2019-2020学年江苏省南通一中八年级(上)期末数学试卷
南通市重点中学市联考2019-2020学年数学八上期末模拟试卷(2)

南通市重点中学市联考2019-2020学年数学八上期末模拟试卷(2)一、选择题1.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克2.下列运算正确的是( )A .(﹣a 2)2=﹣a 4B .a 2+a 2=a 4C .(x ﹣0)0=0D .3﹣2=19 3.若解关于x 的方程=3+55x m x x --有增根,则m 的值为( ) A .﹣5B .5C .﹣2D .任意实数 4.下列计算正确的是( )A .(﹣ab 3)2=ab 6B 2=-C .a 2•a 5=a 10D .(a ﹣b )2=a 2﹣b 2 5.下列计算正确的是( )A.a 2+a 3=a 5B.22()a a b b =C.(a 2)3=a 5D.(a 3)2=a 66.如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=( )A .30°B .45°C .60°D .15°7.下列说法:(1)线段的对称轴有两条;(2)角是轴对称图形,对称轴是它的角平分线;(3)两个全等的等边三角形一定成轴对称;(4)两个图形关于某条直线对称,则这两个图形一定分别位于这条直线两侧;(5)到直线L 距离相等的点关于L 对称.其中说法不正确的有,( )A.3个B.2个C.1个D.4个 8.如图,点B 、F 、C 、E 在一条直线上,,,要使≌,需要添加下列选项中的一个条件是A. B. C. D.9.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB ,其中正确的有( )A.2个B.3个C.4个D.1个10.平面直角坐标系中,点P(﹣2,3)关于x 轴对称的点的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,3)11.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④△ABD 边AB 上的高等于DC.其中正确的个数是( )A .1B .2C .3D .412.如图,在△ABC 中,∠A =α,∠ABC 与∠ACD 的角平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的角平分线交于点A 2,得∠A 2;……;∠A 2017BC 与∠A 2017CD 的角平分线交于点A 2018,得∠A 2018,则∠A 2018=( )A .20172αB .20182αC .20192αD .20202α13.已知x ,y 满足40x -=,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上答案都不对14.在下列4种正多边形的瓷砖图案中不能铺满地面的是( )A. B. C. D.15.下列计算中,正确的是( )A.a 3+a 2=a 5B.(2a)3=6a 3C.a 5÷a 2=a 3D.(a+1)2=a 2+1二、填空题16.宽x 米的长方形的面积是160平方米,则它的长y= ___________米。
江苏省南通市崇川区2019-2020学年八年级上学期期末数学试题

南通市崇川区2019-2020学年度第一学期期末考试八年级数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形是轴对称图形的是( )A. B.C. D.2.有意义,则x 的取值范围是( )A. 1x >-B. 0x ≥C. 1x ≥-D. 任意实数 3.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( )A. 21B. 22或27C. 27D. 21或27 4.计算021( 3.14)()2π--+=( ) A. 5 B. -3 C. 54 D. 14- 5.在平面直角坐标系中,点(1,2)P 到原点的距离是( )A. 1B.C. 2D. 6.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=o ,则ABC ∠=( )A 70oB. 71oC. 74oD. 76o 7.若分式242x x --的值为0,则x 的值为 ( ) A. ±2 B. 2 C. -2 D. 08.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( ) A. 7 B. 8 C. 9 D. 10 9.若2149x kx ++是完全平方式,则实数k 的值为( ) A. 43 B. 13 C. 43± D. 13± 10.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A. 0条B. 1条C. 2条D. 3条二、填空题((第11-13每小题3分,第14-18每小题4分,共29分,将答案填在答题纸上) .11.计算:32()x y -=__________.12.因式分解:24ax ay -=__________.13.点(2,1)P 关于x 轴对称的点P'的坐标是__________.14.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .15.如图,在ABC ∆中,90C =o ∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=o ,2CD =,则ABC ∆周长等于__________.16.已知关于x 的方程211x m x -=-的解是正数,则m 的取值范围为__________. 17.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.18.若12a =,则352020a a -+=__________. 三、解答题:本大题共8题,共91分.解答应写出文字说明、证明过程或演算步骤.19.(1+(2)因式分解:3312x x -(3)计算:2(1)(2)(3)x x x x -+-+(4)计算:2(21)2(1)(1)x x x +-+-20.先化简,再求值:35(2)362x x x x -÷+---,其中3x = 21.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标;(2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ;(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .22.如图,在ABC ∆中,110ACB ∠=o ,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =. (1)若30A ∠=o ,求DCE ∠的度数;(2)DCE ∠度数会随着A ∠度数的变化而变化吗?请说明理由.23.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用时间相同,求小明每小时加工零件的个数.24.如图,在ABC ∆中,4AB =,8BC =,AC垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.的25.观察下列等式: 112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;…… 根据上面等式反映的规律,解答下列问题: (1)请根据上述等式的特征,在括号内填上同一个实数: 2⨯( )-5=( )5⨯;(2)小明将上述等式的特征用字母表示为:2x y xy -=(x 、y 为任意实数).①小明和同学讨论后发现:x 、y 的取值范围不能是任意实数.请你直接写出x 、y 不能取哪些实数. ②是否存在x 、y 两个实数都是整数情况?若存在,请求出x 、y 的值;若不存在,请说明理由.26.已知ABC ∆中,AB AC =. (1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE = (2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=o ,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=o ,连接AD ,若45CAB ∠=o ,求AD AB 的值.的。
江苏省南通市2019-2020学年数学八上期末模拟调研试卷(2)

江苏省南通市2019-2020学年数学八上期末模拟调研试卷(2)一、选择题1.已知x 为整数,且222218339x x x x ++++--为整数,则符合条件的x 有( ) A .2个B .3个C .4个D .5个 2.使得分式2233x x x +---的值为零时,x 的值是( ) A .x=4 B .x=-4 C .x=4或x=-4 D .以上都不对3.若(-2x+a)(x-1)的展开式中不含x 的一次项,则a 的值是( )A .-2B .2C .-1D .任意数 4.已知ab =﹣2,a ﹣3b =5,则a 3b ﹣6a 2b 2+9ab 3的值为( ) A .﹣10 B .20 C .﹣50 D .405.根据图①的面积可以说明多项式的乘法运算(2a+b )(a+b )=2a 2+3ab+b 2,那么根据图②的面积可以说明多项式的乘法运算是( )A .(a+3b )(a+b )=a 2+4ab+3b 2B .(a+3b )(a+b )=a 2+3b 2C .(b+3a )(b+a )=b 2+4ab+3a 2D .(a+3b )(a ﹣b )=a 2+2ab ﹣3b 26.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是( )A .140或44或80B .20或80C .44或80D .80°或1407.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为25和17,则△EDF 的面积为( )A.4B.5C.5.5D.68.已知如图所示的两个三角形全等,则∠1=( )A.72B.60C.50D.589.下列四个图形中,轴对称图形的个数是( )\A .1个B .2个C .3个D .4个10.下列图形中,不是轴对称图形的是 ( )A .①⑤B .②⑤C .④⑤D .①③11.如图,两个三角形是全等三角形,x 的值是( )A .30B .45C .50D .8512.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠=,则下列结论正确的是( )A.342∠=B.4138∠=C.542∠=D.258∠= 13.如图,在锐角中,分别是边上的高,交于点,,则的度数是( )A. B.C. D. 14.若从长度分别为2 cm 、3 cm 、4 cm 、6 cm 的四根木棒中,任意选取三根首尾顺次相连搭成三角形,则搭成的不同三角形共有( )A .1个B .2个C .3个D .4个15.若xy =x+y≠0,则分式11yx +=( ) A .1xy B .x+yC .1D .﹣1 二、填空题16.分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为__________。
江苏省南通一中2019-2020八年级上学期期末数学试卷 及答案解析

江苏省南通一中2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案中,轴对称图形是()A. B. C. D.2.下列运算正确的是()A. a3⋅a4=a12B. a5÷a−3=a2C. (3a4)2=6a8D. (−a)5⋅a=−a63.下列从左到右的变形属于因式分解的是()A. x2−x−1=x(x−1)−1B. a2−ab=a(a−b)C. x2−1=x(x−1x) D. (x+2)(x−2)=x2−44.下列根式是最简二次根式的是()A. √12B. √0.3C. √2SD. √12b5.下列各式从左到右变形正确的是()A. 0.2a+ba+0.2b =2a+ba+2bB. 3x+23y23x−12y=18x+4y4x−3yC. nm =n−am−aD. a+ba2+b2=1a+b6.若3xy2x+3y中的x和y都扩大到原来的2倍,那么分式的值()A. 缩小为原来的一半B. 不变C. 扩大到原来的4倍D. 扩大到原来的2倍7.化简√2514等于()A. √1012B. ±√1012C. 52D. 5128.已知直角三角形纸片的两条直角边分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A. m2+2mn+n2=0B. m2−2mn+n2=0C. m2+2mn−n2=0D. m2−2mn−n2=09. 如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为7,AB =4,DE =2,则AC 的长是( )A. 4B. 3C. 6D. 510. 如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为( )A. 152B. 203C. 3D. 125 二、填空题(本大题共8小题,共24.0分)11. 计算:(√24+√16)×√6=______. 12. 若式子√x+2x 在实数范围内有意义,则x 的取值范围是______.13. 当x =______时,分式x+23x−2的值为0.14. 若a +b =2,ab =−3,则代数式a 3b +2a 2b 2+ab 3的值为______.15. 2×4n ×8n =26,则n =__________.16. 若1x −1y =3,则分式2x+3xy−2yx−2xy−y =______.17. 如图,将边长为2√2cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段MN 的长是______cm .18. 若a =√2016−1,则(a −1)2= ______ .三、计算题(本大题共1小题,共6.0分)19. 先化简,(1+1x−1)÷x 21−x 2,再从−2≤x ≤2范围内选取一个适当的整数x 代入求值.四、解答题(本大题共9小题,共72.0分)20.已知a=√3+√2.b=√3−√2,求下列各式的值.(1)a2−ab+b2(2)a2−b2.21.如图,AD、BC相交于点O,AD=BC,∠1=∠2,求证:AC=BD.22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点。
江苏省南通市崇川区2019-2020八年级上学期期末数学试卷 及答案解析

江苏省南通市崇川区2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中一定是轴对称图形的是()A. B.C. D.2.若√x−2有意义,则x的取值范围是()A. x≥2B. x≥−2C. x>2D. x>−23.等腰三角形的两边长分别为5和11,则这个三角形的周长为()A. 16B. 21C. 27D. 21或274.计算(−π)0÷(13)−2的结果是()A. 16B. 0 C. 6 D. 195.在平面直角坐标系中,点A(−3,2),B(3,5),C(x,y),若AC//x轴,则线段BC的最小值及此时点C的坐标分别为()A. 6,(−3,5)B. 10,(3,−5)C. 1,(3,4)D. 3,(3,2)6.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=80°,那么∠EBC等于()A. 15°B. 25°C. 15°或75°D. 25°或85°7.分式x2−1x+1的值为零,则x的值为()A. −1B. 0C. ±1D. 18.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A. 15B. 225C. 81D. 259.如果x2−(m+1)x+1是完全平方式,则m的值为()A. −1B. 1C. 1或−1D. 1或−310.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A. 5条B. 4条C. 3条D. 2条二、填空题(本大题共8小题,共24.0分)11.计算:−(−2ab3)2=_______________.12.分解因式:xy−x=______.13.点P(−5,2)关于x轴对称的点坐标是______.14.已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是______ .15.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E,且△ACD的周长为30,AD=13cm,则斜边AB长为______cm.16.若关于x的方程x+mx−2+2m2−x=2的解是正数,则m的取值范围是______.17.在平面直角坐标系中,若点M(−2,6)与点N(x,6)之间的距离是7,则x的值是______.18.若m=2015√2016−1,则m3−m2−2017m+2015=______.三、解答题(本大题共8小题,共64.0分)19.(1)计算:(−a)7÷(−a)4×(−a)3;(2)利用乘法公式计算:2014×2016−20152;(3)因式分解:x3−4x.20. 先化简,再求值:(a −9+25a+1)÷(a −1−4a−1a+1),其中a =√2.21. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(−2,−1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出A 1,B 1,C 1的坐标;(3)在x 轴上是否存在点P ,使得PA +PB 最小,若存在,请直接写出点P 的坐标.22.如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.23.小张和小李两人加工同一种零件,小李每小时比小张少加工5个,小李加工100个零件与小张加工120个零件时间相同,小张和小李每小时各加工多少个零件?24.如图,在△ABC中,AB=8cm,AC=6cm,BC=10cm,点D在AB上,且BD=CD,求△BDC的面积.25.观察下列等式:第1个等式:a1=11×5=14×(1−15);第2个等式:a2=15×9=14×(15−19);第3个等式:a3=19×13=14×(19−113);第4个等式:a4=113×17=14×(113−117);…请解答下列问题:(1)按以上规律列出第5个等式:a5=____=____(2)用含n的代数式表示第n个等式:a n=____=____(n为正整数);(3)求a1+a2+a3+a4+⋯+a100的值.26.已知:如图,在△ABC中,AD⊥BC,垂足是D,E是线段AD上的点,且AD=BD,DE=DC.⑴求证:∠BED=∠C;⑴若AC=13,DC=5,求AE的长.-------- 答案与解析 --------1.答案:A解析:此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A.是轴对称图形,故此选项正确;B.不是轴对称图形,故此选项错误;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误;故选A.2.答案:A解析:解:依题意,得x−2≥0,解得,x≥2.故选:A.二次根式有意义,被开方数是非负数.本题考查了二次根式有意义的条件.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.答案:C解析:本题考查了等腰三角形两腰长相等的性质,要分情况讨论并利用三角形的三边关系判断是否能组成三角形.根据①11是腰长时,三角形的三边分别为11、11、5,②11是底边时,三角形的三边分别为11、5、5,分别计算即可.解:①11是腰长时,三角形的三边分别为11、11、5,能组成三角形,周长=11+11+5=27;②11是底边时,三角形的三边分别为11、5、5,∵5+5=10<11,∴不能组成三角形,综上所述,三角形的周长为27.故选C .4.答案:D解析:利用零指数幂和负整数指数幂的性质即可解答。
江苏省南通市八年级(上)期末数学试卷(含答案)

江苏省南通市八年级(上)期末数学试卷(含答案)一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( ) A .80° B .90° C .100° D .110° 2.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1- B .0C .1D .23.下列四组线段a 、b 、c ,不能组成直角三角形的是( )A .4,5,3a b c ===B . 1.5,2, 2.5a b c ===C .5,12,13a b c ===D .1,2,3a b c ===4.对函数31y x =-,下列说法正确的是( ) A .它的图象过点(3,1)- B .y 值随着x 值增大而减小 C .它的图象经过第二象限 D .它的图象与y 轴交于负半轴 5.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .56.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒7.在下列各数中,无理数有( )33224,3,8,9,07π A .1个B .2个C .3个D .4个8.下列各点中,位于平面直角坐标系第四象限的点是( ) A .(1,2) B .(﹣1,2) C .(1,﹣2) D .(﹣1,﹣2)9.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的( ) A .总体 B .个体 C .样本 D .样本容量 10.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( )A .2B .1.9C .2.0D .1.90二、填空题11.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”). 12.点A (3,-2)关于x 轴对称的点的坐标是________.13.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.14.4的平方根是 .15.计算:32()x y -=__________.16.点(2,1)P 关于x 轴对称的点P'的坐标是__________.17.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.18.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.19.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.20.函数y 1=x+1与y 2=ax+b 的图象如图所示,那么,使y 1、y 2的值都大于0的x 的取值范围是______.三、解答题21.已知y 与2x -成正比例,且当1x =时,2y =-. (1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.22.如图,在△ABC 中,AD ⊥BC ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长为15cm,AC=6cm,求DC长.23.某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整):分组频数频率50.5~60.5200.0560.5~70.548△70.5~80.5△0.2080.5~90.51040.2690.5~100.5148△合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在 90.5 ~ 100.5 分之间的学生进行奖励,请你估算出全校获奖学生的人数.24.(新知理解)如图①,若点A、B在直线l同侧,在直线l上找一点P,使AP BP+的值最小.作法:作点A关于直线l的对称点A',连接A B'交直线l于点P,则点P即为所求.(解决问题)如图②,AD是边长为6cm的等边三角形ABC的中线,点P、E分别在AD、AC上,则PC PE+的最小值为 cm;(拓展研究)如图③,在四边形ABCD的对角线AC上找一点P,使APB APD∠=∠.(保留作图痕迹,并对作图方法进行说明)25.阅读下列材料:∵4<5<9,即2<5<3∴5的整数部分为2,小数部分为5﹣2请根据材料提示,进行解答:(1)7的整数部分是.(2)7的小数部分为m,11的整数部分为n,求m+n﹣7的值.四、压轴题26.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明. 29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.3.D解析:D【解析】根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可. 【详解】解:A.2222223491625,525,a b c +=+==+=,B.222221.52 2.254 6.25,2.5 6.25,a b c +=+==+=,C.22222251225144169,13169,a b c +=+==+=,222222123,39,.1D a b c +=+==+≠.【点睛】本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.4.D解析:D 【解析】 【分析】根据一次函数的性质,对每一项进行判断筛选即可. 【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确. 故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质.5.C解析:C 【解析】试题分析:A 1,故错误;B <﹣1,故错误;C .﹣1<2,故正确;2,故错误;故选C . 【考点】估算无理数的大小.6.C解析:C 【解析】 【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.7.B解析:B【解析】【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】,∴这一组数中的无理数有:32个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.C解析:C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.10.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C.【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.二、填空题11.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.12.(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x轴、y轴对称的点的坐标.13.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD =3cm .故答案为:3cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y -=-= 故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键. 16.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x 轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点(2,1)P 关于x 轴对称的点P'的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x 轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;17.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m ≤32 【解析】【分析】根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m =,1m =, 当02x =时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.19.3;【解析】【分析】过D 作DE⊥AB 于E ,DF⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE⊥AB 于E ,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.解析:−1<x<2.【解析】【分析】根据x轴上方的图象的y值大于0进行解答.【详解】>0,如图所示,x>−1时,y1当x<2时,y2>0,、y2的值都大于0的x的取值范围是:−1<x<2.∴使y1故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于0三、解答题21.(1)y=2x-4;(2)-6<y<0.【解析】【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),把x=1,y=-2代入y=k(x-2),得k(1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y随x的增大而增大,∴当-1<x<2时,y的范围为-6<y<0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.22.(1)35°;(2)4.5cm.【解析】【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=8cm,即可得出答案.【详解】解:(1)∵AD⊥BC,BD=DE∴AD垂直平分BE,∵EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=12∠AED=35°;(2)∵△ABC周长15cm,AC=6cm,∴AB+BE+EC=9cm,即2DE+2EC=9cm,∴DE+EC=DC=4.5cm.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.23.(1)见解析;(2)见解析;(3)740人【解析】【分析】(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.【详解】解:(1)抽取的学生总数为20÷0.05=400,则60.5~70.5的频率为48÷400=0.12,70.5~80.5的频数为400×0.2=80,90.5~100.5的频率为148÷400=0.37,补全频数分布表如下:(3)2000×0.37=740(人),答:估算出全校获奖学生的人数约为740人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,根据第1组的数据求出被抽查的学生数是解题的关键,也是本题的突破口.24.(1)33;(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】如图②,作点E关于AD的对称点F,连接PF,则PE=PF,当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),当CF⊥AB时,CF最短,此时BF=12AB=3(cm),∴Rt△BCF中,CF=2222=63=33BC BF--cm),∴PC+PE的最小值为3cm;(2)【拓展研究】方法1:如图③,作B 关于AC 的对称点E ,连接DE 并延长,交AC 于P ,点P 即为所求,连接BP ,则∠APB=∠APD .方法2:如图④,作点D 关于AC 的对称点D',连接D'B 并延长与AC 的交于点P ,点P 即为所求,连接DP ,则∠APB=∠APD .25.(1)2;(2)1【解析】【分析】(1479<(291116<<,进而得出答案.【详解】解:(1479<∴273<<,72. 故答案为:2;(2)由(1)可得出,72m =, 91116<,∴n =3,∴772371m n +-=+=.【点睛】本题考查的知识点是估算无理数的大小,估算无理数的大小要用逼近法,同时也考查了平方根. 四、压轴题26.(1)4;2;(0,4);(2)125m =或285m =;(3)存在.Q 点坐标为()-,()4,()0,4-或()5,4. 【解析】【分析】(1)根据待定系数法,将点C (4,2)代入解析式可求解;(2)设点E (m ,142m +),F (m ,2m -6),得()154261022EF m m m =-+--=-,由平行四边形的性质可得BO =EF =4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P 点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y 2=kx -6交于点C (4,2),∴2=4k -6,∴k =2, ∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m , ∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =, ∴51042m -=, 解得:125m =或285m =时,∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A,B四个点能构成一个菱形,此时Q点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.27.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG ⊥AG ,FH ⊥DH ,∴∠CGA =∠FHD =90°.∵∠CBG =180°-∠ABC ,∠FEH =∠180°-∠DEF ,∠ABC =∠DEF ,∴∠CBG =∠FEH .在△BCG 和△EFH 中,∵∠CGB =∠FHE ,∠CBG =∠FEH ,BC =EF ,∴△BCG ≌△EFH .∴CG =FH .又∵AC =DF .∴Rt △ACG ≌△DFH .∴∠A =∠D .在△ABC 和△DEF 中,∵∠ABC =∠DEF ,∠A =∠D ,AC =DF ,∴△ABC ≌△DEF .(3)如图②,△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.29.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解.②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解. (2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090AMC ︒︒︒-+∠=,即可求出解. (3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=,()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.30.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣13;(3)设点E的坐标为(a,a+2),则点T的坐标为(33a+,23a+),当∠THD=90°时,点E与点T的横坐标相同,∴33a+=a,解得,a=32,此时点E的坐标为(32,72),当∠TDH=90°时,点T与点D的横坐标相同,∴33a+=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(32,72)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.。
江苏省南通市海安市2019-2020学年八年级上学期期末数学试题(word无答案)

江苏省南通市海安市2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 中国传统服装历史悠远,下列服装中,是轴对称的是()A.B.C.D.(★) 2 . 用科学记数法表示0.000031,结果是()A.B.C.D.(★) 3 . 在下列分解因式的过程中,分解因式正确的是()A.-xz+yz=-z(x+y)B.3a2b-2ab2+ab=ab(3a-2b)C.6xy2-8y3=2y2(3x-4y)D.x2+3x-4=(x+2)(x-2)+3x(★) 4 . 以下关于多边形内角和与外角和的表述,错误的是()A.四边形的内角和与外角和相等B.如果一个四边形的一组对角互补,那么另一组对角也互补C.六边形的内角和是外角和是2倍D.如果一个多边形的每个内角是,那么它是十边形.(★) 5 . 如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF的条件有()A.1组B.2组C.3组D.4组(★★) 6 . 如图,在△ ABC中,分别以点 A, B为圆心,大于<sub></sub> AB长为半径画弧,两弧相交于点 E, F,连接 AE, BE,作直线 EF交 AB于点 M,连接 CM,则下列判断不正确的是A.AM=BM B.AE=BE C.EF⊥AB D.AB=2CM(★) 7 . 当与的值相等时,则()A.B.C.D.(★★) 8 . 如图,在放假期间,某学校对其校内的教学楼(图中的点),图书馆(图中的点)和宿含楼(图中的点)进行装修,装修工人需要放置一批装修物资,使得装修物资到点,点和点的距离相等,则装修物资应该放置在()A.、两边高线的交点处B.在、两边中线的交点处C.在、两内角平分线的交点处D.在、两边垂直平分线的交点处(★★) 9 . 某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价,第二次提价;方案(二):第一次提价,第二次提价;方案(三):第一、二次提价均为;其中,是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有()A.②③B.①③C.①④D.②④(★★) 10 . 关于三角形中边与角之间的不等关系,提出如下命题:命题1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大;命题2:在一个三角形中,如果两个角不等,那么它们所对的边也不等,大角所对的边较大;命题3:如果一个三角形中最大的边所对的角是锐角,这个三角形一定是锐角三角形;命题4:直角三角形中斜边最长;以上真命题的个数是()A.1B.2C.3D.4二、填空题(★) 11 . 计算:__________.(★★) 12 . 等边三角形有_____条对称轴.(★★) 13 . 在实数范围内分解因式= ___________ .(★) 14 . 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产 ___ 台机器.(★) 15 . 若正实数满足等式,则__________.(★★) 16 . 如图,点 P为∠ AOB内任一点, E, F分别为点 P关于 OA, OB的对称点.若∠ AOB=30°,则∠ E+∠ F=_____°.(★★) 17 . 中,,,点在边上,连接.有以下4种说法:①当时,一定为等边三角形②当时,一定为等边三角形③当是等腰三角形时,一定为等边三角形④当是等腰三角形时,一定为等腰三角形其中错误的是__________.(填写序号即可)(★★) 18 . 若关于的多项式的一个因式是,则的值为__________. 三、解答题(★★) 19 . 计算:(1)(2)(3)(4)(★★) 20 . 如图,,,.(1)求证:;(2)当,时,求的度数.(★★) 21 . 如图,在中,,边的垂直平分线分别交,于点. (1)求证:为的中点;(2)若,求的长.(★★) 22 . 在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.(★★) 23 . 老师在黑板上写了一个代数式的正确计算结果,随后用“黑板擦”遮住原代数式的一部分,如图:(1)求被“黑板擦”遮住部分的代数式,并将其化简;(2)原代数式的值能等于吗?请说明理由.(★★) 24 . 人教版教材指出:等边三角形是三边都相等的特殊的等腰三角形.请证明:有一个角是的等腰三角形是等边三角形.(★★) 25 . (1)如图①,小明同学作出两条角平分线,得到交点,就指出若连接,则平分,你觉得有道理吗?为什么?(2)如图②,中,,,,的角平分线上有一点,设点到边的距离为.(为正实数)小季、小何同学经过探究,有以下发现:小季发现:的最大值为.小何发现:当时,连接,则平分.请分别判断小季、小何的发现是否正确?并说明理由.(★★★★) 26 . 定义:若两个分式的和为(为正整数),则称这两个分式互为“ 阶分式”,例如分式与互为“3阶分式”.(1)分式与互为“5阶分式”;(2)设正数互为倒数,求证:分式与互为“2阶分式”;(3)若分式与互为“1阶分式”(其中为正数),求的值.。
江苏省南通市第一初级中学2019-2020学年八年级上学期期末数学试题

江苏省南通市第一初级中学2019-2020学年八年级上学期期末数学试题一、选择题1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A. B. C. D.2.下列运算正确的是( ) A. 236a a a ⋅= B. 235()a a -=-C. 109(0)a a a a ÷=≠D. 4222()()bc bc b c -÷-=-3.下列等式从左到右的变形,属于因式分解的是( ) A. ()a x y ax ay -=-B. ()()311x x x x x -=+-C. ()()21343x x x x ++=++D. ()22121x x x x ++=++4.下列根式中是最简二次根式的是( )A.B.C.D.5.下列各式从左到右变形正确的是( )A. 0.220.22a b a ba b a b++=++B.231843214332x yx y x y x y ++=--C. n n a m m a -=-D. 221a b a b a b+=++6.把分式22xyx y -中的x、y 的值都扩大到原来的2倍,则分式的值… 、 、A. 不变B. 扩大到原来的2倍C. 扩大到原来的4倍D. 缩小到原来的127.(a -变形正确的是( )A. 1-C. D. 8.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( ) A. 22320m mn n -++= B. 2220m mn n +-= C. 22220m mn n -+=D. 2230m mn n --=9.如图,AD 是ABC V 的角平分线,DE AB ⊥于E ,已知ABC V 的面积为28.6AC =,4DE =,则AB 的长为( )A. 4B. 6C. 8D. 1010.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A. 1B.C. 2D.二、填空题11.=__________.12.在实数范围内有意义条件是__________. 13.对于分式23x a ba b x++-+,当1x =时,分式的值为零,则a b +=__________.14.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________. 15.已知22139273m ⨯⨯=,求m =__________. 16.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 17.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.18.阅读理解:对于任意正整数a ,b ,∵20≥,∴0a b -≥,∴a b +≥,只有当a b =时,等号成立;结论:在a b +≥a 、b 均为正实数)中,只有当a b =时,+a b有最小值若1m >__________. 三、解答题19.已知2a =+2b = (1)22a b ab +; (2)223a ab b -+ 20.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢数代入求值.21.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD.对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.的22. 正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点. (1)在图①中,画一个面积为10正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.已知a 、b 2440b b -+=. (1)求a ,b 的值;(2)若a ,b 为ABC V 的两边,第三边cABC V 的面积.25.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?的26.阅读下列材料,然后解答问题: 问题:分解因式:3245x x +-.解答:把1x =带入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”.(1)求上述式子中m ,n值;(2)请你用“试根法”分解因式:3299x x x +--. 27.阅读下面的情景对话,然后解答问题:老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形. 小华:等边三角形一定是奇异三角形!小明:那直角三角形中是否存在奇异三角形呢?问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?___________填“是”或“否”)问题(2):已知Rt ABC V 中,两边长分别是5,_____________;问题(3):如图,以AB 为斜边分别在AB两侧作直角三角形,且AD BD =,若四边形ADBC 内存在点E ,使得AE AD =,CB CE =.试说明:ACE △是奇异三角形. 28.如图,在平面直角坐标系中,点B 坐标为()6,0-,点A 是y 轴正半轴上一点,且10AB =,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为()0m ,.(1)点A的坐标为___________;△是等腰三角形时,求P点的坐标;(2)当ABP⊥交线段AB于点E,连接OE,若点A关于直线OE的对称点为A',当(3)如图2,过点P作PE AB点A'恰好落在直线PE上时,BE=_____________.(直接写出答案)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江苏省南通一中八年级(上)期末数学试卷
一、选择题
1.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称
的是( )
A .
B .
C .
D .
2.(3分)下列运算正确的是( )
A .236a a a =g
B .235()a a -=-
C .109(0)a a a a ÷=≠
D .4222()()bc bc b c -÷-=-
3.(3分)下列等式从左到右的变形,属于因式分解的是( )
A .()a x y ax ay -=-
B .3(1)(1)x x x x x -=+-
C .2(1)(3)43x x x x ++=++
D .221(2)1x x x x ++=++
4.(3分)下列根式中是最简二次根式的是( )
A 23
B 3
C 9
D 125.(3分)下列各式从左到右变形正确的是( )
A .0.220.22a b a b a b a b ++=++
B .231843214332x y x y x y x y +
+=-- C .
n n a m m a -=- D .221a b a b a b
+=++
6.(3分)若分式22xy x y +中的x ,y 的值同时扩大到原来的2倍,则此分式的值( ) A .扩大到原来的4倍
B .扩大到原来的2倍
C .不变
D .缩小到原来的12 7.(3分)1(1)
1a a --变形正确的是( ) A .1- B .1a - C .1a -- D .1a --
8.(3分)已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )
A .22320m mn n -++=
B .2220m mn n +-=
C .22220m mn n -+=
D .2230m mn n --= 9.(3分)如图,AD 是ABC ∆的角平分线,D
E AB ⊥于E ,
已知ABC ∆的面积为28.6AC =,4DE =,则AB 的长为( )
A .6
B .8
C .4
D .10
10.(3分)如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )
A .1
B 2
C .2
D 6 二、填空题
11.(3112242
= . 12.(31x -在实数范围内有意义的条件是 . 13.(3分)对于分式23x a b a b x
++-+,当1x =时,分式的值为零,则a b += .
14.(3分)已知3a b +=,2ab =,求代数式32232a b a b ab ++的值 . 15.(3分)已知22139273m ⨯⨯=,求m = . 16.(3分)已知113a b
-=,则分式232a ab b a ab b +-=-- . 17.(3分)如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长 .
18.(3分)阅读理解
对于任意正整数a ,b ,Q 2()0a b …,20a ab b ∴-…,2a b ab ∴+…a b =时,等号成立;结论:在2(a b ab a +…、b 均为正实数)中,只有当a b =时,a b +有最小值ab 1m >1m m +
-有最小值为 .
三、解答题 19.已知25a =+,25b =
(1)22a b ab +;
(2)223a ab b -+.
20.先化简,再求值:3(2)(1)2m m m ++
÷+-.其中22m -剟且m 为整数,请你从中选取一个喜欢的数代入求值.
21.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中
AB CB =,AD CD =.对角线AC ,BD 相交于点O ,OE AB ⊥,OF CB ⊥,垂足分别是E ,F .求证OE OF =.。