误差与不确定度的区别和联系

合集下载

误差和不确定度的区别和联系

误差和不确定度的区别和联系

误差与不确定度的概念比较实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。

1误差和不确定度的定义1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。

即真值就是被测量量所具有的、客观的真实数值。

然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。

由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。

测量结果与真值的差为测量值的误差,即测量值(x)-真值(a)=误差(ε)在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。

对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12--=∑=n x x s n i i------------------------------(1)式中n 为测量值的个数。

对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2)二者的统计意义是,标准偏差小的测量值,其可靠性较高。

对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。

例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。

1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。

设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。

不确定度和误差的关系

不确定度和误差的关系

不确定度和误差的关系一、引言在科学研究和实验中,我们经常会遇到测量和计算的结果与真实值之间存在差异的情况。

这种差异通常被称为误差。

而对于测量结果的可信程度,则可以通过不确定度来衡量。

不确定度和误差之间存在一定的关系,在本文中我们将探讨这一关系。

二、误差的定义和分类误差可以被定义为测量结果与真实值之间的差异。

在实际测量中,误差可以分为系统误差和随机误差两类。

1. 系统误差系统误差是由于测量仪器或方法本身的固有缺陷而产生的误差。

例如,仪器的刻度不准确、环境条件的影响等都可以引起系统误差。

系统误差通常是可预测和可纠正的,因此在实验设计和数据处理中应该尽量避免系统误差的产生。

2. 随机误差随机误差是由于测量过程中的各种偶然因素导致的误差。

例如,人的视觉判断误差、仪器读数的波动等都属于随机误差。

随机误差是不可避免的,但可以通过多次重复测量来减小其影响。

三、不确定度的定义和计算不确定度是对测量结果的可信程度的度量。

在实际测量中,不确定度可以通过多种方法来计算,例如重复测量法、类比法、标准差法等。

1. 重复测量法重复测量法是指对同一物理量进行多次独立测量,然后计算这些测量结果的标准差作为不确定度的估计值。

重复测量法适用于随机误差主导的情况,并且要求测量结果符合正态分布。

2. 类比法类比法是指通过与已知精度的标准样品进行比较,来估计待测物理量的不确定度。

例如,通过与已知质量的标准物体进行比较,来估计待测物体的质量不确定度。

3. 标准差法标准差法是指通过对测量结果进行统计分析,计算其标准差来估计不确定度。

标准差法适用于随机误差主导的情况,并且要求测量结果符合正态分布。

四、不确定度和误差的关系不确定度和误差之间存在一定的关系。

一方面,误差是指测量结果与真实值之间的差异,而不确定度则是对测量结果的可信程度的度量。

因此,误差越大,不确定度也就越大。

另一方面,误差可以分为系统误差和随机误差两类,而不确定度则可以通过重复测量法等方法来估计。

计量检测中不确定度和误差的分析

计量检测中不确定度和误差的分析

计量检测中不确定度和误差的分析作者:杨志伟来源:《科技风》2016年第20期=摘要:计量检测在我国生产过程中发挥重要的作用,因此为了提高计量检测的准确性,需要对计量检测中不确定度和误差进行详细的分析,希望能够为相关工作者提供借鉴。

关键词:计量检测;不确定度;误差随着我国社会的不断进步,人们对产品质量提出了更高的要求,所以为了满足人们的需求,就必须不断提高计量检测的水平,不断增强计量检测的准确性,这主要是因为计量是质量的重要保证,能够促进科研生产的发展。

所以必须强化计量人员的计量意识,树立先进的计量理念,严格控制计量误差,对计量检测中确定度进行认真的分析,从而实现计量检测准确性的不断提升。

一、计量检测的不确定度(一)测量不确定度的定义测量不确定度指的是一个参数,与测量的结果具有一定的关联性,通常用测量不确定度来表示测量结果的质量或者置信水平的区间半宽度。

在获取各种不确定度过程中,采用的方法较多,而且较为复杂,同时在此过程中,各种因素应考虑全面,多次测量同一计量,并根据贝塞尔公式,准确计算所测的分散值。

(二)测量不确定度的意义在产品检验过程中,通常通过对产品以及部件进行测量,其测量结果能够直接反映产品或部件是否合格,而且对于测量结果会有测量标称值进行衡量,若测量结果处于该范围之内,则产品或部件合格,否则为不合格。

但是在测量过程中,一般会受到测量条件以及人为因素的影响,所以对测量的值产生怀疑或不肯定,因此不能将测量的值被作为判断产品是否合格的唯一标准,必须考虑不确定度的影响,这就是不确定度的重要意义。

(三)测量不确定度的来源由于目前我国测量技术水平有限,在测量过程中,每次测量的结果都不相同,处在某个区间内,所以不确定度具有分散性,在实际测量过程中,测量不确定度的来源有很多,主要包括以下几个方面:1)缺乏完整的被测量定义;2)采用不合适的方法来实现被测量定义;3)没有合理的进行取样,样本缺乏代表性;4)在测量过程中,对周围环境的影响情况了解的不够全面,或者对周围的环境未进行严格的控制;5)相关计量设备读数不准确;6)对数据计算不够准确。

误差 偏差和不确定度

误差 偏差和不确定度

误差偏差和不确定度摘要:测量误差与不确定度是计量学中的2个重要基本概念,两者之间既有区别又有联系,通过对两者的比较,指出了使用测量不确定度评价测量结果的意义。

误差理论的应用中,要深刻地认识和了解实验及现象,深入地研究实验,应该借助实验误差理论。

在测量中,我们所要测的物理量在一定的条件下总有一个客观的真正大小,称为真值。

但在实际测量过程中,由于测量仪器的精度限制,测量原理和方法不完善,测量者感官能力的限制,所得的测量结果和真值总存在一定的差异。

物理实验离不开对物理量的测量,测量有直接的,也有间接的。

由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。

测量不确定度是目前对于误差分析中的最新理解和阐述,以前用测量误差来表述,但两者具有完全不同的含义.关键字:误差 ;偏差 ;不确定度Error, error and uncertaintyAbstracMeasurement error and uncertainty are the metrology two important basic concept, both between both distinction to have connection again, through the comparison of two, points out the use of measuring uncertainty evaluation of measurement results. The application of the error theory,To know and understand profoundly the phenomenon of experiment and research, experiment, experiment of the error theory should be using. During measurement, we have to measure the parameters under certain conditions have an objective real size, called the true value. But in actual measurement process, because of the limited, precision measuring instrument measuring principle and method is not perfect, the measurement of the senses, the measurement results obtained limit and the true value is always there are some differences.Physics experiment is inseparable from the physical measurement, the measurement is directly, indirectly.Due to the instrument, the experimental condition, the environmental factors, such as restrictions, measurement, and may not be infinite precision measurements of physical with the real value of the objective existence between always exist certain difference, the difference is the measurement error. Measurement uncertainty for error analysis is the latest and the measurement error, used to describe, but they have different meanings. Now more accurately defined for the measurement uncertainty. Measure refers to the degree of uncertainty.Key wordserror;declination ;uncertainty目录1误差 (1)1.1误差概论 (1)1.1.1误差的定义 (1)1.1.2引起误差的因素 (2)1.2误差的产生 (3)1.2.1系统误差 (3)1.2.2.偶然误差 (3)2 偏差 (3)2.1偏差的定义 (3)2.2标准偏差 (4)3不确定度 (4)3.1不确定的基本概念 (4)3.2标准不确定度的评定 (4)4误差偏差和不确定度的联系与区别 (5)4.1误差偏差和不确定度的区别 (5)4.2误差偏差和不确定度的联系 (6)4.3测量不确定度较测量误差在评定测量结果中的优势 (7)参考文献 (8)谢辞 (9)1误差1.1误差概论1.1.1误差的定义物理实验离不开对物理量的测量,测量有直接的,也有间接的。

误差精度与不确定度有什么关系

误差精度与不确定度有什么关系

误差精度与不确定度有什么关系误差、精度与不确定度有什么关系?一、误差的基本概念:1.误差的定义:误差=测得值-真值;因此,误差是一个值,数学上就是坐标轴上的一个点,是具有正负号的一个数值。

2.误差的表示办法:2.1 肯定误差:肯定误差=测量值-真值(商定真值)在检定工作中,常用高一等级精确度的标准作为真值而获得肯定误差。

如:用一等活塞压力计校准二等活塞压力计,一等活塞压力计示值为100.5N/cm2,二等活塞压力计示值为100.2N/cm2,则二等活塞压力计的测量误差为-0.3N/cm2。

2.2 相对误差:相对误差=肯定误差/真值X100%相对误差没有单位,但有正负。

如:用一等标准水银温度计校准二等标准水银温度计,一等标准水银温度计测得20.2℃,二等标准水银温度计测得20.3℃,则二等标准水银温度计的相对误差为0.5%。

2.3 引用误差:引用误差=示值误差/测量范围上限(或指定值)X100%引用误差是一种简化和有用便利的仪器仪表示值的相对误差。

如测量范围上限为3000N的工作测力计,在校准示值2400N处的示值为2392.8N,则其引用误差为-0.3%。

3.误差的分类:3.1 系统误差:在重复性条件下,对同一被测量举行无限多次测量所得结果的平均值与被测量的真值之差。

3.2 随机误差:测量结果与在重复性条件下,对同一被测量举行无限多次测量所得结果的平均值之差。

3.3 粗壮误差:超出在规定条件下预期的误差。

二、精度:1.精度细分为:精确度:系统误差对测量结果的影响。

精密度:随机误差对测量结果的影响。

精确度:系统误差和随机误差综合后对测量结果的影响。

精度是误差理论中的说法,与测量不确定度是不同的概念,在误差理论中,精度定量的特征可用目前的测量不确定度(对测量结果而言)和极限误差(对测量仪器仪表)来表示。

对测量而言,精密度高的精确度不一定高,精确度高的精密度不一定高,但精确度高的精确度与精密度都高,精度是精确度的简称。

测量不确定度与测量误差的区别与联系?

测量不确定度与测量误差的区别与联系?

测量不确定度与测量误差的区别与联系?测量不确定度和误差是计量学中研究的基本命题,也是计量测试⼈员经常运⽤的重要概念之⼀。

它直接关系着测量结果的可靠程度和量值传递的准确⼀致。

然⽽很多⼈由于概念不清,很容易将⼆者混淆或误⽤,本⽂结合学习测量不确定度评定与表⽰ 测量不确定度表征被测量的真值所处量值范围的评定。

它按某⼀置信概率给出真值可能落⼊的区间。

它可以是标准差或其倍数,或是说明了置信⽔准的区间的半宽。

它不是具体的真误差,它只是以参数形式定量表⽰了⽆法修正的那部分误差范围 误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。

通常可分为两类:系统误差和偶然误差。

误差是客观存在的,它应该是⼀个确定的值,但由于在绝⼤多数情况下,真值是不知道的,所以真误差也⽆法准确知道。

我们 通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下⼏⽅⾯区别: ⼀.评定⽬的的区别: 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。

⼆.评定结果的区别: 测量不确定度是⽆符号的参数,⽤标准差或标准差的倍数或置信区间的半宽表⽰,由⼈们根据实验、资料、经验等信息进⾏评定,可以通过A,B两类评定⽅法定量确定; 测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当⽤约定真值代替真值时,只可得到其估计值。

三.影响因素的区别: 测量不确定度由⼈们经过分析和评定得到,因⽽与⼈们对被测量、影响量及测量过程的认识有关; 测量误差是客观存在的,不受外界因素的影响,不以⼈的认识程度⽽改变; 因此,在进⾏不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。

否则由于分析估计不⾜,可能在测量结果⾮常接近真值(即误差很⼩)的情况下评定得到的不确定度却较⼤,也可能在测量误差实际上较⼤的情况下,给  四.按性质区分上的区别: 测量不确定度不确定度分量评定时⼀般不必区分其性质,若需要区分时应表述为:“由随机效应引⼊的不确定度分量”和“由系统效应引⼊的不确定度分量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是⽆穷多次测量情况下的理想概念。

测量不确定度与测量误差的区别

测量不确定度与测量误差的区别

测量不确定度与测量误差的区别
1定义:测量误差表明测量结果偏离真值,是一个差值
测量不确定度表明测量之值的分散性,是一个区间。

用标准偏差、标准偏差的倍数、或说明了置信水平的区间半宽度来表示。

2分类:测量误差按出现于测量结果中的规律,分为随机误差和系统误差两类,它们都是无限多次测量的理想概念
测量不确定度按是否用统计方法求得,分为A类评定和B类评定两种评定方法。


们都以标准不确定度表示
3可操作性:测量误差由于真值末知,往往不能得到测量误差的值。

当用约定真值代替真值时,可以得到测量误差的估计值。

测量不确定度可以由人们根据实验、资料、经验等信息进行评定,从而可以定量
确定测量不确定度的值。

4数值符号:测量误差:非正即负,不能用正负号表示。

测量不确定度:是一个无符号的参数,当由方差求得时,取其正平方根。

5合成方法:测量误差:各误差分量的代数和。

测量不确定度:当各分量彼此独立时用方和根法进行合成,否则应考虑加入相
关项。

6结果修正:测量误差:已知系统误差的估计值时,可以对测量结果进行修正,得到已修正的测量结果。

测量不确定度:不能用测量不确定度以测量结果进行修正。

对已修正测量结果
进行不确定度评定时,应考虑修正不完善引入的不确定度分量。

7结果说明:测量误差:客观存在的,不以人的认识程度而转移。

误差属于给定的测量结果,相同测量结果具有相同的误差,而与得到该测量结果的测量仪器和测量方法无
关。

测量不确定度:与人们对被测量、影响量、以及测量过程的认识有关。

合理赋予
被测量的任一个值,均具有相同的测量不确定度。

不确定度与误差

不确定度与误差

误差与不确定度在定义上的区别:误差定义是测量值与真值之差,是一个确定值,但真值是一个理想的概念,真值的传统定义为:当某量能被完善地确定并能而且已经排除了所有测量上的期限时,通过测量所得到的量值。

真值虽然客观存在,但通过测量却得不出,(因为测量过程中总会有不完善之处,因此一般情况下不能计算误差,只有少数情况下,可以用准确度足够高的实际值来作为量的约定真值,即对明确的量赋予的值,有时叫最佳估计值、约定值或参考值,这时才能计算误差。

)误差也就无法知道。

而误差加前缀的名词如标准误差,极限误差等其值是可以估算的,但它们表示的是测量结果的不确定性,与误差定义并不一致。

测量不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性,它是被测量真值在某一个量值范围内的一个评定。

显然,不确定度表述的是可观测量——测量结果及其变化,而误差表述的是不可知量——真值与误差,所以,从定义上看不确定度比误差科学合理。

误差理论与不确定度原理在分类上的区别以往计算误差时,首先要分清该项误差属于随机误差还是系统误差。

随机误差是在同一量的多次测量中以不可预知的方式变化测量误差分量。

电表轴承的摩擦力变动、螺旋测微计测力在一定范围内随机变化、操作读数时在一定范围内变动的视差影响、数字仪表末位取整数时的随机舍入过程等,都会产生一定的随机误差分量。

VIM93中随机误差的定义为:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。

(重复性条件包括:相同的测量程序;相同的观测者;在相同的条件下使用相同的测量仪器;相同地点;在短时间内重复测量)。

随机误差分量是测量误差的一部分,其大小和符号虽然不知道,但在同一量的多次测量中,它们的分布常常满足一定的统计规律。

系统误差:在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差分量称为系统误差,简称系差。

系统误差包括已定系统误差和未定系统误差。

已定系统误差是指符号和绝对值已经确定的误差分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差与不确定度的区别和联系
导读:误差与不确定度是计量学中两个相互关联又相互区别的概念。

提出这两个概念的目的都是为了寻求如何以实验和测量所得结果来更恰当、更准确地体现被测量的真实情况。

误差与不确定度是计量学中两个相互关联又相互区别的概念。

提出这两个概念的目的都是为了寻求如何以实验和测量所得结果来更恰当、更准确地体现被测量的真实情况。

误差为测得值与被测量真值之差。

即误差=测得值-真值。

不确定度是被测量值可能出现的范围。

二者联系:
误差与不确定度都是由相同因素造成的:随机效应和系统效应。

随机效应是由于未预料到的变化或影响量的随时间和空间变化所致。

它引起了被测量重复观测值的变化。

这种效应的影响不能借助修正进行补偿,但可通过增加观测次数而减小,其期望值为零。

系统效应是由固定不变的或按确定规律变化的因素造成的。

但由于人类认识的不足,也不能确切知道其数值,因此也无法完全清除,但通常可以减小。

系统效应产生的影响有些是可以识别的,有些是未知的,如果已知影响能定量给出,而且其大小对测量所要求的准确度而言有意义的话,则可采用估计的修正值或修
正因子对结果加以修正。

由于随机效应和系统效应的存在,使得被测量的真值无法确知,每个测量结果也都具有一定的不可靠性,导致误差和不确定度的产生。

二者区别:
a. 误差是相对被测量真值而言的,它是测量结果与真值之差,由于真值的不可知性,实际上误差也只能是个理想概念,不可能得到它的准确值。

不确定度以测量结果本身为研究对象,其含义不是“与真值之差”或“误差限”、“极限误差”,而是表示由于随机影响和系统影响的存在而对测量结果不能肯定的程度,表征被测量值可能出现的范围。

它是以测量结果为中心,以标准差或其倍数,或某置信区间半宽度确定的被测量的取值范围。

确保真值以一定概率落于其中。

因而,它是测量结果的一个量化属性。

b. 误差和不确定度的分类方法截然不同。

误差根据其性质可分为两类:随机误差和系统误差。

随机误差:测量结果与重复性条件下对同一量进行无限多次测量所得结果的平均值之差。

随机误差大抵是由于随机影响造成的。

注意,观察列的平均值的实验标准差并不是平均值的随机误差,而恰恰是随机影响引起的平均值的不确定度,这些效应产生的平均值的随机误差不可能准确知道。

系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量真值之差。

系统误差是由已知系统影响和未知系统影响产生的,通过对已知系统影响的修正可以减小,但不可能为零。

同时,修正值或修正因子的不完善,也会导致测量结果的不确定度,但不是由于系统影响补偿不理想而产生的误差。

不确定度按照分量的评定方法分为A 类B 类,但并非“随机”和“系统”的代用词。

用A 类或B 类评定方法均可得到已知系统影响修正值的不确定度,随机影响的不确定度计算也是如此。

两种评定方法均基于概率分布,得到的分量在本质上不存在差异。

实际应用中,无须将它们与随机或系统对应起来。

c. 误差取一个符号,非正即负。

不确定度恒为正值。

当由方差得出时,取其正平方根。

d. 不确定度是由随机影响和对系统影响结果的不完善修正产生的。

在计算测量结果的不确定度时,不会考虑到未被认识的系统影响,但这种影响会导致误差的出现。

因此,即使计算出来的不确定度很小,仍不能保证测量结果的误差很小。

或者说,测量结果的不确定度未必是测量结果接近被测量值的指示值,它仅为与目前可用的知识相符的最佳值接近程度的近似性估计。

不确定度不能用于测量结果和真值之间的差异显示,但可用于测量结果之间的比较。

不确定度越小,则测
量结果质量越高。

在测量中若没有忽略任何明显的系统影响时,才能认为测量结果即为被测值的可靠估计值,其合成标准不确定度即为可能误差的可靠量度。

相关文档
最新文档