热管技术-高效率热传导系统
热导管技术介绍

Qmax变化 比例
-10% -5% 0% 0%
6以上
热管设计时应尽量减少打扁的厚度,折弯的 角度,弧度,形成正段差 Heat Pipe Technology
13
Thermal Performance (Q-max of groove and composite Heat Pipe) 沟槽管 2.0~2.5 2.6~3.0 3.1~3.5 3.6~4.0 4.1~4.5 4.6以上 Qmax变化比例 -10% -8% -5% 0% 0% 0% 复合管 2.0~2.5 2.6~3.0 3.1~3.5 3.6~4.0 4.1~4.5 4.6以上 Qmax变化比例 30% 30% 30% 20% 10% 0%
高效导热技术——热管
林梓荣 Novark Technology Inc
Heat Pipe Technology
1
热管概述
• • • • • • • 热管应用的技术背景 热管的运行机理 热管的组成 热管毛细结构的类型 热管的特性 热管的需求 热管的制作流程
Heat Pipe Technology
5
热管毛细结构的类型
沟槽 (Groove)
粉末烧 结(Sinter) 纤维(Fiber)
网状 (Mesh)
Heat Pipe Technology
6
热管的特性
(1)很高的导热性;热管内部主要靠工作液体的汽、液相变 传热,热阻很小,因此具有很高的导热能力。导热系数是 铜的几十倍。 (2)优良的等温性;热管各处温度基本等于工质蒸汽是处于 饱和状态下的温度。 (3)热流密度可变性;热管可以独立改变蒸发段或冷却段的 加热面积,即以较小的加热面积输入热量,而以较大的冷 却面积输出热量 。 (4)热流方向可逆性;即热管任意一端受热就可作为蒸发 段,而另一端向外散热就成为冷凝段 。 (5)热管可做成热二极管或热开关;所谓热二极管就是只允 许热流向一个方向流动,而不允许向相反的方向流动;热 开关则是当热源温度高于某一温度时,热管开始工作,当 热源温度低于这一温度时,热管就不传热。 (6)适应性大,可按应用场合制作成不同的形状。
热管散热技术原理

热管散热技术原理热管是一种高效的热传导器件,它能够快速而均匀地将热量从一个地方传递到另一个地方。
其原理基于液体在低温端蒸发成气体,然后在高温端冷凝成液体,从而完成热量传递。
热管由密封的金属管内部填充有工质,通常是一种低沸点的液体,如水,乙醇或氨。
管内的工质在热管两端的低温端和高温端之间循环,实现热量的传递。
在热管的低温端,由于外界的热源,工质开始被加热,转化为气体。
这个过程中,工质吸收了大量的热量,形成了高压高温的气体。
气体在热管内部开始向高温端移动,通过热管的壁以及毛细管效应的作用,使得气体在热管的壁上沉积下来,形成饱和的气体层。
在热管的高温端,由于外界的冷源,气体开始冷却,凝结成液体。
这个过程中,气体释放出大量的热量,形成了低压低温的液体。
液体通过热管的壁开始向低温端移动,通过重力和毛细管效应的作用,使得液体在热管的壁上升起,重新回到低温端。
这样,热管内部形成了一个完整的循环,热量通过液体的蒸发和凝结的过程,从低温端传递到高温端。
1.高效传热:热管利用了液体蒸发和凝结的相变过程,能够实现高效的热量传递。
相比于传统的散热器,热管的传热能力更强。
2.均匀传热:热管能够将热量快速、均匀地从低温端传递到高温端,避免了传统散热器中存在的局部热点问题。
3.具有可调节性:通过工质的选择和调整,可以改变热管的传热性能,满足不同散热需求。
4.结构简单:热管的结构相对简单,由金属管和工质组成,不需要外部动力和控制设备,维护成本低。
热管散热技术在各个领域具有广泛的应用,如电子领域、航空航天领域和工业领域等。
在电子领域,热管被广泛应用于电子元器件的散热,如CPU、显卡等高功率元件的散热。
在航空航天领域,热管可以用于航天器的热控系统,保证航天器在极端环境下的工作稳定性。
在工业领域,热管可以用于工业设备的冷却,提高设备的运行效率和寿命。
总之,热管散热技术通过利用液体的相变过程,实现了高效的热量传递,具有传热效率高、传热均匀、结构简单等优点。
热管技术在煤矿井下防爆电气设备中的应用

热管技术在煤矿井下防爆电气设备中的应用一、热管技术简介热管技术是一种高效的热传导技术,它可以实现非常远距离的热传输,同时还可以大幅度提高热传导效率。
热管是一种由空气、氢气或其他工作流体充满的密闭管道,管内充满工作流体后,通过吸热和放热的方式,实现热的传输,从而将热量从一个位置传递到另一个位置。
在传统的传热方式中,热传导的距离和速率都受到很大的限制,而利用热管技术,可以实现非常远距离的热传输,同时还可以大幅度提高热传导效率。
因此,在电子设备、航空航天、能源等领域,热管技术已经广泛应用。
二、热管技术在煤矿井下防爆电气设备中的应用煤矿井下的电气设备需要具备防爆能力,这对于煤矿的安全生产至关重要。
在这种环境下,热管技术可以优化电气设备的散热效果,提高设备的可靠性和效率。
1. 热管技术在电缆密封头中的应用电缆密封头是一种用于连接电缆和器具的零部件,其在煤矿井下的应用十分广泛。
由于煤矿井下的恶劣环境和高温条件,电缆密封头容易发生热失控,造成安全事故。
而利用热管技术,可以将电缆密封头的热量远距离传递到井口,利用风道进行热交换,从而最终散热。
热管技术可以有效地提高电缆密封头的散热效率,降低其温度,提高其可靠性和使用寿命,从而保障煤矿的安全生产。
2. 热管技术在配电柜中的应用煤矿井下的配电柜是煤矿电气系统中的重要组成部分,其安全性和可靠性对于煤矿的安全生产至关重要。
而在高温、高湿的井下环境中,配电柜易受到过热、氧化等问题的影响,影响其运行效率和寿命。
而热管技术可以将配电柜内部的热量远距离传递到井口,通过风道实现热交换,从而最终将热量散热。
在配电柜内部采用热管技术,可以有效地提高散热效率,保障配电柜的正常运行。
3. 热管技术在变频器中的应用煤矿井下的变频器是电动机控制的核心设备之一,其对于煤矿电气系统的正常运行具有非常重要的作用。
然而在高温、高湿的井下环境中,变频器易受到过热、氧化等问题的影响,影响其运行效率和寿命。
热管技术 (2)

热管技术1. 简介热管技术是一种使用液体在闭合的金属管道中进行传热和传质的技术。
热管由蒸汽和液体组成,通过液体在内部与外部之间的传热传质来实现冷却或加热的目的。
热管技术广泛应用于各种领域,包括电子设备散热、空调系统、航天器热控等。
2. 原理热管内部通常填充着工作介质,如水、铵、乙醇等。
当热管的一端受热时,工作介质在高温处蒸发成为蒸汽,然后蒸汽通过内部的毛细结构传输到低温处,再由于低温损失能量而冷凝成为液体。
液体由于重力或毛细力作用返回热源端,形成一个封闭系统。
这样循环往复,使得热能能够通过液体的相变和气液传导来传递。
3. 优势3.1 高传热效率由于热管内部液体的相变和气液传导,热管的传热效率相对较高。
相比于传统的散热方式,热管技术能够更有效地将热量传递到远离热源的部分,提高散热效果。
3.2 紧凑型设计热管技术相对于其他传热装置具有较小的体积和重量,可以实现更紧凑的设计。
这对于有空间限制的应用非常有优势,如电子设备和航天器上的散热系统。
3.3 没有机械运动部件热管技术没有机械运动部件,因此具有较低的噪音和振动,提高了系统的可靠性和寿命。
3.4 高可靠性热管技术采用封闭的设计,能够在各种环境条件下稳定运行。
由于没有机械部件,热管技术具有较高的可靠性和寿命。
4. 应用领域4.1 电子设备散热电子设备的高功率密度和紧凑设计使得散热成为一个重要的问题。
热管技术可以高效地将散热器与热源连接起来,提高散热效果,保证电子设备的稳定性和可靠性。
4.2 空调系统热管技术可以应用于空调系统中,通过传热传质来调节室内温度。
热管技术的高传热效率和紧凑设计使得空调系统更加高效和节能。
4.3 航天器热控航天器在太空中的温度变化较大,需要进行热控以保证航天器内部设备的正常工作。
热管技术可以通过吸热和放热来调节航天器内部的温度,实现热平衡。
5. 局限性5.1 温度限制热管技术的工作温度通常在-50℃到100℃之间,超过这个温度范围可能会造成热管的性能损害。
热管工作原理

热管工作原理热管是一种高效的热传导装置,它利用液体在低温端蒸发吸热,然后在高温端冷凝释放热量的原理,实现热量的传输。
热管由内壁光滑的密封管道组成,内部充满工作介质,通常是液态的低沸点物质,如水、乙醇等。
热管的工作原理可以简单分为蒸发、传热和冷凝三个过程。
首先是蒸发过程。
当热管的低温端受到热源的加热,工作介质在低温端蒸发成为气体。
这个过程中,工作介质从液态转变为气态,吸收大量的热量。
蒸发过程发生在热管的内壁,由于内壁光滑,气体可以快速地向高温端传输。
接下来是传热过程。
蒸发后的气体沿着热管内部流动,将吸收的热量传输到高温端。
在这个过程中,气体与内壁接触,热量通过传导和对流的方式传递给内壁,然后再通过内壁传递给外壁。
最后是冷凝过程。
当气体到达高温端时,由于高温端的温度较低,气体开始冷凝成为液体。
在冷凝过程中,气体释放出大量的热量。
冷凝后的液体会沿着内壁回流到低温端,重新参与蒸发过程,形成一个循环。
热管的工作原理可以通过以下公式来描述:热流量 = 热管壁厚度 ×热导率 × (高温端温度 - 低温端温度) / 热管壁阻抗热管的工作原理使得它在许多领域有着广泛的应用。
例如,在电子设备散热中,热管可以将热量从热源传递到散热器,提高散热效率。
在航天器中,热管可以平衡温度差异,保护设备免受过热或过冷的影响。
此外,热管还可以用于太阳能热水器、制冷设备等领域。
总结一下,热管的工作原理是利用液体在低温端蒸发吸热,然后在高温端冷凝释放热量的原理,实现热量的传输。
热管具有高效、可靠的特点,广泛应用于各个领域。
散热原理—热管技术

散热原理—热管技术散热原理——热管技术];热管这项技术早在1963年就在美国的LosAla;G.M.Grover;正是因为有热管技术的民用化,使得人们改变了传统散;热管技术为什么会有如此的高性能呢?这个问题我们要;热管就是利用蒸发制冷,使得热管两端温度差很大,使;热管一端为蒸发端,另外一端为冷凝端;热管的导热过程具有很高的热传导性能,与金属相比,;高速度的热传导效果:;-重量散热原理——热管技术]热管这项技术早在1963年就在美国的LosAlamos国家实验室中诞生了,其发明人是G.M.Grover。
热管属于一种传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,通过在全封闭真空管内的液体的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点,并且由热管组成的换热器具有传热效率高、结构紧凑、流体阻损小等优点。
其导热能力已远远超过任何已知金属的导热能力。
以前热管技术一直被广泛应用在宇航、军工等行业。
金旗舰铜制散热器70*50 正是因为有热管技术的民用化,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠大风量风扇获得更好散热效果的传统散热模式。
取而代之的是采用低转速、低风量风扇配合热管技术的崭新散热模式。
热管技术更为PC的静音时代带来了契机。
热管技术为什么会有如此的高性能呢?这个问题我们要从热力学的角度看。
物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
热传递有3种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
常见的热管均是由管壳、吸液芯和端盖组成。
制作方法是将热管内部抽成负压状态,然后充入适当的液体,这种液体沸点很低,容易挥发。
管壁有吸液芯,由毛细多孔材料构成。
热管一端为蒸发端,另外一端为冷凝端。
当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体。
热管技术的原理及应用

热管技术的原理及应用1. 什么是热管技术热管技术是一种利用液体蒸发和凝结的原理,实现热量传输和温度调控的先进技术。
通过利用液体在蒸发器中的蒸发和在冷凝器中的凝结,热管可以将热量迅速从高温区域传输到低温区域,实现高效的热量传递。
2. 热管技术的原理热管技术的原理可以简单概括为以下几个步骤:1.液体蒸发:热源作用下,液体在蒸发器内部迅速蒸发,吸收热量并变为气体。
2.气体传输:气体通过热管中空心管道内部的蒸汽管道,从蒸发器传输到冷凝器。
3.气体冷凝:在冷凝器中,气体发生冷凝,释放热量,并变为液体。
4.液体返流:液体在内部管道作用下,返回到蒸发器,并再次蒸发,循环往复。
3. 热管技术的应用热管技术在各个领域具有广泛的应用,包括但不限于以下几个方面:3.1. 电子器件散热热管技术可以有效地解决电子器件散热问题。
通过将热管放置在电子器件的散热片上,热量可以迅速从散热片传输到其他部分,以保持器件的温度在安全范围内。
热管的高效散热性能可以大幅度提高电子器件的工作稳定性和寿命。
3.2. 航空航天领域热管技术在航空航天领域的应用也非常广泛。
例如,在航天器热控系统中,热管可以用于传递和分散热量,保证航天器各个部分的温度均衡和稳定。
此外,热管技术还可用于航空发动机的冷却和热管理。
3.3. 医疗设备和制药行业热管技术在医疗设备和制药行业的应用也非常重要。
例如,热管可以用于医疗设备的温控和热管理,确保设备的稳定性和可靠性。
在制药行业中,热管可以用于控制反应器温度,提高药物合成的效率和质量。
3.4. 太阳能与可再生能源热管技术在太阳能和其他可再生能源领域有广泛应用。
例如,在太阳能热水器中,热管可以将太阳能吸收器中的热量传输到储水罐中,实现热水的供应。
热管还可以用于太阳能光伏板的冷却,提高光伏发电效率。
4. 热管技术的优势热管技术相比传统的热传导方法具有以下几个优势:•高热传导效率:热管可以实现高效的热量传递,使得热量可以迅速从高温区域传输到低温区域。
热管技术

热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术以前被广泛应用在宇航、军工等行业,自从被引入散热器制造行业,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠高风量电机来获得更好散热效果的单一散热模式,采用热管技术使得散热器即便采用低转速、低风量电机,同样可以得到满意效果,使得困扰风冷散热的噪音问题得到良好解决,开辟了散热行业新天地。
从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。
从热传递的三种方式:辐射、对流、传导,其中热传导最快。
热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。
一般热管由管壳、吸液芯和端盖组成。
热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。
管壁有吸液芯,其由毛细多孔材料构成。
热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。
这种循环是快速进行的,热量可以被源源不断地传导开来。
热管的基本工作典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3³(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。
管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。
当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heat Pipe Technology:
Passive Heat Transfer for Greater Efficiency
Heat pipes offer high effective thermal
conductivities (5,000 Watts/meter·K to
200,000 Watts/meter·K), energy-efficiency,
light weight, low cost and the flexibility of
many different size and shape options. As passive heat transfer systems, heat pipes offer simple and reliable
operation, with high effective thermal
conductivity, no moving parts, ability to
transport heat over long distances and quiet
vibration-free operation.
Heat pipes transfer heat more efficiently and evenly than solid conductors such as aluminum or copper because of their lower total thermal resistance. The heat pipe is filled with a small quantity of working fluid (water, acetone, nitrogen, methanol, ammonia or sodium). Heat is absorbed by vaporizing the working fluid. The vapor transports heat to the condenser region where the condensed vapor releases heat to a cooling medium. The condensed working fluid is returned to the evaporator by gravity, or by the heat pipe's wick structure, creating capillary action. Both cylindrical and planar heat pipe variants have an inner surface lined with a capillary wicking material.
What is a Heat Pipe?
Heat pipes are the most common passive, capillary-driven of the two-phase systems. Two-phase heat transfer involves the liquid-vapor phase change (boiling/evaporation and condensation) of a working fluid. The heat pipe technology industry leader, Thermacore has specialized in the design,
development and manufacturing of passive, two-phase heat transfer devices since 1970.
Heat pipes have an extremely effective high thermal conductivity. While solid conductors such as aluminum, copper, graphite and diamond have thermal conductivities ranging from 250 W/m•K to 1,500 W/m•K, heat pipes have effective thermal conductivities that range from 5,000 W/m•K to 200,000 W/m•K. Heat pipes transfer heat from the heat source (evaporator) to the heat sink (condenser) over relatively long distances through the latent heat of vaporization of a working fluid. Heat pipes typically have 3 sections: an evaporator section (heat input/source), adiabatic (or transport) section and a condenser section (heat output/sink).
Key Components of a Heat Pipe
The three major components of a heat pipe include:
∙ A vacuum tight, sealed containment shell or vessel
∙Working fluid
∙Capillary wick structure
They all work together to transfer heat more efficiently and evenly. The wick structure lines the inner surface of the heat pipe shell and is saturated with the working fluid. The wick provides the structure to develop the capillary action for the liquid returning from the condenser (heat output/sink) to the evaporator (heat input/source). Since the heat pipe contains a vacuum, the working fluid will boil and take up latent heat at well below its boiling point at atmospheric pressure. Water, for instance, will boil at just above 273° K (0°C) and start to effectively transfer latent heat at this low temperature.
热管技术:
被动式传输,以提高效率
热管提供了高效热导率(5000瓦/米·K 20瓦/米·K),能源效率,重量轻,成本低,许多不同的尺寸和形状选项的灵活性。
作为被动传热系统,热管提供了操作简单,可靠,高效热传导性,无运动部件,输送热量在很长的距离,安静无振动操作的能力。
热管的热传递更有效地和均匀地比实心导体,如铝或铜,由于其较低的总热阻。
用少量的热管中填充的工作流体(水,丙酮,氮,甲醇,氨或氢氧化钠)。
所吸收的热量汽化的工作流体。
蒸汽输送热量冷凝器区域中的冷凝蒸汽释放到冷却介质的热。
冷凝的工作流体通过重力返回到蒸发器,或由热管的毛细结构,创建毛细作用。
这两个圆柱形的和平面的热管的变体具有与毛细管芯吸材料衬里的内表面。
热管是什么?
热管是最常见的被动型,毛细管驱动的两相系统。
两相的传热涉及的工作流体的液- 气相位变化(沸腾/蒸发和冷凝)。
热管技术行业的领导者,Thermacore拥有专业的设计,开发和制造的被动,两相换热装置,自1970年以来。
热管有一个非常有效的高的热导率。
虽然固体导体,如铝,铜,石墨和金刚石有范围从250瓦/米•K至1500瓦/米•K的热导率,热管具有有效的热传导率范围从5000瓦/米•K W / 200000米•K。
热管将热量从热源(蒸发器),在相对长的距离通过的工作流体的蒸发潜热的散热器(冷凝器)。
热管通常有3个部分:蒸发器部分(热输入/源),绝热(或传输)部分和冷凝器部分(热输出/接收器)。
热管传热的主要组成部分
热管的三个主要组成部分包括:
真空密封,密封的安全壳或容器
工作液
毛细芯结构
他们共同努力,以更有效地传递热量,均匀地。
毛细结构线的热管壳的内表面上,并且是饱和的工作流体。
灯芯提供的结构开发的毛细作用从冷凝器(热输出/水槽)的液体返回到蒸发器(热输入/来源)。
由于热管包含一个真空,工作流体将沸腾并占用潜热,在远低于其在大气压力下的沸点。
水,例如,将煮沸以仅高于273°K(0°C),并开始在这样低的温度下的潜热量有效地传递。