船舶柴油机在线监测与故障诊断系统的关键技术研究

船舶柴油机在线监测与故障诊断系统的关键技术研究
船舶柴油机在线监测与故障诊断系统的关键技术研究

第07卷 第02期 中 国 水 运 Vol.7 No.02 2007年 02月 China Water Transport February 2007

收稿日期:2006-12-25

作者简介:刘 柱 男(1973—) 青岛远洋船员学院 讲师 (266071)

盛进路 男(1976—) 西南交通大学物流学院 博士研究生 (610031)

船舶柴油机在线监测与 故障诊断系统的关键技术研究

刘 柱 盛进路

摘 要:介绍了基于DSP 的船舶柴油机在线监测与故障诊断系统的原理和方法,提出了各系统单元的主要技术要求。径向基RBF 用来解决传感器阵列的相互干扰的问题,利用专家系统和灰色理论原理对故障进行判断和预测,能较好地解决船舶柴油机运行状态的在线监测和故障诊断。 关键词:DSP 在线监测 故障诊断 径向基 灰色理论

中图分类号:U664.121 文献标识码:A 文章编号:1006-7973(2007)02-0040-02

一、引言

船舶柴油机是船舶的重要设备之一,其运行状态直接关系到船舶的运行安全。由于船舶工况的不同,加之工作环境的恶劣,船舶柴油机一直以来是船舶轮机人员重要的维护对象,在线监测系统能适时地检测其运行状态,并能给出潜伏性故障类别,是轮机自动化研究的一个重要方向。过去的机舱监视系统只能对柴油机的运行参数进行监测,但不能对其运行状态进行综合评估,更不能对其故障进行预测。利用故障诊断技术开发在线监测和故障诊断装置,能对柴油机进行适时监控,及早发现故障征兆,减少事故的发生[1,2]。

二、柴油机在线监测系统设计

船舶柴油机在线监测系统,主要由检测单元,信号转换单元,采集控制电路板,以及工作站组成。工作站包含专家诊断模块,以便根据适时监测的数据进行故障诊断,并发出相应报警和处理决策。轮机人员可直接根据结果进行相应的

图1 船舶柴油机在线监测系统的工作流程 三、系统的硬件设计 1.检测单元

检测单元是整个设备的输入端,其检测准确度,直接关系到整个监测系统的精度。要对柴油机的运行状态进行适时监测并进行故障诊断,需要多个运行参数。本系统采用灵敏

度极高,适应性强的物理传感器。这是由于船舶柴油机的工

图2 系统硬件设计

2.数据采集和控制系统

本采用先进的数字信号处理和超大规模集成电路技术,加强了系统的可靠性和灵活性,能很好地消除各种外部信号干扰。该系统以

DSP (TMS320)和

CPLD

(XC95108PQ100)为核心,辅以外围电路模块,并适时控制系统,保证系统的可靠运行。

(1)CPU 模块

采用TMS320F206作为系统的核心处理器,片上有高速的SAM、高速Flash、16位定时器、异步串口、同步串口和3个外部中断,拥有强大的数据处理能力。

(2)外围接口

采用XC95108PQ100作为外围接口电路的主芯片,可增强系统的可靠性和灵活性。

(3)数据采集电路

数据采集电路是数据采集和控制电路的核心,选用高性能的模数转换器件(AD7710)能够提高数据采集的精度,

第02期 刘 柱等:船舶柴油机在线监测与故障诊断系统的关键技术研究 41 增强系统的抗干扰性能。采用了??∑技术、差分技术和数字滤波技术,有很强的抗干扰能力,其分辨率可达到24bit。

(4)通信模块

通信模块采用RS232和RS485两种方式,RS232主要用语调试程序,而RS485主要用于现场的通信。

四、传感器干扰问题解决

由于船舶柴油机故障诊断系统主要是采用提取柴油机缸盖、喷油泵、缸体、曲轴、变速箱等部件的表面振动信号,监测柴油机的运转情况,诊断柴油机的故障[3]。利用多个传感器进行信号测取,这样势必造成相互干扰,影响测量精确度,会对诊断结果造成误差, 神经网络以其非线性映射、并行处理和高度自学习、自组织、自适应的能力,有效地解决了传感器所产生的非线性问题,并在一定程度上抑制传感器的飘溢或噪声,有助于检测精度的提高[4-5]。通过预先对学习样本的学习,建立神经网络输入层、隐层、输出层之间的连接关系,进而对未知样本的检测、识别。

径向基(RBF)网络的结构是一种3层前向网络:第1层为输入层,由信号源结点组成;第2层为隐层,单元数由所描述问题的需要决定;第3层为输出层,它对输入模式的作用做出响应。从隐含层空间到隐层空间的变换是线性函数,从输入层到隐含层空间的变换为非线性RBF 函数,即是局部分布的、并对中心点径向对称衰减的非负、非线性函数(在这里取高斯公式)。对于高斯函数为RBF 函数的RBF 网络,可用如下公式表示。

(1)

其中Φ为高斯函数,i X X ?表示欧氏范数,2σ为高斯RBF 的方差,n i X R ∈为RBF 的中心,M 为中心数。

五、灰色理论故障诊断原理

利用专家系统原理,统计分析船舶柴油机的各种故障类型及其特征,进行聚类分析。样本数据库的运行需要在上位机进行。利用灰色理论原理进行故障判断。经过人机界面设计良好的程序实现轮机人员对柴油机状态的了解和故障识别。

定义初始标准故障模型,设0()(1,2,,)x t t m ="是参考序列,()(1,2,,;1,2,,)i x t t m i n ==""是n 个比较因素序列。

()i x t 对0()x t 在t=k 时的关联系数()i k ξ

0000(min)(max)

()()(max)

min min ()()max max ()()()()max max ()()

i i i i i

k

i

k

i i i

k

k k x k x k x k x k x k x k x k x k ρξρρ?+?=

?+??+?=

?+?

同一种故障的因素很多,信息分散,具有很多不确定度。为了便于比较,将各个时刻的关联系数集中为一个值(关联度)。

子序列()i x t 与0()(1,2,,)x t t m ="的关联度i r 定义为:

1

1()m

i i k r k m ξ==

∑ 比较i r 与j r (i j ≠),若i j r r ?,则表明第i 个因素对结果的影响比第j 个因素大。

利用所计算出故障因素与故障类型的关联度,进行排序,既而判断故障类型和主要因素。

六、结论

基于DSP 技术的船舶柴油机在线监测与故障诊断系统,能很好的对柴油机的运行状态进行监测,并能根据专家系统进行故障诊断。利用径向基方法能很好的解决传感器的交叉干扰问题,采用建立标准故障模型的专家系统,利用灰色相关理论,能更好地诊断故障类型。

参考文献

[1] 盖强,冯杰,初健.舰船主机故障诊断系统.仪器仪表

学报,2004,25(4):171~172.

[2] 肖建昆,郁飞.柴油机状态在线监测与故障诊断系统开

发.江苏科技大学学报,2006,20(1):78~82. [3] 鞠进贤,刘敏林,欧阳光耀.舰船柴油机燃油系统故障

诊断仪的研制.柴油机,2002,(2):37~39.

[4] 吴浩扬,常炳国,朱长纯等.用于变压器故障特征气体

分析的气敏阵列传感系统[J].西安交通大学学报,2000,34(4):23~26.

[5] 马戎,周王民,陈明.基于传感器阵列与神经网络的气

体检测系统[J].传感技术学报,2004(3):395~398.

Study on the key technique of diesel engine online monitoring

and fault diagnosis system

Liu zhu Sheng Jinlu

Abstract: The theory and the method of the online condition monitoring and fault diagnosis

based on DSP is introduced. The system can detect engine states, diagnose faults ,and foresee service on-line. When the sensors are used in on-line monitoring system, a sensor array is composed and RBF is used to reduce errors, the fault diagnosis and forecasting by means of expert system and grey theory the instruments are developed to monitor different faults of the diesel engine.

Keywords: DSP, online monitoring, fault diagnosis, grey theory

2

2

1

()2M i

i i X X F X w σ=?=Φ?

柴油发动机常见故障诊断与排除

这是由于柴油未完全燃烧而产生的黑色炭粒混在废气中引起的。 1、故障原因 (1)发动机负荷过大。 (2)喷油器雾化不良,喷油压力过低或有严重漏油现象。 (3)供油提前角太小致使供油过晚。 (4)空气滤清器堵塞,进气量少,氧气供应不足。 (5)喷油泵供油太多。 2、排除方法 (1)减轻负荷,不使拖拉机长时间超负荷工作。 (2)调整和更换喷油器。 (3)按规定调整供油提前角。 (4)对进气系统和滤清器进行保养,更换滤芯。 (5)调整喷油压力。 (二)发动机排气管冒蓝烟 这是由于燃烧室内进入了过量的机油而引起,俗称烧机油。 1、故障原因 (1)油底壳中机油过多。 (2)油环磨损严重,开口间隙过大,油环装反或有积炭胶结在槽内。 (3)活塞环开口未交错开。 (4)缸套与活塞间隙过大。 (5)空气滤清器(湿式)底壳油面过高。 (6)气门杆和导管配合间隙大。 2、排除方法 (1)排放出油底壳中多余的机油,使油面保持合适的高度。 (2)清洗或更换油环,重新安装活塞环。 (3)更换活塞和缸套。 (4)倒出空气滤清器底壳中多余的机油。 (5)更换新件。

这也是一种常见的现象,气温较低时,刚启动的发动机转速低易排放白烟(主要是水汽),当转速正常时会逐渐消除,此种情况不属故障。另外,是由于冷却水道及密封部件的损坏,造成冷却水窜入燃油供给系(或油底壳),然后到达燃烧室,同废气一起排出,即形成白色烟雾。 1、故障原因 (1)气缸盖螺母松动,气缸垫损坏以及气缸盖、气缸套、气缸体出现裂纹或阻水圈失效等,使冷水窜入气缸。 (2)柴油中含水。 (3)供油提前角过大。 (4)气门间隙过小。 (5)喷油器、喷油泵偶件磨损严重。 2、排除方法 (1)重新按规定拧紧缸盖螺母,更换已损坏部件。 (2)更换合格柴油。 (3)调整供油提前角。 (4)调整气门间隙。 (5)对喷油泵、喷油器偶件进行研磨、选配或更换。 (四)发动机响声异常 发动机出现异常响声,是由于不正常爆发而产生的敲击声或不正常的运转而产生的撞击声。 1、故障原因 (1)喷油时间过早或过晚。喷油时间过早,发动机工作粗暴引起敲缸;喷油时间过晚,出现过后燃烧会引起排气管放炮声。 (2)喷油器滴油,响声无一定规律。有时出现敲击声有时则出现放炮声。 (3)气门间隙太大或太小。 (4)活塞环侧向间隙过大。 (5)连杆铜套间隙过大。

电控柴油机_高压共轨_燃油供给系统故障诊断与分析

第6卷第3期电控柴油机(高压共轨)燃油供给系统主要由油 箱、LP泵 、滤清器、油水分离器、高低压油管、高压泵、 高压共轨组件、喷油器、预热装置及各种传感、ECM等 基本部分组成。其基本功用是根据柴油机的工作要 求,定时、定量、定压地将雾化良好的柴油以一定的要 求喷入气缸内,并使这些燃油与空气迅速地混合和燃 烧。所谓定时就是按照供油相位要求;定量就是保证 一定的油量,满足动力性的要求;定压则要求喷入气 缸的燃油具备一定的动能与空气进行混合。优良的混 合气是提高柴油机动力性、燃油经济性、降低排放率 和噪音率的关键,也就是要求喷射系统产生足够高的 喷射压力,确保燃油雾化良好,同时还必须精确控制 喷油始点和喷油量。其中燃油供给压力就是柴油机一 直困扰人们的常见问题。电控柴油机(高压共轨)燃油 供给系故障就是指其燃油供给异常,影响发动机工作 性能的故障现象,就其故障产生原因,现就华泰现代 柴油车系为例分别从燃油供给系统低压部分、高压部 分、电控部分等因素引起的电控柴油机(高压共轨)燃 油供给系统故障进行简要分析与判排。 一、燃油供给系统低压部分引起的燃油系统故障 共轨喷油系统的低压供油部分包括:燃油箱(带有 滤网,油位显示器,油量报警器)、输油泵、燃油滤清器 总成及低压油管等1.输油泵压力异常引起燃油系统故障图1LP示意图输油泵是一种带有滤网的滚柱叶片泵 (容积式 泵),它将燃油从燃油箱中吸出,将所需的燃油连续供给高压泵。安装在油箱外部的专用支架上,叶片泵主 要由转子、与转子偏心的定子(即泵体)及在转子和定收稿日期 :2010-9-30作者简介:姜伦(1967~)男,高级工程师,工学学士,主要研究方向:汽车检测与维修技术.电控柴油机(高压共轨)燃油供给系统 故障诊断与分析姜伦( 湖南民族职业学院,湖南岳阳414000) 【摘要】:随着人类社会发展的需要,环保与低碳走进了我们日常生活的点点滴滴,"低碳"是当今人类科研 与人们谈论的大环境。轿车发展到今天,柴油版轿车凭借其优越的经济性与环保性备受广大车友的青睐,未来轿 车的发展方向除混合动力外,柴油轿车必将重拳出击,在未来的轿车市场分一杯甜羹!电控柴油燃油供给系统一 直是柴油车系难以突破的难点,该系统的工作状况对柴油机的功率和油耗有重要的影响,而其中的燃油供给压 力是该系统必须力克的难关。现就电控柴油机(高压共轨)燃油供给系统的燃油压力异常问题作重点阐述,进而 对其他因素引起的柴油机燃油供给系统故障作简要的分析与判排。

浅谈电力一次设备在线监测系统

浅谈电力一次设备在线监测系统 发表时间:2017-04-27T09:49:18.513Z 来源:《电力设备》2017年第3期作者:茹梁阁[导读] 本文分析了一次设备运行信息的分类和收集方法。根据一次设备在线监测的原则和方法,提出智能变电站中在线监测的配置原则。 (国网江苏省电力公司泰州供电公司江苏泰州 225300)摘要:智能变电站的在线监测系统可以对变电站进行综合监测和故障诊断,并提供整体解决方案。安装在高压设备上的在线监测系统可以分析、诊断、预测正在或即将发生的故障,也可以区分故障性质、故障类型、故障程度及其原因,并根据该分析结果给出故障控制和解除措施,从而保障设备安全稳定运行。本文分析了一次设备运行信息的分类和收集方法。根据一次设备在线监测的原则和方法,提出智能变电站中 在线监测的配置原则。 关键词:智能变电站一次设备在线监测配置原则 1在线监测系统结构按照国家电网公司所发布的智能化和在线监测规范要求,目前智能变电站在线监测系统层次结构示意图如图1所示。如图1所示,系统按照装置(IED)分为4层,包括站端监测单元、主IED、子IED和传感器(或监测装置)。站端监测单元是全站的后台,负责变电站的监视和管理;主IED按监测设备类型配置,子IED负责部分监测数据的采集及转发;传感器,或与传感器一体的监测装置,直接与被监测一次设备连接。 2设备信息收集和分类 2.1设备信息的分类 智能电网中,与电气设备相关的所有信息包括波形、声音,图像应该是以数据的形式提供。为了便于收集和处理,一次设备的数据被分为五种:基础数据、操作数据、测试数据、在线监测数据、缺陷数据和事故数据。基本数据是静态的,这是一次设备的基本参数,其他数据是动态的。反映设备的操作条件的数据包括:电压、电流、断路器动作次数等。测试的数据包括:充电测试数据、常规测试数据和诊断试验数据,这些事由专业仪器获得的数据。 2.2设备信息的收集 一次设备的信息是由通过监控设备的手动输入和自动采集收集的。基本数据和测试数据由人工输入收集。目前,基本数据由制造商的说明书提供,并输入由操作者提供到操作和管理系统。测试数据是由维修人员,通过测试部门提供的测试报告输入。设备的运行数据由通过监控设备的手动输入和自动采集收集。目前,大部分的操作数据是通过人工输入,以及部分数据由监控系统中的变电站收集诸如电压、电压、电流、开关设备的位置的信号,和变压器油的温度等。 在线监测数据来自在线监测设备。总体上,一次设备的监视数据被存储并限于在变电站或电厂应用。缺陷数据通常包含在测试、操作和在线监测数据中,被输入到操作和管理系统或数据中心。事故数据由故障记录装置和保护装置自动收集并保存在监视系统,是电力系统中的最重要的记录,例如,根据电流断路器动作次数和故障电流,操作者能够估计当前断路器的寿命并提出维修计划,故障电流波形是选择断路器的重要依据。 3一次设备在线监测的原则和方法 3.1在线监测系统原则 在线监测的目的是在一次设备故障发生前发现存在的安全隐患,属于预防性监测范畴,并不具有实时性和可控性,因此,可重点从与一次设备整合,简化系统结构,提高实施维护效率等方面进行新一代智能变电站中的在线监测系统的分析。将在线监测装置或传感器与一次设备进行合理整合,为系统实施、测试、试验和维护等工作提供了便利条件。根据各种在线监测技术发展应用的实际情况,可考虑如下方式: (1)传感器之间的整合。指能类似或相同或监测同一对象的传感器可以整合到一起或一起整合到同一个装置之中,从而减少传感传感器物理数量,增加一致性和稳定性。(2)传感器与在线监测装置整合。即传感器部分融入监测装置部分,取消传感器与采集器之间的接线,实现二者紧密耦合。(3)在线监测装置间的整合。考虑将统一类型的多个监测装置进行整合,将不同类型的监测装置在可能的前提下进行整合,将在线监测装置与传统表计整合等。(4)传感器与一次设备整合。传感器与一次设备的整合可以说是新一代智能变电站在线监测技术深度发展的最为关键一环。在线监测传感器在机械结构上甚至电路上、磁路上难免要与一次设备本体有着较为紧密的耦合。因此,将传感器或装置作为一次设备的一部分进行统筹考虑、整体设计,确保一次设备和在线监测的稳定性和可靠性。 3.2在线监测系统方法 目前,智能变电站的在线监测系统包括变压器油在线监测、变压器局部放电、色谱在线监测,变压器套管的绝缘、GIS局部放电和SF6气体。这些在线监测系统的目标是在变电站的主要设备,监测结果被广泛用于电气设备状态的维护、防止设备和人事故。变压器在线监测包括绕组测温在线监测,油中气体在线监测,铁芯接地电流在线监测,局部放电在线监测,高压套管绝缘,其他非电量参数监测包括主油箱气体压力、顶层油温、底层油温)。GIS(断路器)状态监测包括监测位置信息、分合闸线圈电流波形、分合闸时间、储能电机工作状态,局部放电监测,气体密度和微水在线监测。 避雷器在线监测系统利用避雷器运行时的接地电流作取样装置的电源,将泄漏电流的大小转换成光脉冲频率的变化,采用光纤取样、微机数据处理和数据通讯等一系列高科技手段,解决了避雷器泄漏电流测量、传输中的无源取样,高电压隔离和数据远传等关键问题和泄漏电流超标即时报警,实现了无人值班变电所对避雷器绝缘状况在线监测的自动化。 4在线监测配置原则

船舶柴油机故障在线诊断仿真技术研究

船舶柴油机故障在线诊断仿真技术研究 蔡振雄,黄加亮,翁泽民(集美大学轮机系,福建厦门361021) [摘要]提出了船用柴油机的主要部件、易损件的运行性能采用微机自动 巡回检测,并与正确值比较的方法,来达到故障在线自动诊断的目的.在此基础上,把仿真以及神经网络技术直接应用于柴油机故障在线诊断系统, 建立船用柴油机症状与故障样本集,作为神经网络故障诊断的专家知识库,以实现船用柴油机故障在线智能诊断,从而提高故障诊断的及时性和准确率,减少误诊. [关键词]船舶柴油机;在线监测;智能诊断;仿真技术;神经网络技术 [中图分类号] U664.121; TK418 [文献标识码] A0

引言 早期船舶轮机员对船用柴油机的故障诊断,一般通过一些常规的普通仪表、仪器、化验并结合看、摸、听、闻等传统的简易手段对含有故障的柴油 机及系统进行离线经验诊断.这种方法不仅对轮机员的素质有很高的要求,而且故障诊断的速度慢、质量差.随着科学技术水平的提高,微机的普及, 为离线和在线故障诊断提供物质基础,使离线与在线诊断的实现成为可能. 1船用柴油机故障的在线诊断 在线诊断是指对于大型、重要的设备为了保证其安全和可靠运行,需要对所监测的信号进行自动、连续、定时的采集与分析,对出现的故障及时做出诊断.建立在线故障监测和诊断系统,能有效提高故障诊断的准确率,缩短故障诊断时间,促进维修方式从预防性维修到预测性视情维修的转变.故障在线诊断又分为人工在线故障诊断和自动在线故

障诊断.人工在线诊断是70年代中期前后发展开发应用的技术,利用监测系统对柴油机运行时内外部工况参数进行自动监测,并将监测信号输入计算机进行计算分析,同时结合轮机日记记录、轮机员的观察测试,对柴油机技术状态进行早期预测,做一些部件的趋势分析,为定期的维护保养提供信息.人工在线诊断对要求快速故障定位,故障模式识别的船用柴油机来说,太慢且准确性较差无论对故障的在线人工诊断还是在线自动诊断,目的均是为了有效地识别故障,所以最关键的问题是要建立故障识别的判据(专家系统数据库),即如何判断柴油机含有故障.经验表明柴油机工作性能参数如压力、温度的大小高低、噪音的大小、转速、流量漏泄、振动等,都可以作为故障判断的依据.为了达到自动诊断的目的,必须引入微处理机系统,对柴油机的关键件、重要件、易损件及其它部位设定故障诊断点,并将这些正确的性能参数信号值建立完整的数据库(专家系统数据库);利用微机对诊断点的诊断信号进行自动巡回检测,测试结果由计算机自动与数据库中的正

船舶柴油机复习资料

1.柴油机特性曲线:用曲线形式表现的柴油机性能指标和工作参数随运转工况变化的规律。2.扫气过量空气系数:每一循环中通过扫气口的全部扫气量与进气状态下充满气缸工作容积的理论容气量之比 3.封缸运行:航行时船舶柴油机的一个或一个以上的气缸发生了一时无法排除的故障,所采取的停止有故障气缸运转的措施。 4.12小时功率:柴油机允许连续运行12小时的最大有效功率。 5.有效燃油消耗率:每一千瓦有效功率每小时所消耗的燃油数量。 6.示功图:是气缸内工质压力随气缸容积或曲轴转角变化的图形。 7.燃烧过量空气系数:对于1kg燃料,实际供给的空气量与理论空气需要量之比。 8.敲缸:柴油机在运行中产生有规律性的不正常异音或敲击声的现象。 9.1小时功率:柴油机允许连续运行1小时的最大有效功率。(是超负荷功率,为持续功率的110%。) 10.平均有效压力:柴油机单位气缸工作容积每循环所作的有效功。 11.热机:把热能转换成机械能的动力机械。 12.内燃机:两次能量转化(即第一次燃料的化学能转化成热能,第二次热能转化成机械能)过程在同一机械设备的内部完成的热机。 13.外燃机: 14.柴油机:以柴油或劣质燃料油为燃料,压缩发火的往复式内燃机。 15.上止点:活塞在气缸中运动的最上端位置,也是活塞离曲轴中心线最远的位置。下止点 16.行程:活塞从上止点移动到丅止点间的位移,等于曲轴曲柄半径R的两倍。 17.气缸工作容积:活塞在气缸中从上止点移动到丅止点时扫过的容积。 18.压缩比:气缸总容积与压缩室容积之比值,也称几何压缩比。 19.气阀定时:进排气阀在上.丅止点前启闭的时刻称为气阀定时,通常气阀定时用距相应止点的曲轴转角表示。 20.气阀重叠角:同一气缸在上止点前后进气阀与排气阀同时开启的曲轴转角。(进排气阀相通,依靠废气流动惯性,利用新鲜空气将燃烧室内废气扫出气缸) 21.扫气:二冲程柴油机进气和排气几乎重叠在丅止点前后120-150曲轴转角内同时进行,用新气驱赶废气的过程。 22.直流扫气:气流在缸内的流动方向是自下而上的直线运动。(空气从气缸下部扫气口,沿气缸中心线上行驱赶废气从气缸盖排气阀排出气缸) 23.弯流扫气:扫气空气由下而上,然后由上而下清扫废气。 24.横流扫气:进排气口位于气缸中心线两侧,空气从进气口一侧沿气缸中心线向上,然后再燃烧室部位回转到排气口的另一侧,再沿中心线向下,把废气从排气口清扫出气缸。 25.回流扫气:进排气口在气缸下部同一侧,排气口在进气口上方,进气流沿活塞顶面向对侧的缸壁流动并沿缸壁向上流动,到气缸盖转向下流动,把废气从排气口中清扫出气缸。 26.增压:提高气缸进气压力的方法,使进入气缸的空气密度增加,从而增加喷入气缸的燃油量,提高柴油机平均有效压力和功率。 27.指示指标:以气缸内工作循环示功图为基础确定的一些列指标。只考虑缸内燃烧不完全及传热等方面的热损失,不考虑各运动副件存在的摩擦损失,评定缸内工作循环的完善程度。 28.有效指标:以柴油机输出轴得到的有效功为基础,考虑热损失,也考虑机械损失,是评定柴油机工作性能的最终指标。 29.平均指示压力:一个工作循环中每单位气缸工作容积的指示功。 30.指示功率:柴油机气缸内的工质在单位时间所做的指示功。 31.有效功率:从柴油机曲轴飞轮端传出的功率。

潍柴动力国三电控柴油机故障诊断及排除

潍柴动力国三电控柴油机故障诊断及排除 潍柴国三柴油机是在严格的质量保证体系下设计和生产制造的,每一台出厂的柴油机都经过规定的测试。同时柴油机又是一种精密机械,其功效要得到长久保证,与正常的维护保养密不可分。引起柴油机早期失效,一般有以下几个原因: 1.违章操作,管理和使用不善; 2.不按规定进行维护和保养甚至以修代养; 3.配件制造不良,特别是贪图便宜购买到假冒伪劣产品,将大大缩短柴油机的寿命; 4.燃油和牌号选用不当或不合格。 一、柴油机故障诊断原则和方法 柴油机故障成因复杂,有时故障显现是类似的,但产生原因并非一样。为提高故障诊断的准确性,避免或少走弯路,建议客户按以下原则判断处理故障: 针对特征,联系原理; 弄清现象,不漏点滴; 由简到繁,由表及里; 按系分段,检查分析 柴油机故障常用的诊断方法一般有 1)观察法:通过观察柴油机的排烟等故障特征,判断故障情况。(图1 )

2)听诊法:根据柴油机异常声音凭听觉判断故障部位性质及程度。(图2) 3)断缸法:停止某缸工作,借以判断故障是否出现在该缸。断缸法一般是向怀疑出现故障的气缸停止供油,比较断缸前后的状态变化,为进一步查找故障部位或原因缩小范围。 4)比较法:对某些总成或零部件,采用更换的办法确定是否存在故障。 以上为机械方面故障的判断方法,在国三柴油机上同样适用,机械故障可参照国二故障排除方法排除。 5)故障诊断灯:当车出现故障时,可以通过整车仪表盘上 的闪码灯读出闪码,参照闪码表初步判断错误原因 闪码读取操作说明 在点火钥匙开关接通或运转状态 下均可进行 点火钥匙开关处于接通位置,按下后松开故障诊断请求开关,闪码灯将报出闪码,每一次操作只闪烁一个闪码(例如3-2-4),

建立全面设备状态监测系统3

建立广义设备状态监测系统 摘要: 关键词: 随着技术的飞速发展,生产系统的规模变得越来越大、功能越来越全、各部分关联越来越密切,这对于提高生产率、降低生产成本、提高产品质量起到了积极的作用;但另一方面,设备一旦发生故障,即造成停产、停工,带来的经济损失比过去较低生产水平时要大得多。特别是石油化工企业设备结构复杂、技术难度大、自动化程度高,工作环境具有高温、高压、生产介质易燃、易爆、易腐蚀和生产连续性强等特点。许多关键设备和大型机组一旦发生事故,会给企业生产和产品质量造成难以估量的损失,因此提高设备的可靠性和安全性就变成关键。为保证设备安全、稳定和长周期运行,进一步加强设备故障和设备隐患的动态管理,杜绝重大设备事故的发生,降低设备故障率及停机台次,就提出了搞好设备运行状态监测的要求。 1、设备状态监测 设备状态监测通常是指通过测定设备的某些特征参数(如振动、温度等),检查和确定设备的运行状态,是处于完好状态、良好状态、临界状态还是停机状态。进而可以结合设备的运行历史,对设备可能发生的或已经发生的故障进行预报、分析、判断,确定故障性质、类别、程度、原因、部位,指出故障发生和发展的趋势及后果,提出控制故障发展的措施,通过采取调整、维修、治理的对策消除故障,最终使设备恢复正常状态。 状态监测分主观状态监测和客观状态监测。主观状态监测指操作人员凭借自己的感官,即视觉(Seeing)、听觉(hearing)、嗅觉(Smell—ing)、触觉(Feeling),亦即利用人的目视、耳听、鼻闻、手摸等,对所操作和管辖范围内的设备、管线等进行检查,用人的主观能动性发现其隐患及故障苗头,掌握其状态,以便采取措施对其进行维护或检修。其结果取决于监测人员,因经验不同,所得到的声音、温度或直观感觉也各异。客观状态监测系指利用各种监测仪器、

关于柴油机故障诊断的总结

关于柴油机故障诊断的总结 关于柴油机故障诊断的总结 关于柴油机故障诊断的总结 柴油发动机应用广泛,处在所属产业链的相对核心的位置。其运行状态的好坏直接关系到成套设备的工作状态。因此,对柴油机运行状态进行实时监测和故障诊断,确保其处于安全、可靠、高效率的工作状态,对提高整套设备的劳动效率,提高产品质量,降低生产成本和能耗具有重大的意义。 柴油机故障诊断和其它类型的机械故障诊断一样,首先必须对故障机理进行研究,以故障信号的检测技术及信号处理技术为基本技术,以故障信号处理和特征提取理论为基本理论,以基于信号处理和特征提取的故障类型识别方法为基本方法。近年来,随着科学技术的发展,柴油机故障诊断技术也经历着从最初的事后维修到定时检测,再到现代故障诊断技术的视情维修。传统的诊断方法虽然简单易行,但是由于其信息量小,精确度不高,成本较高且容易发生误判,故难以满足现代的需求。20世纪80年代,邓聚龙教授提出了灰色系统理论,为研究少数据、贫信息不确定性问题提供了新方法,很好地解决了传统方法的不足之处。进入90年代后,随着人工智能技术的发展,柴油机故障诊断技术进入了智能化的阶段。检测项目增强,软件功能增强,诊断的准确性大为提高。基于专家系统和神经网络的智能化诊断方法为柴油机故障诊断技术的发展提供了新的方向。一、传统的故障诊断技术 传统的柴油机故障诊断技术主要包括热力参数分析法、声振监测、磨粒监测分析法。热力参数分析法中又可以分为通过测定柴油机工作过程的示功图对柴油机

工作过程做综合性的监测的示功图法和利用瞬时转速波动信号对柴油机进行监测和故障诊断的方法。1、热力参数分析法 热力参数分析法是利用柴油机工作时热力参数的变化来判断其工作状态的。这些参数包括气缸压力示功图、排气温度、转速、滑油温度、冷却水进出口温度及排放等。由于这些参数能够很好的反应柴油机的工作情况以及故障特征,具有关联性强、直观且便于分析等优点,因此此种方法得到了广泛的应用。1.1示功图法 示功图是在活塞式柴油机的一个循环中,气缸内气体压力随活塞位移(或气缸内容积)而变化的循环曲线。示功图除了表示作功或耗功的大小以外,还能综合反映了柴油机作出机械功的热力装换过程,故常常用来分析研究以及改善气缸内的工作过程。获取示功图的方法有直接测量法和间接测量法。直接测量法就是直接用压力传感器压力随曲轴转角的变化,然后经过整理表示为曲线形式。间接测量法则通过测量柴油机运行过程中与气缸压力相关的其它量来求的压力而获得示功图的方法。由于间接测量法对柴油机的工作无影响,故目前国内外多采用此方法。虽然这种方法在确定柴油机各类故障时比较全面,但是在现场使用中还存在一些技术问题。如上止点的确定问题、压力传感器的安装及通道效应问题等。 1.2瞬时转速法 柴油机曲轴的瞬时转速波动信号能较理想的反映机器的工作状态和工作质量。通过对瞬时转速波动信号的分析可以得到机器运行状态和相关故障的丰富信息。这种方法的原理是基于柴油机正常工作状态下各缸动力性能的一致性。一旦某一气缸发生故障,这种一致性就会遭到破坏,柴油机的运转平稳性就会变差,转速波动信号将产生严重变形。根据此变形的程度,就能判断出缸内工作过程的好坏。

船用柴油机故障分析及辅助诊断

编订:__________________ 审核:__________________ 单位:__________________ 船用柴油机故障分析及辅 助诊断 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5786-33 船用柴油机故障分析及辅助诊断 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 柴油机在效率、功率和稳定性上的巨大优势,使得柴油机被广泛应用于船舶动力系统中。然而船用柴油机功能复杂且辅助设备众多,这都给其日常维修养护增加了难度。对于船用柴油机的故障处理分析,要在运行参数实时监测的基础上,结合现场工况进行故障处理。通过总结船用柴油机的故障类型,基于常用的几种分析方法进行船用柴油机的故障处理和辅助诊断系统的开发。 内燃机主要有汽油机和柴油机两大类,柴油机在动力性能方面更具备优势。通常来说,柴油机的燃油效率更高、功率更大且工作稳定性更好,它在大型设备上的应用范围更广。我国的社会经济的快速发展,使得水路运输尤其是远洋运输业得到了迅猛发展,我国船舶总吨位和船舶保有量都成直线上升的趋势,由

柴油机故障常用的诊断方法一般有

柴油机故障常用的诊断方法一般有; 1观察法;通过观察柴油机的排烟等故障特征,判断故障情况。 2听诊法;根据柴油机异常声音凭听觉判断故障部位性质及程度。 3断缸法;停止某缸工作,借以判断故障是否出现在该缸,断缸法一般是向怀疑出现故障的气缸停止供油,比较断缸前后发动机的状态变化,为进一步查找故障部位或原 因缩小范围 4比较法;对某些总成或零部件,采用更换的办法确定是否存在故障。 5故障诊断灯;当车出现故障时,可以通过整车仪表盘上的闪码灯读出闪码,参照闪码表初步判断错误原因。闪吗读取操作说明;在点火钥匙开关接通或发动机运 转状态下均可进行,点火钥匙开关处于接通位置按下---松开故障诊断请求 开关闪码灯将报出闪码每一次操作只闪烁一个闪码(例如3-2-4)直至循环 第一个为止,闪码由三位组成,闪烁方式(例如车速传感器故障,闪码; 324)闪码闪烁时间和间隔时间可以由发动机厂自行定义。 6专用工具;故障诊断仪 故障诊断仪可以进行较近一步的判断 故障一;柴油机不能启动 柴油机是压缩式内燃机,柴油机的顺利启动,不仅需要大量燃油充分雾化后喷入气缸,而且要求气缸内空气压缩后具有一定的温度和压力,这样才能使柴油自燃, 因此柴油机不能顺利启动,原因一般在起动系统,电控燃油系统,进排气 系统或柴油机配合间隙上。客户可以根据的伴随特征,按步骤进行分析判 断。 1.1起动机不工作 对于起动机受ECU控制的整车,在启动时ECU首先检查空档信号,输出一个电流驱动启动继电器,继电器接通后电瓶带动起动机起动,检查时有几个 要素;空档开关,启动继电器,电瓶,车下停车开关的关联。 方法步骤; 检查是否挂在空挡位置。 检查车下停车开关的位置(应处于断开状态)。 检查空档开关(一般安装在变速箱上)及接线是否完好,试着使用紧急起动(点火开关持续按下5秒以上)。检查电瓶电压是否过低,以致不能带动起 动机,起动机继电器及接线是否完好,检查起动机是否以烧坏,点火开关 及起动机开关是否已坏。 1.2轨压无法建立(起动机能正常工作,但无法启动) 共轨系统对燃油右路要求较高,低压油路(油箱,粗滤,精滤,回油),高 压油路(高压油泵,共轨高压油管,喷油器)都要保证密闭,任何一个环 节出问题,轨压都不能正常建立,提示主机厂对整个燃油油路高度重视。 注意:车辆的第一次启动必须进行低压油路和高压油路的排气和充油。 方法步骤: 检查油箱油位是否过低。 检查手压泵是否工作正常 检查低压油路是否有气,并排除空气(有时低压油路泄漏不明显,需要仔 细检查) 排气方法:主要牌粗滤里面的空气,松开粗滤上的放气螺钉,用手压动 粗滤器上的手压泵,直至放气螺钉处持续出油为止。

第一章_船舶动力装置系统_第一节_燃油系统

第一章船舶动力装置系统 现代船舶动力装置,按推进装置的形式,可分为5大类: (1)·柴油机推进动力装置;(2)·汽油机推进动力装置;(3)·燃气轮机推进动力装置;(4)·核动力推进动力装置;(5)·联合动力推进装置。 现代民用船舶中,所采用的动力装置系统绝大多数是柴油机动力装置,因此,本书主要介绍以柴油机为动力装置的船舶,图1-1为船舶柴油机动力装置系统燃油供应系统原理图。 图1-1 柴油机动力装置系统燃油供应系统原理图 柴油机燃油系统包括三大功能系统,分别是输送、日用和净化。 1)油输送系统 燃油输送系统是为了实现船上各燃油舱柜间驳运及注入排出而设计的,所以,系统应包括燃油舱柜、输送泵、通岸接头和相应的管子和阀件。通过管路的正确连接和阀件的正确设置,实现规格书所要求的注入、调拨和溢流等功能。 设计前,要认真阅读规格书和规范的有关章节,落实本系统所涉及的舱柜和设备所要求的输送功能。 设计时,应注意如下几个方面: a.规格书无特殊要求,注入管应直接注入至各储油舱,再通过输送泵送至各日用柜和沉淀柜,各种油类的注入总管应设有安全阀,泄油至溢流舱,泄油管配液流视察器; b.所有用泵注入的燃油舱柜都要有不小于注入管直径的溢流管,溢流至相应的溢流舱或储油舱,具体规定见各船级社规范,溢流管要配液流视察器; c.从日用柜至沉淀柜的溢流,在日用柜哪的管子上都要开透气孔以防止虹吸作用,两柜的连接管处要有液流视察器。 d.装在日用柜和沉淀壁上低于液面的阀,有的船级社规范对其材料有具体的规定,选阀时应予以注意。 e.一般情况下输送系统的介质,温度和压力都是较低的,所以系统的管材选用III级管即可。

电控柴油机故障诊断步骤

电控柴油机故障诊断步骤 2011-09-20 10:45:59| 分类:维修精华| 标签:|字号大中小订阅电控燃油喷射发动机的故障诊断步骤 一、注意事项 1、禁止使用大功率仪器,避免对电控单元产生无线电干扰。 2、在拆除蓄电池的搭铁线前,先读取ECU 中的故障代码。 3、检修燃油系统时,先对油路进行卸压。 4、在拆卸和插接线路或元件连接器之前,点火开关一定要置于“ON”位。 二、诊断步骤 以供给系统出现故障为例,应先利用油压表检查系统油压,电喷发动机系统油压一般为0.25MPa,如油压低于规定值,先检查油泵、油压调节器和管路是否工作不良。对电控系统故障按下述步骤检查:故障码检查清除症状确认故障码再检症状状况 显示故障码症状有同一故障码故障码所指电路故障依然存在 显示正常码故障不在故障指电路,在另故障点 症状没显示正常码第一次显示故障码是历史纪录 显示正常码症状有显示正常码故障不在诊断电路中,但存在 症状没显示正常码故障不在诊断电路中,已消除 1.静态模式读取和清除故障码。 2.症状确认。 3.症状模拟。 4.动态故障代码检查。 5.电路检查。 6.部件检查。 7.调整、设定、激活或维修。 8.试车检验。 电控燃油喷射发动机故障自诊断 一、自诊断系统的功能 现代汽车的电控系统都配备有自诊断系统,ECU的自诊断系统主要用于检测电子控制系统各部件的工作情况。自诊断系统具有以下功能:①检测电子控制系统的故障。②将故障代码存储在ECU的存储单元中。 ③提示驾驶员ECU已检测到故障,应谨慎驾驶。④启用故障保护功能,确保车辆安全运行。⑤协助维修人员查找故障,为故障诊断提供信息。 二、故障代码的读取与清除方法 1、准备工作:①拉紧驻车制动,变速器置于空挡。②用直观检查法对发动机控制系统进行全面检查。 ③检查蓄电池电压,电压值应在11V以上。④启动发动机,怠速运转,使发动机达到正常工作温度。⑤关闭所有电控系统和辅助设备。⑥检查发动机故障指示灯是否正常。 2、故障代码的读取与清除方法:①静态读码的方法。打开点火开关,用跨接线短接诊断端子的TEl 和E1,根据“CHECK”灯闪烁,读取故障代码。②动态读码的方法。关闭点火开关,用跨接线短接诊断端子的TE2和El。打开点火开关,“CHECK”灯应快速闪烁。然后进行路试,车速不得低于10km/h。路试之后,再用跨接线短接诊断端子的TEl和E1,根据“CHECK”灯闪烁规律读取故障代码。③故障代码的清除。在排除故障后,应清除故障码。 若某一电路出现超出规定范围的信号时,诊断系统就判定该信号线路出现故障。如果故障状态存在超过一定的时间,此故障代码就会储存在电控单元ECU的随机存储器中。如果在一定时间内该故障状态不再出现,则电控系统把它判定为偶发性故障,发动机启动50次故障不再出现,该偶发性故障代码就会自动消除。 电控燃油喷射系统主要元件的检测 电控系统由传感器、ECU、执行机构和线束组成。ECU不断检测传感器的性能参数,经计算、处理后,再控制执行机构动作。若主要元件出现故障,可读取故障代码、确定故障部位和维修方法。 一、传感器的检测

船用柴油机

上海国际海事信息与文献网发布时间:2007-03-20 浏览:3123 【摘要】从船用柴油机的市场、产品、技术等方面介绍了柴油机的现状及发展动向。论述当前国外气缸直径160 mm以上,单机功率大于1000 kW的大功率低速、中速、高速柴油机的总体技术水平、技术发展概况,特别是在提高可靠性、改善其低工况特性、降低其排放和智能柴油机等方面进行阐述,并预测今后的发展趋势。 0 引言 柴油机因其功率范围大、效率高、能耗低、使用维修方便而优于蒸汽机、燃气轮机等,在民用船舶和中小型舰艇推进装置中确立了主导地位。船用柴油机的整体结构及其零部件结构不断改进,特别是电子技术、自动控制技术在柴油机上的应用,使其各项技术指标不断创新,市场上已有一批性能好、油耗低、功率范围大、废气排放符合法定标准、可靠性高的产品。 柴油机相对汽油机的最大优点在于高压缩比。这使最大功率、热效率提高,油耗降低;发动机坚固、耐用,寿命变长。但柴油机缺点在于比功率低于汽油机,对空气利用率低,摩擦损失大。 1 低速柴油机 低速柴油机由于性能优良、可靠性好、使用维护方便、能燃用劣质燃油等优点,已成为大型油船、大型干散货船、大型集装箱船的主要动力。最新型低速柴油机在许多方面趋于一致。即结构方面,采用非冷却式喷油器、可变喷油定时油泵、长尺寸连杆、液压驱动式排气门、单气门直流扫气、定压增压、高效涡轮增压器;性能方面,平均有效压力不断提高,增加活塞平均速度,改进零部件结构,增加强度,保持原有的低燃油消耗水平,使单缸功率不断增大,使用寿命延长。电子液压控制系统取代传统的机械式的凸轮驱动机构,简化柴油机设计,降低成本,优化运行控制。近年来,其爆发压力从8 MPa上升到16 MPa,燃油消耗率从208g/(kw·h)降至155g/(kw·h)左右。 目前世界船用低速柴油机市场仍被MAN B&W、Wartsila-New Sulzer和日本三菱重工三大公司垄断,以生产总功率来说,分别约占57%、33%和10%。 MAN B&W公司通过提高气缸平均有效压力和活塞平均速度来提高单缸功率。为使MC系列柴油机的NOx排放量降低,采用提高压缩比和可导致平稳燃烧的喷射系统等措施。 为了在减少NOx排放时不影响燃油消耗率,在设计时应考虑采用增加喷射压力、压缩比、燃烧压力、增压器效率等措施。MAN B&W 6L60MC型柴油机是世界上第一台正式投入使用的“智能化”主机,其燃油喷射和排气阀控制均通过电子计算机完成,达到了低油耗、NOx低排放的目标。 Wartsila-New Sulzer公司通过重组后,在开发、设计和制造能力方面骤然大增。RTA系列低速柴油机为该公司20世纪80年代开发,至今近20年来该公司通过提高平均有效压力、增加活塞平均速度,探索达到更大功率的可能性。 通过增大行程/缸径比,探索提高推进效率的方法;通过提高最大燃烧压力和可变燃油正

关于变电站设备状态检修技术探讨 莫火坤

关于变电站设备状态检修技术探讨莫火坤 摘要:对于电力系统变电站设备实施状态检修,是保证电力系统运行稳定的重 要措施。电力系统运行设备状态检修是早期检修概念的重要体现形式,根据电力 系统运行监测系统,对于电力运行系统中的设备运行状态以及运行情况进行检修的。现代条件下的电力系统变电站设备状态检修,多是运用现代信息技术完成的,在电力系统设备运行过程中进行电力系统设备运行状态的检修,可以及时的对电 力系统运行中存在的故障及设备问题进行检修恢复,提高电力系统设备运行的稳 定性,增加电力系统设备的使用寿命。 关键词:变电站设备;状态检修技术;实例 1变电站设备状态检修技术 (1)变电设备的状态监测 变电设备的状态监测主要有在线监测、离线监测以及定期解体点检三个方面。在线监测就是通过变电企业的数据采集系统、信息管理系统、分散控制系统等, 通过监测设备在线显示各变电设备的使用情况和状态参数,以达到对设备的时时 监控,随时了解设备的运行状态;离线监测是对变电设备定期不定期的通过振动 监测仪、油液分析仪、超声波检漏仪等监测设备对变电设备运行参数进行提取; 定期解体点检是指在变电设备大修、小修、运行低谷、停运等情况下,按照一定 的标准和工艺,对设备解体,检测设备的使用情况,了解设备的变化。 (2)变电设备的故障诊断 在变电设备的状态故障诊断时,常见的诊断技术有两种:一种是比较法,另 一种是综合法。比较法是通过一些诊断技术,如振动诊断、噪音诊断、射线诊断、污染诊断等,将所得出的数据或结果与设备历年或者次年的结果进行比较,如果 没有显著差异,则说明设备不存在缺陷;将测试结果与同一类型设备进行比较, 在相同运行和环境条件下,结果如果存在差异,则说明设备存在问题。比较法对 设备的诊断较为基本,结果具有模糊性。综合法诊断是一项系统诊断方法,诊断 前需要做大量的数据收集工作,包括在线监测系统提供的大量数据,如变压器的 绝缘情况、变压器油色谱情况、变压器运行的温度、负荷情况,开关类设备检测 结果,对设备的离线采集数据,并归纳总结设备运行信息。将这些收集整理的数 据与基于知识的专家系统知识库进行匹配,从而得出诊断结果。除了基于知识的 智能诊断系统外,还有基于人工神经网络的智能诊断,人工神经网络智能诊断又 分为多种,但这些诊断技术多用于发电、继电设备当中,对于变电设备的故障诊断,较多的是基于知识的职能诊断系统。 (3)变电设备的状态预测 变电设备的状态预测是对变电设备状态特征向量的一种预报,可以根据设备 运行情况和实际需要来设定设备的报警阀值,从而对设备运行情况实施即时监测,并预测一段时间内设备运行状态的趋势走向。变电设备的状态预测模型较多,有 基于灰色系统理论的状态预测、基于BP神经网络的状态预测等。基于灰色系统 理论的状态预测因其仅用于短期预测、机械磨损较理想,因而对断路器等设备更 为重要。相对于灰色系统理论的状态预测,基于BP神经网络的状态预测具有良 好的拟合精度,泛化能力和适用性强等优点,能很好的处理和挖掘信息数据,有 效跟踪环境的变化,且具有很强的容错能力,在变电设备的状态预测中有很好的 使用价值。 2实例分析

设备状态实时监控点检管理系统

设备状态实时监控点检管理系统

摘要:随着我国制造行业的迅猛发展,企业设备维修制度不断改革和深化,传统的点检手段难以适应其要求,迫切需要全新的智能点检管理系统,以满足制造行业的发展需求。本文从点检的设计及实现方面来介绍设备点检系统。 当前制造业的设备管理维护面临着的主要问题: ?对设备的运行状态掌握不够; ?对设备有欠维护和过剩维护现象; ?设备信息获取时效性差; ?对设备故障的维修决策缺乏科学性和有效性; ?过多依赖人员素质,随意性强; ?缺乏对设备维护与管理工作的全面有效评估。 针对以上这些现实问题,太友科技研发了一套智能的设备点检管理系统,用户可根据生产和设备的管理要求编制计划、发布计划、采集数据、分析和处理数据。系统可对记录巡检数据的时间、地点、巡检员等相关信息。管理人员可根据生产现场的实际情况并通过系统软件自由的编制巡检计划,计划编制完成后管理人员可将计划发送至巡检仪。巡检人员按照巡检仪上接收到的计划要求,在规定的时间去执行规定的任务 (可以通过输入记录信息,也可以通过测温传感器、测振传感器测量和采集温度和振动信息),完成任务后巡检人员将已存储在巡检仪的数据上传到客户PC端中。管理人员就可以即时获得数据,并可通过系统提供的多种分析处理功能,对数据进行分析处理。

?点检计划的制定:客户可直接在PC端设置好点检的项目、点检周期、点检单元等内容; ?点检计划下载:客户可通过巡检仪上的下载功能直接把已经在PC端设置好的巡检计划下载至巡检仪中; ?现场数据的采集:由内嵌在巡检仪上的数据采集软件实现对点检数据的自动采集,无需人工纸质记录点检结果,可采集的数据分为以下四类:观察类数据、测量类数据、记录类数据、设备运行状态记录; ?点检数据上传:通过内嵌在巡检仪上的同步功能,可直接将生产现场的设备点检数据同步至客户的PC端。在系统管理软件的支持下,将对这些来源于设备现场的原始数据进行各种评估和处理,从而实现了点检作业信息的计算机管理。 ?点检结果查询及报表分析:设备点检结果上传完后,客户可直接通过WEB管理端对点检结果进行查询,并且系统的报表分析功能,实现对巡检数据进行综合分析,及时了解各检查点的点检评分走势,为管理改善提供丰富的数据报表支持;

船舶柴油机故障诊断技术探究

船舶柴油机故障诊断技术探究 柴油机为船舶主要动力设备,如果其出现运行故障,必定会对船舶运行可靠性与稳定性产生影响。现在船舶已经实现了自动化与集成化发展,对船舶柴油机性能有着更为严格的要求。就实际情况分析,造成船舶柴油机故障的原因众多,在对其进行分析时,需要针对不同表现形式特点,并应用合适诊断技术,确定故障原因然后采取措施处理,促使其维持稳定运行状态。文章对船舶柴油机故障诊断技术要点进行了简单分析。 标签:船舶;柴油机;故障诊断 船舶运行环境特殊,柴油机作为维持其运行的主要动力设备,在受到各项因素的影响后,很容易出现运行故障,无法满足船舶运行要求。船舶柴油机传统故障诊断技术主要为看、听、摸、闻,想要更准确地判断故障部位以及原因,需要积极应用新型诊断技术,利用更短时间来得到更准确结果,为后续维护工作提供依据。 1 船舶柴油机故障诊断分析 1.1 故障诊断分析 对于船舶运行情况来看,柴油机故障发生概率比较大,在分析故障原因时,需要基于其结构复杂性,以及运行环境特殊性对各项因素进行综合分析,提高故障诊断结果准确性。船舶柴油机运动部件多、结构复杂度高,故障诊断技术难度大,需要在传统诊断技术上进行更新,积极应用新型技术与理念,准确诊断各类故障,为故障解决提供依据。船舶柴油机故障诊断,需要根据不同故障表现形式,掌握故障产生机理,从物理、化学等方面着手,根据振动、油耗、噪声、形变、磨损、气味等表现特征进行综合分析,选取适当故障特征参数,完成故障诊断[1]。 1.2 故障诊断流程 1.2.1 收集状态信号 故障诊断时首先要对船舶柴油机状态信号进行有效收集,其作为故障特征信息载体,可以为诊断作业提供有效依据。一般可以应用相关传感器或辅助测试仪器对运行状态的船舶柴油机状态信号进行收集,包括噪声信号、振动信号、转速信号、压力信号以及温度信号等。 1.2.2 信息选择提取 对于已经收集到的所有状态信息,进行分类和处理,然后从中确定柴油机故障表现最为密切的特征信息。并对所有特征信息值进行检验,掌握其变化规律,确定设备实际运行状态。但是就以往诊断经验来看,收集到的状态信号,受外部

关于柴油机故障诊断的总结

关于柴油机故障诊断的总结 柴油发动机应用广泛,处在所属产业链的相对核心的位置。其运行状态的好坏直接关系到成套设备的工作状态。因此,对柴油机运行状态进行实时监测和故障诊断,确保其处于安全、可靠、高效率的工作状态,对提高整套设备的劳动效率,提高产品质量,降低生产成本和能耗具有重大的意义。 柴油机故障诊断和其它类型的机械故障诊断一样,首先必须对故障机理进行研究,以故障信号的检测技术及信号处理技术为基本技术,以故障信号处理和特征提取理论为基本理论,以基于信号处理和特征提取的故障类型识别方法为基本方法。近年来,随着科学技术的发展,柴油机故障诊断技术也经历着从最初的事后维修到定时检测,再到现代故障诊断技术的视情维修。传统的诊断方法虽然简单易行,但是由于其信息量小,精确度不高,成本较高且容易发生误判,故难以满足现代的需求。20世纪80年代,邓聚龙教授提出了灰色系统理论,为研究少数据、贫信息不确定性问题提供了新方法,很好地解决了传统方法的不足之处。进入90年代后,随着人工智能技术的发展,柴油机故障诊断技术进入了智能化的阶段。检测项目增强,软件功能增强,诊断的准确性大为提高。基于专家系统和神经网络的智能化诊断方法为柴油机故障诊断技术的发展提供了新的方向。 一、传统的故障诊断技术 传统的柴油机故障诊断技术主要包括热力参数分析法、声振监测、磨粒监测分析法。热力参数分析法中又可以分为通过测定柴油机工作过程的示功图对柴油机工作过程做综合性的监测的示功图法和利用瞬时转速波动信号对柴油机进行监测和故障诊断的方法。 1、热力参数分析法 热力参数分析法是利用柴油机工作时热力参数的变化来判断其工作状态的。这些参数包括气缸压力示功图、排气温度、转速、滑油温度、冷却水进出口温度及排放等。由于这些参数能够很好的反应柴油机的工作情况以及故障特征,具有关联性强、直观且便于分析等优点,因此此种方法得到了广泛的应用。 1.1示功图法 示功图是在活塞式柴油机的一个循环中,气缸内气体压力随活塞位移(或气缸内容积)而变化的循环曲线。示功图除了表示作功或耗功的大小以外,还能综合反映了柴油机作出机械功的热力装换过程,故常常用来分析研究以及改善气缸内的工作过程。获取示功图的方法有直接测量法和间接测量法。直接测量法就是直接用压力传感器压力随曲轴转角的变化,然后经过整理表示为曲线形式。间接测量法则通过测量柴油机运行过程中与气缸压力相关的其它量来求的压力而获得示功图的方法。由于间接测量法对柴油机的工作无影响,故目前国内外多采用此方法。虽然这种方法在确定柴油机各类故障时比较全面,但是在现场使用中还存在一些技术问题。如上止点的确定问题、压力传感器的安装及通道效应问题等。 1.2瞬时转速法 柴油机曲轴的瞬时转速波动信号能较理想的反映机器的工作状态和工作质量。通过对瞬时转速波动信号的分析可以得到机器运行状态和相关故障的丰富信息。这种方法的原理是基于柴油机正常工作状态下各缸动力性能的一致性。一旦某一气缸发生故障,这种一致性就会遭到破坏,柴油机的运转平稳性就会变差,转速波动信号将产生严重变形。 根据此变形的程度,就能判断出缸内工作过程的好坏。但这种方法也有不足之处,如利用瞬时转速法无法确定造成故障的原因、对测量仪要求高且安装困难、费用高。 2、声振监测法 其基本原理是通过对柴油机异常声音、异常振动的监测,诊断柴油机是否发生故障及

相关文档
最新文档