f f =8.0×10-30.04 m =0.2 m ,此时滑块从x =0.1 m 的位置运动到0.3 m 的位置,电势能的变化为ΔE p =(4-1.5)×105×2.0×10-8J =5×10-3J ,即电场力做功小于克服摩擦力做功,此时滑块的速度不为零,将继续运动一段距离停下,故滑块运动过程中克服摩擦力做功大于8.0×10-3J ,选项D 错误;故选AB.]二、非选择题11.(四川省泸州市高三模拟)如图所示,相距2L 的AB 、CD 两直线间的区域存在着两个大小不同、方向相反的有界匀强电场,其中PS 下方的电场E 1的场强方向竖直向上,PS 上方的电场E 2的场强方向竖直向下,在电场左边界AB 上宽为L 的PQ 区域内,连续分布着电量为+q 、质量为m 的粒子.从某时刻起由Q 到P 点间的带电粒子,依次以相同的初速度v 0沿水平方向垂直射入匀强电场E 1中,若从Q 点射入的粒子,通过PS 上的某点R 进入匀强电场E 2后从CD 边上的M 点水平射出,其轨迹如图,若MS 两点的距离为L 2.不计粒子的重力及它们间的相互作用.试求:(1)电场强度E 1与E 2的大小;(2)在PQ 间还有许多水平射入电场的粒子通过电场后也能垂直于CD 边水平射出,这些入射点到P 点的距离有什么规律?解析 (1)设粒子由Q 到R 及R 到M 点的时间分别为t 1与t 2,到达R 时竖直速度为v y ,则由y =12at 2、v y =at 及F =qE =ma 得:L =12a 1t 21=12 qE 1m t 21L 2=12a 2t 22=12 qE 2m t 22v y =qE 1m t 1=qE 2m t 2v 0(t 1+t 2)=2L联立解得:E 1=9m v 208qL ,E 2=9m v 204qL .(2)由(1)知E 2=2E 1,t 1=2t 2.因沿PS 方向所有粒子做匀速运动,所以它们到达CD 边的时间同为t =2L v 0. 设PQ 间距离P 点为h 的粒子射入电场后,经过n (n =2,3,4,…)个类似于Q →R →M 的循环运动(包括粒子从电场E 2穿过PS 进入电场E 1的运动)后,恰好垂直于CD 边水平射出,则它的速度第一次变为水平所用时间为T =t n =2L n v 0(n =2,3,4,…),第一次到达PS 边的时间则为23T ,则有h =12·qE 1m ·(23T )2=L n 2(n =2,3,4,…).答案 (1)9m v 208qL 9m v 204qL (2)L n 2(n =2,3,4,…)12.(辽宁省大连市高考模拟检测)竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R =1 m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E =4×103 V/m.小球a 、b 、c 的半径略小于管道内径,b 、c 球用长L =2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当F 减到零时恰好与b 发生了弹性碰撞,F -t 的变化图象如图乙所示,且满足F 2+t 2=4π.已知三个小球均可看做质点且m a =0.25 kg ,m b =0.2kg ,m c =0.05 kg ,小球c 带q =5×10-4C 的正电荷,其他小球不带电,不计一切摩擦,g =10 m/s 2,求(1)小球a与b发生碰撞时的速度v0;(2)小球c运动到Q点时的速度v;(3)从小球c开始运动到速度减为零的过程中,小球c电势能的增加量.解析对小球a,由动量定理可得小球a与b发生碰撞时的速度;小球a与小球b、c组成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c运动到Q点时,小球b恰好运动到P点,由动能定理可得小球c运动到Q点时的速度;由于b、c两球转动的角速度和半径都相同,故两球的线速度大小始终相等,从c球运动到Q点到减速到零的过程列能量守恒可得:(1)由题意可知,F图象所围的图形为四分之一圆弧,面积为拉力F的冲量,由圆方程可知S=1 m2代入数据可得:v0=4 m/s(2)小球a与小球b、c组成的系统发生弹性碰撞,由动量守恒可得m a v0=m a v1+(m b+m c)v2由机械能守恒可得12m a v2=12m a v21+12(m b+m c)v22解得v1=0,v2=4 m/s小球c运动到Q点时,小球b恰好运动到P点,由动能定理m c gR-qER=1 2(m b +m c )v 2-12(m b +m c )v 22代入数据可得v =2m/s(3)由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为θ从c 球运动到Q 点到减速到零的过程列能量守恒可得:m b gR (1-cos θ)+m c gR sin θ+12(m b +m c )v 2=qER sin θ解得sin θ=0.6,θ=37°因此小球c 电势能的增加量:ΔE p =qER (1+sin θ)=3.2 J .]答案 (1)v 0=4 m /s (2) v =2 m/s (3)ΔE P =3.2 J专题二、《磁场及带电体在磁场中的运动》(含解析)一、选择题(1~6题为单项选择题,7~10题为多项选择题)1.两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的 ( )A .轨道半径减小,角速度增大B .轨道半径减小,角速度减小C .轨道半径增大,角速度增大D .轨道半径增大,角速度减小D [分析轨道半径:带电粒子从较强磁场区域进入到较弱磁场区域后,粒子的速度v 大小不变,磁感应强度B 减小,由公式r =m v qB 可知,轨道半径增大.分析角速度:由公式T =2πm qB 可知,粒子在磁场中运动的周期增大,根据ω=2πT知角速度减小.选项D 正确.] 2.如图所示,总质量为m ,边长为L 的正方形线圈共三匝,放置在倾角为α的光滑斜面上,刚好关于磁场边界MN 对称,MN 上方存在匀强磁场,若线圈通以图示方向的恒定电流I 后刚好在斜面上保持静止,重力加速度为g ,则( )A .磁场方向可以竖直向下,且B =mg tan αILB .磁场方向可以竖直向上,且B =mg tan α3ILC .磁场方向可以垂直斜面向下,且B =mg sin α3ILD.磁场方向可以水平向左,且B=mg ILC[当磁场方向竖直向下时,由平衡条件得3BIL=mg tan α,则B=mg tan α3IL,选项A错误;当磁场方向竖直向上时,由受力分析可知线圈不会静止,选项B错误;当磁场方向垂直斜面向下时,由平衡条件得3BIL=mg sin α,则B=mg sin α3IL,选项C正确;当磁场方向水平向左时,由受力分析可知线圈不会静止,选项D 错误.]3.(山东省潍坊市昌乐县二中高三下学期质检)已知通电长直导线周围某点的磁感应强度B=k 1r,即磁感应强度B与导线中的电流I成正比、与该点到导线的距离r成反比.如图所示,两根平行长直导线相距为R,通以大小、方向均相同的电流.规定磁场方向垂直纸面向里为正,在0-R区间内磁感应强度大小B 随x变化的图线可能是()C[根据右手螺旋定则可得左边通电导线在两根导线之间的磁场方向垂直纸面向里,右边通电导线在两根导线之间的磁场方向垂直纸面向外,离导线越远磁场越弱,在两根导线中间位置磁场为零.由于规定B的正方向垂直纸面向里,所以C正确,ABD错误;故选C.]4. (山东省实验中学高三二模)如图所示,在一等腰直角三角形ACD 区城内有垂直纸面向外的匀强磁场,磁场的磁感应强度大小为B .一质量为m 、电荷量为q 的带正电粒子(重力不计)以速度v 从AC 边的中点O 垂直AC 边射入磁场区域.若三角形的两直角边长均为2L ,要使粒子从CD 边射出,则v 的取值范围为( )A.qBL m ≤v ≤22qBL mB.qBL m ≤v ≤5qBL mC.qBL 2m ≤v ≤(2+1)qBL mD.qBL 2m ≤v ≤5qBL 2m C [根据洛伦兹力充当向心力可知,v =Bqr m ,因此半径越大,速度越大;根据几何关系可知,使粒子与AD 边相切时速度最大,如图由几何关系可知,最大半径为r 1=2L +1,故最大速度应为v 1=qB (2+1)L m ;当粒子从C 点出射时半径最小,为r 2=L 2,故最小速度应为v 2=qBL 2m ,故v 的取值范围为qBL 2m ≤v ≤qB (2+1)L m,故选C.] 5.(山东省临沂市高三三模)如图所示,电子经电压U 加速后垂直进入磁感应强度为B 的匀强磁场中,在磁场中转半个圆周后打在P 点,通过调节电压U 可以控制P 点的位置,设OP =x ,能够正确反映U 与x 关系的图象是( )C [带电粒子在电场中加速运动,根据动能定理得:12m v 2=qU 解得:v =2qUm进入磁场后做匀速圆周运动,根据洛伦兹力提供向心力,则有:q v B =m v 2r 解得:r =m v qB粒子运动半个圆打到P 点, 所以x =2r =2m qB2qU m 即x 与U 成正比,故C 正确.]6.(山东省青岛市高考模拟检测理科综合能力测试)如图,在xOy 平面内,虚线y =33x 左上方存在范围足够大、磁感应强度为B 的匀强磁场,在A (0,l )处有一个粒子源,可沿平面内各个方向射出质量为m ,电量为q 的带电粒子,速率均为3qBl 2m ,粒子重力不计,则粒子在磁场中运动的最短时间为( )A.πm qBB.πm 4qBC.πm 3qBD.πm 6qBC [粒子进入磁场中做匀速圆周运动则有:q v B =m v 2r ,而将题中的v 值代入得:r =32l ,分析可知:粒子运动的时间t 最短时,所粒子偏转的角度θ最小,则θ所对弦最短,作AB ⊥OB 于B 点,AB 即为最短的弦,假设粒子带负电,结合左手定则,根据几何关系有:AB =OA sin 60°=32l ,粒子偏转的角度;θ=60°,结合周期公式:T =2πm qB ,可知粒子在磁场中运动的最短时间为:t =T 6=πm 3qB ,故C 正确,A 、B 、D 错误;故选C.]7.(湖南省怀化市高三联考)一绝缘圆筒上有一小孔,筒内有方向沿圆筒轴线的匀强磁场,磁感应强度大小为B ,整个装置的横截面如图所示.一质量为m 、带电量为q 的小球(重力不计)沿孔半径方向射入筒内,小球与筒壁碰撞n 次后恰好又从小孔穿出.小球每次与筒壁碰撞后均以原速率弹回,且碰撞过程中小球的电荷量不变.已知小球在磁场中运动的总时间t =πm qB ,则n 可能等 ( )A .2B .3C .4D .5AC [粒子在磁场中的周期为T =2πm Bq ,而小球在磁场中运动的总时间t =πm Bq=12T ,可知,粒子在磁场中做圆周运动的总圆弧所对的圆心角为180°;若n =2,即粒子与圆筒碰撞2次,分别对应三段圆弧,每段圆弧所对的圆心角为60°,则总圆心角为180°,则选项A正确;若n=3,即粒子与圆筒碰撞3次,分别对应四段圆弧,每段圆弧所对的圆心角为90°,则总圆心角为360°,则选项B错误;若n=4,即粒子与圆筒碰撞4次,则可能每次碰撞对应的圆弧所对的圆心角为36°(对应着圆筒上的圆心角为144°),则总圆心角为5×36°=180°,则选项C正确;若n=5,即粒子与圆筒碰撞5次,分别对应6段圆弧,每段圆弧所对的圆心角为120°,则总圆心角为72°,则选项D错误;故选A、C.]8.(安徽六安一中一模)如图,xOy平面的一、二、三象限内存在垂直纸面向外,磁感应强度B=1 T的匀强磁场,ON为处于y轴负方向的弹性绝缘薄挡板,长度为9 m,M点为x轴正方向上一点,OM=3 m,现有一个比荷大小为qm=1.0C/kg,可视为质点的带正电小球(重力不计),从挡板下端N处小孔以不同的速度向x轴负方向射入磁场,若与挡板相碰后以原速率弹回,且碰撞时间不计,碰撞时电荷量不变,小球最后都能经过M点,则小球射入的速度大小可能是()A.3 m/s B.3.75 m/sC.4 m/s D.5 m/sABD[由题意,小球运动的圆心的位置一定在y轴上,所以小球做圆周运动的半径r一定要大于等于3 m,而ON=9 m<3r,所以小球最多与挡板ON碰撞一次,碰撞后,第二个圆心的位置在O点的上方,也可能小球与挡板ON没有碰撞,直接过M点.由于洛伦兹力提供向心力,所以:q v B=m v2r,得:v=qmBr①;若小球与挡板ON碰撞一次,则轨迹可能如图1,设OO′=s,由几何关系得:r2=OM2+s2=9+s2②,3r-9=s③,联立②③得:r1=3 m;r2=3.75 m,分别代入①得:v1=qm·Br1=1×1×3 m/s=3 m/s,v2=qm Br2=1×1×3.75 m/s=3.75 m/s,若小球没有与挡板ON碰撞,则轨迹如图2,设OO′=x,由几何关系得:r23=OM2+x2=9+x2④,x=9-r3⑤,联立④⑤得:r3=5 m,代入①得:v3=qm Br3=1×1×5 m/s=5 m/s,A、B、D正确.]9.(山东省济南市高三一摸)如图所示,正方形abcd区域内存在垂直纸面向里的匀强磁场,甲、乙两带电粒子从a点沿与ab成30°角的方向垂直射入磁场.甲粒子垂直于bc边离开磁场,乙粒子从ad边的中点离开磁场.已知甲、乙两带电粒子的电荷量之比为1∶2,质量之比为1∶2,不计粒子重力. 以下判断正确的是()A.甲粒子带负电,乙粒子带正电B.甲粒子的动能是乙粒子动能的16倍C.甲粒子所受洛伦兹力是乙粒子所受洛伦兹力的43倍D.甲粒子在磁场中的运动时间是乙粒子在磁场中运动时间的1 4倍CD[A项:由甲粒子垂直于bc边离开磁场可知,甲粒子向上偏转,所以甲粒子带正电,由粒子从ad边的中点离开磁场可知,乙粒子向下偏转,所以乙粒子带负电,故A错误;B项:由几何关系可知,R甲=2L,乙粒子在磁场中偏转的弦切角为60°,弦长为L2,所以L2=2R乙sin 60°,解得R乙=L23,根据q v B=mv2r,所以E k=m v22=q2B2r22m,所以甲粒子的动能是乙粒子动能的24倍,故B错误:C项:由公式q v B=mv2r可知,v=qBrm,所以f洛=q v B=q2B2rm,即f洛甲f洛乙=(12)2×(21)2×2LL23=43,故C正确;D项:由几何关系可知,甲粒子的圆心角为30°,由B分析可得,乙粒子的圆心角为120°.根据公式t=α360°T和T=2πmqB可知,甲粒子在磁场中的运动时间是乙粒子在磁场中运动时间的14倍,故D正确.]10.(广东省湛江市高三模拟)如图所示,MN平行于y轴,在y轴与MN之间的区域内存在与xOy平面垂直的匀强磁场,磁感应强度大小为B.在t=0时刻,从原点O发射一束等速率的相同的带电粒子,速度方向与y轴正方向的夹角分布在0°~90°范围内.其中,沿y轴正方向发射的粒子在t=t0时刻刚好从磁场右边界MN上的P点离开磁场,已知P点的坐标是((2+2)d,2d)不计粒子重力,下列说法正确的是()A.粒子在磁场中做圆周运动的半径为2+2dB.粒子的发射速度大小为3πd2t0C.带电粒子的比荷为π4Bt0D.带电粒子在磁场中运动的最长时间为2t0BD[根据题意作出沿y轴正方向发射的带电粒子在磁场中做圆周运动的轨迹如图所示.圆心为O′,根据几何关系,粒子做圆周运动的半径为r=2d,故A错;沿y轴正方向发射的粒子在磁场中运动的圆心角为3π4,运动时间t0=3π4×2dv0解得:v0=3πd2t0,故B正确;沿y轴正方向发射的粒子在磁场中运动的圆心角为3π4,对应运动时间为t0,所以粒子运动的周期为T=8t03,由Bq v0=m(2πT)2r则qm=3π4Bt0故C错误;在磁场中运动时间最长的粒子的运动轨迹如图所示.由几何知识得该粒子做圆周运动的圆心角为3π2,在磁场中的运动时间为2t0,故D正确.]二、非选择题11.(河北唐山质检)如图所示,水平导轨间距为L=0.5 m,导轨电阻忽略不计;导体棒ab的质量m=1 kg,电阻R0=0.9 Ω,与导轨接触良好;电源电动势E=10 V,内阻r=0.1 Ω,电阻R=4 Ω;外加匀强磁场的磁感应强度B=5 T,方向垂直于ab,与导轨平面成夹角α=53°;ab与导轨间的动摩擦因数为μ=0.5(设最大静摩擦力等于滑动摩擦力),定滑轮摩擦不计,细线对ab的拉力为水平方向,。

2019版高考物理:大二轮复习考前基础回扣练9电场及带电粒子在电场中的运动6113(含答案).doc

回扣练9:电场及带电粒子在电场中的运动1.如图所示,图甲实线为方向未知的三条电场线,a、b两带电粒子从电场中的P点静止释放,不考虑两粒子间的相互作用,仅在电场力作用下,两粒子做直线运动,a、b粒子的速度大小随时间变化的关系如图乙中实线所示,虚线为直线.则( )A.a一定带正电,b一定带负电B.a向左运动,b向右运动C.a电势能减小,b电势能增大D.a动能减小,b动能增大解析:选B.从速度—时间图象中可以看出,a粒子加速度逐渐增大,b粒子加速度逐渐减小,因为粒子仅受电场力,可知a 粒子电场力逐渐增大,b粒子电场力逐渐减小,所以a向左运动,b向右运动.由于不知电场的方向,所以无法判断a、b的电性.故A错误,B正确.带电粒子在电场中运动时,电场力做正功,所以a 、b 的电势能均减小.故C 错误.带电粒子在电场中运动时,电场力做正功,因为仅受电场力,根据动能定理,a 、b 的动能均增加.故D 错误.故选B.2.如图所示,半径为R 的均匀带电球壳带电量为Q (Q >0).已知半径为R 的均匀带电球壳在球壳的外部产生的电场与一个位于球心O 点的、电荷量相等的点电荷产生的电场相同.静电力常量为k ,下列说法正确的是( )A .球心O 处的场强为kQ R 2B .在球壳外距球壳为r 处的电场强度为kQ r 2C .球壳的表面为等势面D .若取无穷远处电势为零,则球壳表面处的电势小于零 解析:选C.由对称性可知,球心O 处的场强为零,选项A错误;在球壳外距球壳为r 处的电场强度为E =kQ (r +R )2,选项B 错误;球壳的表面处的电场线垂直于表面,则球壳表面为等势面,选项C 正确;因球壳带电量为正,则若取无穷远处电势为零,则球壳表面处的电势大于零,选项D 错误;故选C.3.如图,一质量为m 、电量为q 的带正电粒子在竖直向下的匀强电场中运动,M 、N 为其运动轨迹上的两点.已知该粒子在M 点的速度大小为v 0,方向与水平方向的夹角为60°,N 点为轨迹的最高点,不计重力.则M 、N 两点间的电势差为( )A.3mv 208q B .-3mv 208qC .-mv 208q D .mv 208q解析:选B.从M 点到N 点利用动能定理有:qU MN =12mv 2N -12mv 2M =12m (v 0sin 60°)2-12mv 20解得:U MN =-3mv 208q ,故B 正确.4.如图所示为某电场中x轴上电势φ随x变化的图象,一个带电粒子仅受电场力作用在x=0处由静止释放沿x轴正向运动,且以一定的速度通过x=x处,则下列说法正确的是( )2A.x1和x2处的电场强度均为零B.x1和x2之间的场强方向不变C.粒子从x=0到x=x2过程中,电势能先增大后减小D.粒子从x=0到x=x2过程中,加速度先减小后增大解析:选D.φ­x图象的切线斜率表示场强的大小,x1和x2两处的场强均不为零,因此A项错误.在x轴上沿电场方向电势降低,逆着电场方向电势升高,所以x1到x2之间电场强度的方向先沿x轴负方向后沿x轴正方向,选项B错误.粒子仅在电场力作用下由静止开始运动,从x=0到x=x2之间由于电场方向发生了改变,电场力先做正功后做负功,粒子的电势能先减小后增大,选项C错误.根据牛顿第二定律,加速度与电场力大小成正比,电场力大小与各处的电场强度大小即图象的斜率大小成正比,由图象知,粒子的加速度先减小后增大,选项D正确.5.均匀带电的球体在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球体上均匀分布正电荷,总电荷量为q,球半径为R,MN为通过半球顶点与球心O的轴线,在轴线上有A、B两点,A、B关于O点对称,AB=4R.已知A点的场强大小为E,则B点的场强大小为( )A.kq2R2+E B.kq2R2-EC.kq4R2+E D.kq4R2-E解析:选B.若将带电量为2q的球面放在O处,均匀带电的球壳在A、B点所产生的电场为E0=2kq(2R)2=kq2R2,由题知当半球面产生的场强为E,则B点的场强为E′=E0-E.解得E′=kq2R2-E,故选B.6.(多选)如图所示,空间分布着竖直向上的匀强电场E,现在电场区域内某点O处放置一负点电荷Q,并在以O点为球心的球面上选取a、b、c、d四点,其中ac连线为球的水平大圆直径,bd连线与电场方向平行.不计空气阻力,则下列说法中正确的是( ) A.b、d两点的电场强度大小相等,电势相等B.a、c两点的电场强度大小相等,电势相等C.若从a点抛出一带正电小球,小球可能沿a、c所在圆周做匀速圆周运动D.若从a点抛出一带负电小球,小球可能沿b、d所在圆周做匀速圆周运动解析:选BC.Q在b点与d点场强方向相反,与匀强电场叠加后d点场强大于b点场强.故A错误;a、c两点的电场强度大小相等,点电荷在ac两点的电势相等,电场E在ac两点的电势相等,所以ac两点的电势相等.故B正确;若能做匀速圆周运动,要使小球所受的合力大小不变,方向变化,则应为匀强电场力与重力相平衡,合力为Q所给的库仑力.故正电荷可沿a、c所在圆周做匀速圆周运动.故C正确;若从a点抛出一带负电小球,其所受合力不可能指向Q点,则不能做匀速圆周运动.故D错误;故选BC.7.(多选)如图所示,水平面内的等边三角形ABC的边长为L,两个等量异种点电荷+Q和-Q分别固定于A、B两点.光滑绝缘直导轨CD的上端点D位于到A、B中点的正上方,且与A、B两点的距离均为L.在D处质量为m、电荷量为+q的小球套在轨道上(忽略它对原电场的影响),并由静止释放,已知静电力常量为k,重力加速度为g.忽略空气阻力,则下列说法正确的是( )A.D点的场强大小为kQ L2B.小球到达CD中点时,其加速度为零C.小球刚到达C点时,其动能为32 mgLD.小球沿直轨道CD下滑过程中,其电势能先增大后减小解析:选AC.根据点电荷产生的电场的性质可知,负电荷在D处的电场强度沿DB方向,正电荷在D处的电场强度沿AD方向,两个点电荷的电量是相等的,所以两个点电荷在D点的电场强度的大小相等,则它们的合场强的方向沿AD、DB的角平分线;由库仑定律得,A、B在D点的场强的大小:E A=E=k Q L2,则D点的场强:E D=E A cos 60°+E B cos 60°=k QL2,故A正确;当小球到达CD中点时,小球受重力、支持力、正电荷的排斥力、负电荷的吸引力,对其受力分析可知,重力和支持力的合力与正电荷的排斥力和负电荷的吸引力的合力不在同一平面上,故两个合力不可能平衡,故加速度不为零,故B错误;由于C与D到A、B的距离都等于L,结合等量异种点电荷的电场特点可知,C 点与D点在同一等势面上,电场力不做功,故小球的电势能不变,下落过程只有重力做功,即:mg·OD=12mv2,又几何关系可知:OD=L·sin 60°=32L,小球的动能Ek=12mv2=32mgL,故C正确,D错误.故选AC.8.(多选)如图所示,两个水平放置的平行板电容器,A板用导线与M板相连,B板和N板都接地.让A板带电后,在两个电容器间分别有P、Q两个带电油滴都处于静止状态.A、B间电容为C1,电压为U1,带电量为Q1;M、N间电容为C2,电压为U2,带电量为Q2.若将B板稍向下移,下列说法正确的是( )A.P向下动,Q向上动B.U1减小,U2增大C.Q1减小,Q2增大D.C1减小,C2增大解析:选AC.将B板下移时,由C=εrS4πkd,C1将增小;而MN板不动,故MN的电容不变;故D错误;假设Q不变,则AB板间的电压U1将增大,大于MN间的电压,故AB板将向MN 板充电;故Q 1减小,Q 2增大;故C 正确;充电完成,稳定后,MN 及AB 间的电压均增大,故对Q 分析可知,Q 受到的电场力增大,故Q 将上移;对AB 分析可知,E 1=U 1d =Q 1Cd =Q 1εr S 4πkd d =4πkQ 1εr S,故电场强度减小,故P 受到的电场力减小,故P 将向下运动;故A 正确;故选AC.9.(多选)有三根长度皆为L 的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的O 点,另一端分别挂有质量均为m 、电量分别为-q 、q 的带电小球A 和B ,A 、B 间用第三根线连接起来.所在空间存在水平向右、大小E =mg q的匀强电场,系统平衡时,A 、B 球的位置如图所示.现将O 、B 之间的轻线烧断,因空气阻力,A 、B 两球最后会达到新的平衡位置(不计两带电小球间相互作用的静电力).以下说法正确的是()A.A球的电势能增加了12 qELB.B球的电势能减少了12 qELC.A球的重力势能减少了2-32mgLD.B球的重力势能减少了2+2-32mgL解析:选ACD.设达到新的平衡位置时OA绳与竖直方向夹角为α,OB绳与竖直方向夹角为β,由平衡条件得对A:T1cos α=mg+T2cos βqE=T1sin α+T2sin β对B:T cos β=mg qE=T2sin β联立解得:α=0,β=45°,所以A球的重力势能减少了mgL(1-cos 30°)=2-32mgLB球的重力势能减少了mgL (1+cos 45°)-mgL cos 30°=2+2-32 mgL A 球的电势能增加了qEL sin 30°=12qEL B 球的电势能减小了qEL (sin 45°-sin 30°)=2-12qEL 综上所述,故A 、C 、D 正确.10.(多选)如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过轨迹最低点P 的竖直线对称.忽略空气阻力.由此可知( )A .Q 点的电势比P 点高B .油滴在Q 点的动能比它在P 点的大C .油滴在Q 点的电势能比它在P 点的大D .油滴在Q 点的加速度大小比它在P 点的小解析:选AB.根据粒子的弯折方向可知,粒子受合力一定指向上方;同时因轨迹关于P点对称,则可说明电场力应竖直向上;粒子带负电,故说明电场方向竖直向下;则可判断Q点的电势比P点高;故A正确;粒子由P到Q过程,合外力做正功,故油滴在Q点的动能比它在P点的大;故B正确;因电场力做正功,故电势能减小,Q点的电势能比它在P点的小;故C错误;因受力为恒力;故PQ两点加速度大小相同;故D错误;故选AB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回扣练9:电场及带电粒子在电场中的运动1.如图所示,图甲实线为方向未知的三条电场线,a、b两带电粒子从电场中的P点静止释放,不考虑两粒子间的相互作用,仅在电场力作用下,两粒子做直线运动,a、b粒子的速度大小随时间变化的关系如图乙中实线所示,虚线为直线.则()A.a一定带正电,b一定带负电B.a向左运动,b向右运动C.a电势能减小,b电势能增大D.a动能减小,b动能增大解析:选B.从速度—时间图象中可以看出,a粒子加速度逐渐增大,b粒子加速度逐渐减小,因为粒子仅受电场力,可知a粒子电场力逐渐增大,b粒子电场力逐渐减小,所以a向左运动,b向右运动.由于不知电场的方向,所以无法判断a、b的电性.故A错误,B正确.带电粒子在电场中运动时,电场力做正功,所以a、b的电势能均减小.故C错误.带电粒子在电场中运动时,电场力做正功,因为仅受电场力,根据动能定理,a、b的动能均增加.故D错误.故选B.2.如图所示,半径为R的均匀带电球壳带电量为Q(Q>0).已知半径为R的均匀带电球壳在球壳的外部产生的电场与一个位于球心O点的、电荷量相等的点电荷产生的电场相同.静电力常量为k,下列说法正确的是()A.球心O处的场强为kQ R2B.在球壳外距球壳为r处的电场强度为kQ r2C.球壳的表面为等势面D.若取无穷远处电势为零,则球壳表面处的电势小于零解析:选C.由对称性可知,球心O处的场强为零,选项A错误;在球壳外距球壳为r 处的电场强度为E =kQ (r +R )2,选项B 错误;球壳的表面处的电场线垂直于表面,则球壳表面为等势面,选项C 正确;因球壳带电量为正,则若取无穷远处电势为零,则球壳表面处的电势大于零,选项D 错误;故选C.3.如图,一质量为m 、电量为q 的带正电粒子在竖直向下的匀强电场中运动,M 、N 为其运动轨迹上的两点.已知该粒子在M 点的速度大小为v 0,方向与水平方向的夹角为60°,N 点为轨迹的最高点,不计重力.则M 、N 两点间的电势差为( )A.3mv 208qB .-3mv 208qC .-mv 208qD .mv 208q解析:选B.从M 点到N 点利用动能定理有:qU MN =12mv 2N -12mv 2M =12m (v 0sin 60°)2-12mv 20解得:U MN =-3mv 208q,故B 正确.4.如图所示为某电场中x 轴上电势φ随x 变化的图象,一个带电粒子仅受电场力作用在x =0处由静止释放沿x 轴正向运动,且以一定的速度通过x =x 2处,则下列说法正确的是( )A .x 1和x 2处的电场强度均为零B .x 1和x 2之间的场强方向不变C .粒子从x =0到x =x 2过程中,电势能先增大后减小D .粒子从x =0到x =x 2过程中,加速度先减小后增大解析:选D.φ -x 图象的切线斜率表示场强的大小,x 1和x 2两处的场强均不为零,因此A 项错误.在x 轴上沿电场方向电势降低,逆着电场方向电势升高,所以x 1到x 2之间电场强度的方向先沿x 轴负方向后沿x 轴正方向,选项B 错误.粒子仅在电场力作用下由静止开始运动,从x =0到x =x 2之间由于电场方向发生了改变,电场力先做正功后做负功,粒子的电势能先减小后增大,选项C错误.根据牛顿第二定律,加速度与电场力大小成正比,电场力大小与各处的电场强度大小即图象的斜率大小成正比,由图象知,粒子的加速度先减小后增大,选项D 正确.5.均匀带电的球体在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球体上均匀分布正电荷,总电荷量为q ,球半径为R ,MN 为通过半球顶点与球心O 的轴线,在轴线上有A 、B 两点,A 、B 关于O 点对称,AB =4R .已知A 点的场强大小为E ,则B 点的场强大小为( )A.kq 2R 2+E B .kq 2R 2-E C.kq 4R 2+E D .kq 4R 2-E 解析:选B.若将带电量为2q 的球面放在O 处,均匀带电的球壳在A 、B 点所产生的电场为E 0=2kq (2R )2=kq 2R 2,由题知当半球面产生的场强为E ,则B 点的场强为E ′=E 0-E .解得E ′=kq 2R 2-E ,故选B.6.(多选)如图所示,空间分布着竖直向上的匀强电场E ,现在电场区域内某点O 处放置一负点电荷Q ,并在以O 点为球心的球面上选取a 、b 、c 、d 四点,其中ac 连线为球的水平大圆直径,bd 连线与电场方向平行.不计空气阻力,则下列说法中正确的是( )A .b 、d 两点的电场强度大小相等,电势相等B .a 、c 两点的电场强度大小相等,电势相等C .若从a 点抛出一带正电小球,小球可能沿a 、c 所在圆周做匀速圆周运动D .若从a 点抛出一带负电小球,小球可能沿b 、d 所在圆周做匀速圆周运动解析:选BC.Q 在b 点与d 点场强方向相反,与匀强电场叠加后d 点场强大于b 点场强.故A 错误;a 、c 两点的电场强度大小相等,点电荷在ac 两点的电势相等,电场E 在ac 两点的电势相等,所以ac 两点的电势相等.故B 正确;若能做匀速圆周运动,要使小球所受的合力大小不变,方向变化,则应为匀强电场力与重力相平衡,合力为Q 所给的库仑力.故正电荷可沿a 、c 所在圆周做匀速圆周运动.故C 正确;若从a 点抛出一带负电小球,其所受合力不可能指向Q 点,则不能做匀速圆周运动.故D 错误;故选BC.7.(多选)如图所示,水平面内的等边三角形ABC 的边长为L ,两个等量异种点电荷+Q 和-Q 分别固定于A 、B两点.光滑绝缘直导轨CD 的上端点D 位于到A 、B 中点的正上方,且与A 、B 两点的距离均为L .在D 处质量为m 、电荷量为+q 的小球套在轨道上(忽略它对原电场的影响),并由静止释放,已知静电力常量为k ,重力加速度为g .忽略空气阻力,则下列说法正确的是( )A .D 点的场强大小为kQ L 2B .小球到达CD 中点时,其加速度为零C .小球刚到达C 点时,其动能为32mgL D .小球沿直轨道CD 下滑过程中,其电势能先增大后减小解析:选AC.根据点电荷产生的电场的性质可知,负电荷在D 处的电场强度沿DB 方向,正电荷在D 处的电场强度沿AD 方向,两个点电荷的电量是相等的,所以两个点电荷在D 点的电场强度的大小相等,则它们的合场强的方向沿AD 、DB 的角平分线;由库仑定律得,A 、B 在D 点的场强的大小:E A =E=k Q L 2,则D 点的场强:E D =E A cos 60°+E B cos 60°=k Q L2,故A 正确;当小球到达CD 中点时,小球受重力、支持力、正电荷的排斥力、负电荷的吸引力,对其受力分析可知,重力和支持力的合力与正电荷的排斥力和负电荷的吸引力的合力不在同一平面上,故两个合力不可能平衡,故加速度不为零,故B 错误;由于C 与D 到A 、B 的距离都等于L ,结合等量异种点电荷的电场特点可知,C 点与D 点在同一等势面上,电场力不做功,故小球的电势能不变,下落过程只有重力做功,即:mg ·OD =12mv 2,又几何关系可知:OD =L ·sin 60°=32L ,小球的动能E k =12mv 2=32mgL ,故C 正确,D 错误.故选AC.8.(多选)如图所示,两个水平放置的平行板电容器,A 板用导线与M 板相连,B 板和N 板都接地.让A 板带电后,在两个电容器间分别有P 、Q 两个带电油滴都处于静止状态.A 、B 间电容为C 1,电压为U 1,带电量为Q 1;M 、N 间电容为C 2,电压为U 2,带电量为Q 2.若将B 板稍向下移,下列说法正确的是( )A .P 向下动,Q 向上动B .U 1减小,U 2增大C .Q 1减小,Q 2增大D .C 1减小,C 2增大解析:选AC.将B 板下移时,由C =εr S 4πkd,C 1将增小;而MN 板不动,故MN 的电容不变;故D 错误;假设Q 不变,则AB 板间的电压U 1将增大,大于MN 间的电压,故AB 板将向MN 板充电;故Q 1减小,Q 2增大;故C 正确;充电完成,稳定后,MN 及AB 间的电压均增大,故对Q 分析可知,Q 受到的电场力增大,故Q 将上移;对AB 分析可知,E 1=U 1d =Q 1Cd =Q 1εr S 4πkd d =4πkQ 1εr S ,故电场强度减小,故P 受到的电场力减小,故P 将向下运动;故A 正确;故选AC.9.(多选)有三根长度皆为L 的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的O 点,另一端分别挂有质量均为m 、电量分别为-q 、q 的带电小球A 和B ,A 、B 间用第三根线连接起来.所在空间存在水平向右、大小E =mg q 的匀强电场,系统平衡时,A 、B 球的位置如图所示.现将O 、B 之间的轻线烧断,因空气阻力,A 、B 两球最后会达到新的平衡位置(不计两带电小球间相互作用的静电力).以下说法正确的是( )A .A 球的电势能增加了12qEL B .B 球的电势能减少了12qEL C .A 球的重力势能减少了2-32mgLD .B 球的重力势能减少了2+2-32mgL 解析:选ACD.设达到新的平衡位置时OA 绳与竖直方向夹角为α,OB 绳与竖直方向夹角为β,由平衡条件得对A :T 1cos α=mg +T 2cos β qE =T 1sin α+T 2sin β对B :T cos β=mg qE =T 2sin β联立解得:α=0,β=45°,所以A 球的重力势能减少了mgL (1-cos 30°)=2-32mgL B 球的重力势能减少了mgL (1+cos 45°)-mgL cos 30°=2+2-32 mgL A 球的电势能增加了qEL sin 30°=12qEL B 球的电势能减小了qEL (sin 45°-sin 30°)=2-12qEL 综上所述,故A 、C 、D 正确.10.(多选)如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直平面(纸面)内,且相对于过轨迹最低点P 的竖直线对称.忽略空气阻力.由此可知( )A .Q 点的电势比P 点高B .油滴在Q 点的动能比它在P 点的大C .油滴在Q 点的电势能比它在P 点的大D .油滴在Q 点的加速度大小比它在P 点的小解析:选AB.根据粒子的弯折方向可知,粒子受合力一定指向上方;同时因轨迹关于P 点对称,则可说明电场力应竖直向上;粒子带负电,故说明电场方向竖直向下;则可判断Q 点的电势比P 点高;故A 正确;粒子由P 到Q 过程,合外力做正功,故油滴在Q 点的动能比它在P 点的大;故B 正确;因电场力做正功,故电势能减小,Q点的电势能比它在P点的小;故C错误;因受力为恒力;故PQ两点加速度大小相同;故D错误;故选AB.。

相关文档
最新文档