实验误差与不确定度的评估方法
误差和不确定度的区别和联系

误差与不确定度的概念比较实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。
1误差和不确定度的定义1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。
即真值就是被测量量所具有的、客观的真实数值。
然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。
由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。
测量结果与真值的差为测量值的误差,即测量值(x)-真值(a)=误差(ε)在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。
对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12--=∑=n x x s n i i------------------------------(1)式中n 为测量值的个数。
对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2)二者的统计意义是,标准偏差小的测量值,其可靠性较高。
对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。
例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。
1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。
设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。
单摆实验的不确定度评价

单摆实验的不确定度评价单摆实验是物理实验中常见的一种实验,它可以用来测量重力加速度和测量物体的振动周期等。
在进行实验时,由于各种因素的影响,实验结果必然存在一定的误差。
因此,进行单摆实验的同时,必须对实验结果的不确定度进行评价。
不确定度是指测量结果与真值之间的差异。
实验时,误差会产生许多不确定性因素,例如实验仪器的精确度、人为误差、环境影响等等。
因此,对实验结果进行不确定度评价,是确保数据准确性的必要步骤。
在单摆实验中,我们可以通过测量单摆摆动的周期 $T$ 来计算出重力加速度 $g$,测量误差主要包括以下几个方面。
1. 单摆长度 $L$ 的误差单摆长度 $L$ 越长,重力加速度 $g$ 越小;反之,单摆长度 $L$ 越小,重力加速度 $g$ 越大。
单摆长度的误差会直接影响到计算出的重力加速度 $g$ 的准确性。
单摆长度 $L$ 的误差通过量杯或尺子测量,最终结果取多次测量的平均值为最终结果。
单摆的角度 $\theta$ 越小,摆动周期越小。
由于单摆角度的测量很难达到极致,对单摆摆动周期的计算会产生一定的误差。
单摆摆动的角度误差可以通过测量单摆摆动的角度来评估,但这种方法难以消除误差,因此需要多次实验取平均值来降低误差。
3. 实验环境的影响实验环境的影响也会导致单摆实验结果的误差。
例如,实验室温度的变化、风的影响等都会对单摆实验的结果产生影响。
所以,在单摆实验过程中要留意环境影响。
如果实验室温度发生变化,则应等待实验室温度恢复到稳定状态后再实验。
在实验过程中,必须尽可能减小误差,消除影响,以确保实验结果的可靠性。
在不同实验中,进行对不确定度评价的方法可能不同,但其目的都是在尽可能减少不确定度的同时,得到最准确的实验结果。
物理实验技术中的不确定度计算方法

物理实验技术中的不确定度计算方法在物理实验中,测量是不可避免的重要环节。
然而,由于各种误差和不确定度的存在,我们很难获得完全准确的测量结果。
因此,准确计算实验结果的不确定度是至关重要的。
本文将讨论物理实验技术中常见的不确定度计算方法。
一、随机误差和系统误差在进行物理实验时,会存在两种类型的误差:随机误差和系统误差。
随机误差是由于实验中的各种因素(如仪器的不完善性、环境的变化等)导致每次测量结果的不同而产生的。
为了准确表示随机误差的大小,我们一般使用标准差或标准偏差进行衡量。
系统误差是由于实验所使用的设备或者测量方法本身存在的缺陷或者偏差所引起的。
系统误差可能会导致测量结果的整体偏离实际值。
为避免系统误差对测量结果的影响,我们需要对实验设备和测量方法进行校准和调整。
二、误差传递法在实验中,我们经常需要通过多次测量和计算得到一个或多个实验结果。
为了正确计算这些结果的不确定度,我们需要使用误差传递法。
误差传递法是一种用于计算间接测量结果不确定度的方法。
它基于误差传播原理,通过将各种测量结果的不确定度按照一定规则进行组合,得到间接测量结果的不确定度。
常见的误差传递法有线性近似法、最大值法和最差情况法。
线性近似法适用于误差的传递存在线性关系的情况。
通过对每个测量结果的不确定度进行求和,然后乘以线性关系的系数,可以得到间接测量结果的不确定度。
最大值法适用于误差的传递存在最大值或最小值的情况。
在最大值法中,我们需要找到引起测量结果最大误差的测量结果,并将其不确定度作为间接测量结果的不确定度。
最差情况法适用于误差的传递存在非线性关系的情况。
在最差情况法中,我们假设每个测量结果的不确定度为其最差情况下的不确定度,然后通过计算得到间接测量结果的不确定度。
三、样本误差和系统误差的区分在实验中,我们需要对实验数据进行统计处理。
对于同一测量量的多次测量结果,我们可以计算得到样本均值和标准偏差。
样本均值用于表示多次测量结果的平均值,而标准偏差则表示多次测量结果的离散程度。
测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。
标准不确定度包含随机误差和系统误差等。
例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。
其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。
该方法适用于一些简单的测量,如长度、质量等物理量的测量。
例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。
则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。
该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。
例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。
若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。
总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。
大学物理实验测量不确定度与数据处理方法

合成标准不确定度 :测量结果由其他
量间接得出时,按其它量的的方差或胁
方差算出的标准不确定度。测量结果y
的合成标准不确定度记为uc ( y),也可简 写为 uc 或 u( y)。
相对合成标准不确定度 ur :合成标准
不确定度的相对值。
ur
u(y) y
二、直接测量量不确定度的(简化)评定
对物理量X做n次等精度测量
x x uc (x)(单位) (p=)
单次测量的不确定度用B类标准不
确定度( uB )来评定。
二、间接测量量标准不确定度的 (简化)评定
—— 不确定度的传递与合成
设间接测量y是由各互不相关的直接测
量量 x1, x2, x3,, xm 通过函数关系求得。
y f (x1, x2, x3,, xm)
L=4.253±0.851m
L=4.2±0.8m
m 56000 200(g)
m (5.60 0.02) 104 (g)
数据处理基本方法
列表法 作图法 最小二乘法
列表法
表名
半导体热敏电阻的电阻与温度的关系
温度 t (C )
20.0 25.0 30.0 35.0 40.0 45.0
电阻R ()
xLeabharlann n• 过失误差由于观测者未正确地使用仪器、观察
错误或记录错数据等不正常情况下
引起的误差。应将其剔除。
实 • 明确测量对象 验 要 • 选择合理的测量方法 求
• 正确地完成测量操作
• 正确处理测量数据
• 给出完整的测量结果
三、测量结果的完整表述
例: 固体密度测量结果
= 2.7271±0.0003( g/cm) (p=0.683)
误差、不确定度、标准差

误差、不确定度、标准差
误差:
误差=测得值-真值;
不确定度:
标准差(也叫均⽅差):
因为检测⽅法总会带来误差,检测并不能测到真实值,但是真实值是多少,不得⽽知。
我们可以考察检测值与真实值之间的差距,可以想象,⼀个好的检测⽅法,其检测值应该很紧密的分散在真实值周围。
如果不紧密,与真实值的距离就会⼤,准确性当然也就不好了。
定义:
公式:
标准差计算公式为
例如,两组数的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是 7 ,但第⼆个集合具有较⼩的标准差。
标准差可以当作不确定性的⼀种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。
当要决定测量值是否符合预测值,测量值的标准差占有决定性重要⾓⾊:如果测量平均值与预测值相差太远(同时与标准差数值做⽐较),则认为测量值与预测值互相⽭盾。
这很容易理解,因为如果测量值都落在⼀定数值范围之外,可以合理推论预测值是否正确。
不确定度评定知识介绍
不确定度知识一、前言一次测量得到n 组数据:x 1 , x 2 ……x n用几个方法或几个实验室同时对一个样品进行测试得到m 组数据: 如:⎪⎪⎩⎪⎪⎨⎧⋯⋯⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋯⋯⋯⋯x x x nn n m21mm2m12222111211, m , 2 , 1x x xx x xμ真值是多少? 分散性如何? 用总体标准差σ表示总体方差 ()nnix i ∑-=μσ22总体标准差 ()nnix i ∑-=μσ2报告结果报两个数就行 1. μ真值(表示数据的集中)2. σ(表示数据的分散性)μ和σ都不能得到,用估计来代替若是正态分布:用x 估计μ x 是μ的最佳估计 x 为算术平均值nx niix∑=若干组数据的平均值∑∑===mi imi inxn i x 11若是正态分布:用s 2估计σ2 s 2是σ2的最佳估计()122-=∑-n i n ixx ss 2为标准偏差的平方; x i -μ 称为误差; x i -x 称为残差;ν=n-1 称为自由度(一组测试结果)。
()112-=∑-=n i s ni xx 贝塞尔公式二、 误差、准确度和不确定度 1.误差:测量结果减去真值μσ-=x ii一般情况下μ是未知由于μ是未知,σi 是个定性的概念,只能说误差大或误差小,一般不能定量。
2.准确度测量结果与真值的吻合性,由于μ是未知,所以准确度也是一个定性的概念。
3.不确定度1993年由ISO 等7个国际组织提出不确定度的概念(1) 不确定度定义:与测量结果相关联的参数,表征合理地赋予被测量之值的分散性。
测量不确定度一般简称为不确定度,是各种不确定度(标准不确定度、合成不确定度、扩展不确定度、相对不确定度、A 类不确定度、B 类不确定度)的一个总称或通称。
不确定度是指测量结果的可疑程度,它是测量结果可疑程度的一种定量表述,定量说明实验室的测量能力水平。
只有在得到不确定度的值后,才能明确被测量值的真值不大于多少和(或)不小于多少,也即被测量真值所处范围及这个范围的大小。
不确定度测量评定方法
二、 测量误差和不确定度 (5)
(二) 测量不确定度(2)
VIM-2和GUN定义测量不确定度为:
表征合理地赋予被测量之值的分散性,与测量结 果相联系的参数。
【注 1】此参数可以是诸如标准偏差或其倍数,或说 明了置信的水平的区间的半宽度. 【注 2】测量不确定度由多个分量组成。其中的一些 分量可用测量列结果的统计分布估算,并用实验标准 偏差表征。另一些分量可用基于经验或其他信息的假 定概率分布估算,也可用标准偏差表征。
1
第一章
概 述
一、 测量误差和测量不确定度
二、 测量不确定度发展简介
三、 (VIM-3)中不确定度有关术语 四、检测结果符合性评价
一、 测量误差和不确定度 (1)
(一) 测量误差(1)
在测量不确定度概念提出之前,测量结果 的质量是用测量误差来评价, VIM-2 定义误差 为“测量结果减去被测量的真值 ”。真值定义为 “与给定的特定量的约定定义一致的值 ”。量的 真值只有通过完善的测量才有可能获得,因 此,真值按其本性是不确定的。所以,误差是 一个理想的概念,一般不能准确知道。
二、 测量不确定度发展简介(13)
(三) 我国的不确定度规范(3)
1999 年 以 来 , 中 国 合 格 评 定 国 家 认 可 委 员 会 (CNAS) 发布了一系列测量不确定度评定规范文件或指 南文件,包括 CNAS-CL07《测量不确定度评估和报告 通用要求》、 CNAS-GL05《测量不确定度要求的实施 指南》、CNAS-GL06《化学领域不确定度指南》(等同 采用EURACHEN/CITAC Guide)、CNAS-GL07《电磁 干扰测量中不确定度的评定指南》(等同采用CISPR 164)、CNA S-GL08《校准领域不确定度的评估指南》(等 同采用EA-4/02)等。这些指南或规范文件构成了我国实 验室认可中测量不确定度评定的框架。
测量误差及不确定度
测量不确定度的主要来源 (1)
(1)被测量定义的不完善。 (2)实现被测量定义方法的不理想。 (3)测量样本不能完全代表定义的被测量。 (4)对测量过程受环境影响的认识不充分,或测量环境 条件不完善。 (5)对模拟的主要来源 (2)
(6)测量仪器的分辨力不够。 (7)计量标准和标准物质的赋值不准确。 (8)引用数据或其它参数的不确定度。 8 (9)测量方法和测量过程引入的近似值及假设。 (10)在相同条件下,重复观测的随机变化。 (11)系统误差修正不完善。
u ( y) = 4 ui ( y) ∑ v i
4 c
自由度的意义
自由度反映了标准不确定度的可靠程度,即不确 定度的不确定度。自由度越大,不确定度的可靠 程度越高。 注意:(1)不要认为把不确定度的可能值估计大 了就可以提高可靠性从而提高自由度。 (2)不确定度估大或估小都会降低自由度, 只有估准才能提高自由度。
B类评定的信息来源
(1)以前的观测数据。 (2)对有关技术资料和测量仪器特性的了解和检验。 (3)生产部门提供的技术说明文件。 (4)校准证书、检定证书或其他文件提供的数据,准确 度的等级,极限误差。 (5)某些资料给出的参考数据及其不确定度。 (6)实验方法标准给出的重复性限r或复现性限R。
B类评定方法(1)
pi u ( xi ) 相对合成方差为uc(y)/y= ∑ x 1 i
n 2
xipi ∏
输入量相关时的合成
当被测量与实测分量相关,且相关系数r(xi,xj)=1时
∂f 合成标准不确定度为 uc(y)= ∑ ( )u( xi ) 1 ∂xi
n
即代数和
输入量部分相关的合成,可以向相关或不相关 不相关两极 不相关 简化,从而进行合成计算。
不确定度评定规则
不确定度评定规则不确定度评定规则是指在测量、实验和数据分析过程中,对不确定性的估计和表达的规则和方法。
不确定度是指测量结果或实验数据与被测量量或实际值之间的差异或偏差,它反映了测量或实验的精确度和可靠性。
准确评定不确定度对于确保测量和实验结果的可靠性、可比性和可重复性至关重要。
一、不确定度的定义不确定度是指对测量结果或实验数据与被测量量或实际值之间差异或偏差的估计。
它反映了测量或实验的精确度和可靠性。
不确定度通常用标准偏差、标准误差、置信区间等统计量来表示。
二、不确定度的估计1. 随机误差估计:随机误差是指在多次测量或实验中,由于各种随机因素引起的结果的变动。
通过重复测量或实验,可以计算出随机误差的统计量,如标准偏差、标准误差等。
这些统计量可以作为随机误差的估计。
2. 系统误差估计:系统误差是指由于仪器、设备、环境等因素引起的测量或实验结果的偏差。
系统误差通常需要通过校正、调整或修正来进行估计和消除。
校正后的结果可以作为系统误差的估计。
3. 合成误差估计:合成误差是指由于随机误差和系统误差的综合影响引起的测量或实验结果的不确定度。
合成误差的估计可以通过将随机误差和系统误差的估计进行合成计算得到。
三、不确定度的表示1. 标准偏差表示:标准偏差是对测量结果的离散程度的度量,它反映了随机误差的大小。
标准偏差通常以±的形式表示,如测量结果为10 ±0.5。
2. 标准误差表示:标准误差是对测量结果的平均误差的度量,它反映了测量结果的精确度。
标准误差通常以±的形式表示,如测量结果为10 ±0.2。
3. 置信区间表示:置信区间是对测量结果的不确定度的度量,它反映了测量结果的可靠性。
置信区间通常以上下限的形式表示,如测量结果为10,置信区间为(9.8, 10.2)。
四、不确定度评定规则1. 重复性评定:通过重复测量或实验,计算出随机误差的统计量,如标准偏差或标准误差,作为重复性的评定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验误差与不确定度的评估方法实验误差与不确定度是科学实验中常常需要进行评估和控制的重要
指标。
实验误差是指测量结果与真实值之间的差异,而不确定度则是
对测量结果的不确定性的度量。
准确评估实验误差和不确定度可以提
高实验结果的可靠性和可信度。
本文将介绍几种常用的实验误差与不
确定度的评估方法。
一、重复测量法
重复测量法是最常见和直观的评估实验误差和不确定度的方法之一。
该方法要求对同一样本或物体进行多次测量,然后计算这些测量结果
的平均值和标准偏差。
平均值反映了测量结果的趋势,而标准偏差则
表示了各次测量结果之间的离散程度,即实验误差。
通过计算标准偏
差的方法,可以得到不确定度的估计。
二、直接测量法
直接测量法是通过直接测量物理量来评估实验误差和不确定度的方法。
对于一些简单的物理量,可以使用直尺、量杯等工具进行直接测量。
然而,由于仪器的精度和测量条件的不完善,直接测量往往会引
入一定的误差。
因此,在直接测量时应考虑仪器的精确度,以及环境
条件的稳定性。
三、回归分析法
回归分析法是一种统计分析方法,广泛应用于实验数据的处理和实
验误差的评估。
通过建立一个数学模型,将自变量与因变量之间的关
系进行拟合,并得到回归方程。
根据回归方程,可以计算得到实验结
果的预测值和残差。
残差表示实验数据与回归模型之间的差异,即实
验误差。
利用残差的统计特性,可以计算得到不确定度的估计。
四、不确定度的传递法
不确定度的传递法是用于计算复杂测量结果不确定度的方法。
在实
验中,往往需要通过一系列测量来得到希望获得的物理量。
不确定度
的传递法基于不确定度的传递规律,将各个测量结果的不确定度进行
求和,最终得到所求物理量的不确定度。
这种方法适用于各种复杂的
测量情况,可以提供对测量结果全面的不确定度评估。
五、统计方法
统计方法是一种基于概率统计理论的实验误差和不确定度评估方法。
通过对大量样本进行测量,并进行统计分析,可以得到实验结果的统
计规律。
常见的统计方法包括频率分布分析、置信区间估计、假设检
验等。
这些方法可以提供测量结果的概率分布情况,从而评估实验误
差和不确定度。
总结:
实验误差与不确定度的评估是科学实验中关键的环节,直接影响实
验结果的可靠性和可信度。
本文介绍了几种常用的实验误差与不确定
度评估方法,包括重复测量法、直接测量法、回归分析法、不确定度
的传递法和统计方法。
通过运用这些方法,可以准确评估实验误差和
不确定度,提高实验研究的质量和科学性。