八年级上册数学-第二章-知识点复习总结
八年级上第二章数学知识点

八年级上第二章数学知识点概述八年级上册第二章是数学知识点较多的一个章节,主要讲解了分式的乘除、分式的加减、分式的化简、分式方程、正比例函数、反比例函数等重要知识点。
这些知识对于学生掌握数学基础知识,尤其是在日常生活中运用数学的过程中非常重要。
一、分式的乘除分式是数学知识的一个重要部分,它在数学中有着广泛的应用。
在乘除分式的运算中,我们需要把分母相乘或相除,然后把分子相乘或相除,最后对结果进行合理化简。
这样可以得到我们所需要的简单分式。
在运算过程中,我们需要注意分母是否为零,以及如何简化分式使得答案更加准确。
二、分式的加减分式的加减是我们在日常生活中应用最多的运算,例如在购物、比价以及账户余额计算等方面都需要运用到分式的加减运算。
在分式的加减中,我们需要首先找到所有的公因数,然后对分子进行化简,最后得到运算结果。
在具体计算的时候,还需要注意分母是否为零的情况。
三、分式的化简分式的化简在求解数学问题时也是非常重要的一个环节。
在化简过程中,我们需要把分子、分母的公因式约掉,从而使得分数的形式简单化。
同时,在化简运算时,还需要注意约分的原则和方法。
四、分式方程分式方程在数学中也是一个非常基础的知识点。
在分式方程中,我们需要把一个分式的值与一个已知的数或其他分数相等,然后通过分式的加减、乘除运算把变量求出来。
在计算分式方程的过程中,我们需要注意多种情况的处理,例如分母为零的情况、公因式处理等。
五、正比例函数和反比例函数正比例函数和反比例函数是八年级上册第二章中的重点内容之一。
这两种函数可以解决很多实际问题,例如距离、体积、面积等计算。
正比例函数的特点是变量之间成正比例关系,而反比例函数的特点是变量之间成反比例关系。
在解决问题的过程中,我们需要首先确定函数的性质,然后运用相应的解题方法,最后得出问题的答案。
综上所述,八年级上册第二章数学知识点是一个十分重要的知识点。
学生应该仔细阅读、认真理解,并在课堂上积极参与讨论,加强对这些知识点的掌握。
八年级上册数学第二章

C.3个
D.4个
2. (2020赤峰)估计 A. 4和5之间
的值应该在( A ) B. 5和6之间
C. 6和7之间
D.7和8之间
3. 3的相反数是( A )
A.-3
B.3
C.
D.±3
4. (2020北京)实数a在数轴上的对应点的位置如图Z2-1,若实
数b满足-a<b<a,则b的值可以是( B )
A. 2
知识导航
无理数 概念:无限不循环小数
算术平方根
实
定义:一般地,如果一个正数x的平方等于a,即
数 平方根 x2=a,那么这个正数x就叫做a的算术平方根.
规定:0的算术平方根是0.
表示方法:正数a的算术平方根表示为 读作
“根号a”
续表
平方根 定义:一般地,如果一个数x的平方等于a,即x2 = a,那么这个 数叫做a 的平方根(二次方根). 平 性质: 实 方 ①一个正数有两个平方根,它们互为相反数; 数 根 ②0只有一个平方根,它是0本身; ③负数没有平方根
第二章 实数
单元复习课 本章知识梳理
目录
01 课标要求 02 知识导航
课标要求
1. 了解平方根、算术平方根、立方根的概念,会用根号表示数的 平方根、算术平方根、立方根. 2. 了解乘方与开方互为逆运算,会用平方运算求某些非负数的平 方根,会用立方运算求某些数的立方根,会用计算器求平方根和 立方根. 3. 了解无理数和实数的概念,知道实数与数轴上的点一一对应. 能求实数的相反数与绝对值.
B. -1
C. -2
D.-3
5. 如图Z2-2所示为洪涛同学的小测验卷,他的得分应是
___1_0_0____分.
姓名___洪涛___
八年级上册人教版数学第二章知识点归纳总结

八年级上册人教版数学第二章知识点归纳总结数学课本中介绍了大量的数学专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。
学生一定要在各个应用题专题学习的初期打下良好的基础。
下面是为大家整理的有关八年级上册数学第二章知识点,希望对你们有帮助!八年级上册数学第二章知识点1一、实数的概念及分类1、实数的分类一是分类是:正数、负数、0;另一种分类是:有理数、无理数将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0.3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1.零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
八年级上册数学第二章知识点2一、定义1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
八年级数学第二章知识点总结

八年级数学第二章知识点总结
数学第二章的知识点主要包括以下内容:
1. 整数的概念和性质:正整数、负整数、零、相反数、绝对值等。
2. 整数的加法和减法:同号相加取正,异号相加取差的符号;加法的逆运算是减法。
3. 整数的乘法和除法:同号相乘为正,异号相乘为负;除法的结果可以是整数、小数
或无理数。
4. 分数的概念和性质:分子、分母、真分数、假分数、带分数、化简、比较大小等。
5. 分数的加法和减法:分母相同的分数相加减时,分子相加减,分母保持不变;分母
不同的分数相加减时,需要先找到一个公共分母,再进行运算。
6. 分数的乘法和除法:分数相乘时,分子乘分子,分母乘分母;分数相除时,将除法
转化为乘法,然后取倒数。
7. 百分数的概念和运算:百分数是以100为分母的分数,可以表示为百分数、小数或整数。
8. 百分数的转化:百分数转换为小数时,除以100;小数转换为百分数时,乘以100。
9. 百分数的应用:百分数可以用来表示比例、增减比例、利率、折扣、降价率等。
10. 比例的概念和性质:比例是两个或多个相等的比的关系,可以用分数、百分数或比的形式表示。
11. 比例的四则运算:已知两个比例,可以进行加法、减法、乘法和除法运算。
12. 比例的应用:比例可以用来解决实际问题,如求速度、面积、容积等。
以上是数学第二章的主要知识点总结,希望能对你有所帮助。
如有其他问题,请随时提问。
浙教版八年级上册数学第二章特殊三角形全部知识点、考点及练习

浙教版八年级上册数学第二章特殊三角形全部知识点、考点及练习浙教版数学八年级上册第二章《特殊三角形》复习一、知识结构本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示:等腰Rt两直角三角形全等的判定直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形等腰三角形特殊三角形二、重点回顾1.等腰三角形的性质:等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说一条线段充当三种身份;等腰三角形是________图形,它的对称轴有_________条。
2.等腰三角形的判定:有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。
注意:有两腰相等的三角形是等腰三角形,这句话对吗?3.等边三角形的性质:等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。
4.等边三角形的判定:有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。
5.直角三角形的性质:直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。
30°角所对的直角边等于斜边的________6.直角三角形的判定:有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。
八年级上册数学第二章知识点总结

八年级上册数学第二章知识点总结一、实数的概念与分类。
1. 有理数与无理数。
- 有理数:整数和分数统称为有理数。
整数包括正整数、零、负整数;分数包括有限小数和无限循环小数。
例如,2,-3,(1)/(2),0.25(有限小数,可化为(1)/(4)),0.3̇(无限循环小数,可化为(1)/(3))都是有理数。
- 无理数:无限不循环小数叫做无理数。
常见的无理数有三类:一是开方开不尽的数,如√(2),sqrt[3]{3}等;二是含有π的数,如π,2π等;三是有规律但不循环的无限小数,如0.1010010001·s(每两个1之间依次多一个0)。
2. 实数的分类。
- 按定义分类:实数可分为有理数和无理数。
有理数又可分为整数(正整数、零、负整数)和分数(正分数、负分数);无理数就是无限不循环小数。
- 按正负性分类:实数可分为正实数(正有理数、正无理数)、零、负实数(负有理数、负无理数)。
二、平方根、算术平方根与立方根。
1. 平方根。
- 定义:如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根(或二次方根)。
例如,因为(±2)^2=4,所以±2是4的平方根。
- 表示方法:正数a的平方根记为±√(a),读作“正负根号a”。
- 性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2. 算术平方根。
- 定义:正数a的正的平方根叫做a的算术平方根,记为√(a),0的算术平方根是0。
例如,4的算术平方根是√(4) = 2。
- 性质:算术平方根√(a)具有双重非负性,即a≥slant0且√(a)≥slant0。
3. 立方根。
- 定义:如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根(或三次方根)。
例如,因为2^3=8,所以2是8的立方根。
- 表示方法:a的立方根记为sqrt[3]{a}。
- 性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
八年级数学第二章知识点总结(优选6篇)
八年级数学第二章知识点总结第1篇1.无理数⑴无理数:无限不循环小数⑵两个无理数的和还是无理数2.平方根⑴算术平方根、平方根一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。
⑵开平方:求一个数的平方根的运算叫开平方被开方数3.立方根⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a的立方根.⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.⑶开立方、被开方数4.公园有多宽求根式、估算根式、根据面积求边长5.实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。
6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。
我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。
7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。
对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。
8.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。
对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。
9.实数比较大小也是中考热点,主要方法可用数轴比较法、估算法和作差法。
至于倒数法和平方法不是很常见,所以只需简单了解即可。
10.计算是数学的基础,也是我们解决问题的必要手段。
提高实数的运算能力,先要审题,理解有关概念。
要注意零指数、负整指数、乘法、特殊角三角函数值、二次根式化简和绝对值等知识点。
在计算时需要先确定符号,再确定结果,把好符号关。
秋湘教版八年级数学上册课件:第2章 小结与复习 (共23张PPT)
A.5
B.10
C.11
D.12
2.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段
组成一个三角形,则最多能组成三角形的个数为 ( C)
A.1
B.2
C.3
D.4
例2 等腰三角形的周长为16,其一边长为6,则另两边 长为 5,5或6,4 .
【解析】由于题中没有指明边长为6的边是底还是腰, ∴分两种情况讨论.当6为底边长时,腰长为(166)÷2=5,这时另两边长分别为5,5;当6为腰长时,底 边长为16-6-6=4,这时另两边长分别为6,4.故填5,5或6,4.
是 20°,∠FBC的度数是 40°. B
7.如图,在△ABC中,两条角平分线
A
BD和CE相交于点O,若∠BOC=132°,
那么∠A的度数是 84°.
EO
F C
D
B
C
考点三 命 题
例4 写出下列命题的逆命题,并判断其逆命题的真假: (1)全等三角形的对应角相等; (2)线段的垂直平分线上的点到线段两端的距离相等.
(2)设∠A=2x,∠B=3x,∠C=4x , 则2x + 3x + 4x = 180° ,解得 x=20° ∴∠A=40°,∠B=60°,∠C=80°.
针对训练
5.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-
∠B,则∠B= 90°.
A
6.如图,在△ABC中,CE,BF是两条高, 若∠A=70°,∠BCE=30°,则∠EBF的度数 E
方法总结
当已知等腰三角形的周长和一边时,要分两种 情况讨论:已知边是底边和已知边是腰.还要注意三 边是否构成三角形.
针对训练
3.已知等腰三角形的一边长为4,另一边长为8,则这个等
八年级上册数学第二章知识点
八年级上册数学第二章知识点八年级的数学课程中,第二章是关于代数式和方程的学习。
本章主要包括三个方面的知识点:代数式的概念及其基本运算、一元一次方程以及解一元一次方程的基本方法。
下面将对这三个方面进行详细的介绍与讲解。
一、代数式的概念及其基本运算代数式常常用字母表示数,而它的数值大小则与字母所代表的数有关系。
代数式的加减法是很简单的,同类项相加或相减即可。
同类项是指字母与它们的指数都相同的项。
比如,3x和5x就是同类项,因为它们的字母是一样的,指数也相同。
而3x和5y就不是同类项,因为它们的字母和指数都不相同。
乘法运算时,可以直接将代数式中各项的系数相乘,并且将各个字母的指数相加即可。
例如,(2x^2)(3x^3) = 6x^5。
同样地,除法运算也可以通过将代数式中各项的系数相除,并且将各个字母的指数相减来进行。
二、一元一次方程及解法一元一次方程是指只有一种字母,且这种字母的最高指数为1的方程。
一元一次方程的一般形式为ax+b=0,其中a和b都是已知数,x为未知数。
解一元一次方程的基本方法是移项、合并同类项、化简并求解。
具体来讲,就是通过将方程两边同时加上或减去一个数,使得方程中一边只有x,另一边则成为已知数的形式,从而解出未知数x的值。
三、解一元一次方程的基本方法解一元一次方程的方法有以下几种:1. 移项法。
这种方法是指将方程中含有未知量的项移到等式的另一侧,从而消去方程中的一部分数,并让含未知量的项单独出现在等式的一侧。
一般来说,可以通过加上或减去某个数来移项。
例如,对于方程2x+3=7,我们可以先将3移项,即2x=7-3,然后再将2x除以2,即得到x=2。
2. 相消法。
相消法是通过将方程中等式两边的相同项相减来消去其中一个项的方法。
通常情况下,相消法只适用于同时具有正负号的项,因为只有这种情况下它们才能相互抵消。
例如,对于方程2x-3=2x+5,我们可以将等式两边的2x相减,从而消去2x,即得到-3=5,但是这个方程明显无解。
八年级上册数学第一二章知识点
八年级上册数学第一二章知识点
第一章:有理数
1. 整数的表达形式及其运算法则
- 整数是由正整数、负整数和0组成的数集,用Z表示。
- 整数的加法:同号相加,异号相减。
- 整数的减法:加上相反数。
- 整数的乘法:不同号取负,相同号取正。
- 整数的除法:只要除数与被除数不同时,商的符号为负;若同号,商的符号为正;若余数有,则商的符号与被除数相同。
2. 分数的定义及其运算法则
- 分数是一个整数除以整数,它由一个有限个代表数的符号、一个整数(分子)和一个正的整数(分母)组成,常用a/b表示,或用带分数形式表示。
- 分数的四则运算法则:加法:通分后分子相加;减法:通分后分子相减;乘法:分子相乘,分母相乘;除法:乘以倒数,分子相乘,分母相乘。
第二章:方程与不等式
1. 一元一次方程及其解法
- 一元一次方程是指只含有一个未知数的一次方程,它的一般形式为ax + b = 0。
- 解一元一次方程的方法:可用加减法易方程、可以用除法等价方程、可以利用等式的性质转化方程、可以用分式转化方程、可以利用小学学过平衡法。
2. 一元一次不等式及其解法
- 一元一次不等式是指只含有一个未知数的一次不等式,它的一般形式为ax + b > 0或ax + b < 0。
- 解一元一次不等式的方法:可以通过对不等式的两边同时加减、乘或除同一个不为零的数来保持等号方向性质不变。
以上为八年级上册数学第一二章的知识点概述,详细内容请查阅教材。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章:实数本章的知识网络结构:知识梳理: 知识点一:平方根如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即,当)0(2≥=a a x 时,我们称x 是a 的平方根,记做:)0(≥±=a a x 。
因此:当a=0时,它的平方根只有一个,也就是0本身;当a >0时,也就是a 为正数时,它有两个平方根,且它们是互为相反数,通常记做:a x ±=。
当a <0时,也即a 为负数时,它不存在平方根。
例1.(1) 的平方是64,所以64的平方根是 ; (2) 的平方根是它本身。
(3)若x 的平方根是±2,则x= ;16的平方根是 (4)当x 时,x 23-有意义。
(5)一个正数的平方根分别是m 和m-4,则m 的值是多少?这个正数是多少?知识点二:算术平方根(1)如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
特别规定:0的算术平方根仍然为0。
(2)算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
(3) 算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
例2.(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=; C.81的平方根是3±; D.0没有平方根; (2)下列各式正确的是 ( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。
(4)若x x -+有意义,则=+1x ___________。
(5)已知△ABC 的三边分别是,,,c b a 且b a ,满足0)4(32=-+-b a ,求c 的取值范围。
(6)已知:A=y x y x -++3是3++y x 的算术平方根,B=322+-+y x y x 是y x 2+的立方根。
求A -B 的平方根。
(7)(提高题)如果x 、y 分别是4- 3 的整数部分和小数部分。
求x - y 的值.知识点三:立方根(1)如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。
记做:3a ,读作,3次根号a 。
注意:这里的3表示的是开根的次数。
一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略。
(2)平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。
例3.(1)64的立方根是 (2)若9.28,89.233==ab a ,则b 等于( )A. 1000000B. 1000C. 10D. 10000(3)下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。
其中正确的有 ( )A 、1个B 、2个C 、3个D 、4个知识点四:无理数(1)无限不循环小数的小数叫做无理数;它必须满足“无限”以及“不循环”这两个条件。
在初中阶段,无理数的表现形式主要包含下列几种:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)开方开不尽的数,如:39,5,2等;(3)特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π(2) 有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例4.(1)下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_____;是无理数的有_______。
(填序号)(2)有五个数:0.125125…,0.1010010001…,-π,4,32其中无理数有 ( )个 A 、2 B 、3 C 、4 D 、5知识点五:实数(1)有理数与无理数统称为实数。
在实数中,没有最大的实数,也没有最小的实数;绝对值最小的实数是0,最大的负整数是-1。
(2)实数的性质:实数a 的相反数是-a ;实数a 的倒数是a1(a ≠0);实数a 的绝对值|a|=⎩⎨⎧<-≥)0()0(a a a a ,它的几何意义是:在数轴上的点到原点的距离。
(3)实数的大小比较法则:实数的大小比较的法则跟有理数的大小比较法则相同:即正数大于0,0大于负数;正数大于负数;两个正数,绝对值大的就大,两个负数,绝对值大的反而小。
(在数轴上,右边的数总是大于左边的数)。
对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。
(4)实数的运算:在实数范围内,可以进行加、减、乘、除、乘方、开方六种运算。
运算法则和运算顺序与有理数的一致。
例5.(1)下列说法正确的是( );A 、任何有理数均可用分数形式表示 ;B 、数轴上的点与有理数一一对应 ;C 、1和2之间的无理数只有2 ;D 、不带根号的数都是有理数。
(2)a ,b 在数轴上的位置如图所示,则下列各式有意义的是( )A 、b a -B 、abC 、b a +D 、a b - (3)比较大小(填“>”或“<”).3 10, 3- 320, 76______67, 215- 21, (4)数 7,2,3--- 的大小关系是 ( ) A. 732-<-<-B. 372-<-<-C. 273-<-<-D. 327-<-<-(5)将下列各数:51,3,8,23---,用“<”连接起来;__________________________________。
(6)若2,3==b a ,且0<ab ,则:b a -= 。
(7)计算:32278115.041--+ 323811613125.0⎪⎭⎫⎝⎛-+-(8)已知:()()064.01,121732-=+=-y x ,求代数式3245102y y x x ++--的值。
6.(提高题)观察下列等式:回答问题: ①2111111112111122=+-+=++②6111212113121122=+-+=++ a 0 b③12111313114131122=+-+=++,…… (1)根据上面三个等式的信息,请猜想2251411++的结果; (2)请按照上式反应的规律,试写出用n 表示的等式,并加以验证。
考题类型:类型一.有关概念的识别1.下面几个数:0.23 ,1.010010001…,,3π,,,其中,无理数的个数有( )A 、1B 、2C 、3D 、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数,故选C举一反三:【变式1】下列说法中正确的是( ) A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念, ∵=9,9的平方根是±3,∴A 正确.∵1的立方根是1,=1,是5的平方根,∴B 、C 、D 都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A 、1B 、1.4C 、D 、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A 表示数为,故选C .【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________.3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C 表示的数是().A.-1 B.1- C.2- D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4| (2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
解:(1) ∵=1.414…<1.4∴|-1.4|=1.4-(2) ∵π=3.14159…<3.142∴|π-3.142|=3.142-π(3) ∵<, ∴|-|=-(4) ∵x≤3, ∴x-3≤0,∴|x-|x-3||=|x-(3-x)|=|2x-3| =说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|∵(x+3)2≥0, ∴(x+3)2+1>0∴|x2+6x+10|= x2+6x+10举一反三:【变式1】化简:【答案】=+-=类型五.实数非负性的应用5.已知:=0,求实数a, b的值。
分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。
解:由题意得由(2)得 a2=49 ∴a=±7由(3)得 a>-7,∴a=-7不合题意舍去。
∴只取a=7把a=7代入(1)得b=3a=21 ∴a=7, b=21为所求。
举一反三:【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。