电源滤波器计与使用原则分析

合集下载

直流电源滤波器的原理

直流电源滤波器的原理

直流电源滤波器的原理直流电源滤波器是将直流电源的输出进行滤波处理,使其尽量接近纯直流的电压输出。

滤波器的设计原理基于电容器和电感器的特性,通过将滤波器与直流电源串联连接,利用电容器和电感器的频率特性进行滤波处理。

滤波器的工作原理主要分为三个阶段:首先是整流阶段,其次是滤波阶段,最后是稳压阶段。

在整流阶段,通过整流电路将交流电源转换为直流电源。

这个过程中,交流电源中的负半周被去除,只有正半周得以保留。

这样就形成了一个半波整流的电流输出。

接下来是滤波阶段,该阶段利用电容器和电感器的特性进行滤波处理,以减少直流电源中的波动和纹波。

电容器具有对于高频信号的低阻抗,而对低频信号具有较高的阻抗。

所以,通过串联连接一个电容器,可以将高频成分去除,并保留低频成分。

电感器则相反,对高频信号具有较高阻抗,对低频信号具有较低的阻抗。

因此,串联电感器可以消除低频纹波,保留高频信号。

将电容器和电感器进行并联或串联可以实现对不同频率信号的滤波。

最后是稳压阶段,滤波器在滤波后的输出可能仍然存在一定的波动,为了减小这种波动,可以通过稳压措施来实现。

常见的稳压方式有电阻分压稳压和稳压二极管稳压。

电阻分压稳压利用电阻分压原理,在滤波后的输出电压前串联一个电阻分压电路,使得输出电压稳定在一定值。

稳压二极管稳压则是通过在电路中加入稳压二极管,使得在一定电压范围内,其电阻相对固定,从而实现电压的稳定输出。

总结来说,直流电源滤波器的工作原理基于电容器和电感器的特性,通过整流、滤波和稳压三个阶段对直流电源的输出进行滤波和稳定处理,以获得接近纯直流的电压输出。

这样可以确保直流电源的电压稳定性和电能质量,使其能够满足各种电气设备和电子器件的工作要求。

电源滤波器设计原理

电源滤波器设计原理

电源滤波器的原理就是一种阻抗适配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗适配越大,对电磁干扰的衰减就越有效。

具体工作原理如下:交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。

这种脉动直流一般是不能直接用来给无线电装供电的。

要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。

换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。

交流电源滤波器的主要功能和作用

交流电源滤波器的主要功能和作用

交流电源滤波器的主要功能和作用1.引言在现代电子设备中,交流电源滤波器起着至关重要的作用。

它可以有效消除交流电源中的高频噪声和波动,提供稳定的直流电源,保护设备免受电源干扰。

本文将介绍交流电源滤波器的主要功能和作用。

2.交流电源滤波器的基本原理交流电源滤波器的基本原理是利用电容、电感和阻抗等元件来滤除电源中的高频噪声和波动。

通过合理选择元件的数值和连接方式,可以实现对电源信号的准确过滤和控制。

3.主要功能和作用3.1滤除高频噪声在交流电源信号中,存在着各种高频噪声。

这些噪声可能来自于电源本身的不稳定性或外部环境干扰导致的电磁辐射。

交流电源滤波器通过电容器对高频噪声进行滤波,使电源输出信号更加纯净,消除对设备的干扰和损害。

3.2平滑直流输出交流电源经过滤波器处理后,可以得到相对纯净的直流信号。

这个直流输出信号对于许多电子设备来说至关重要,尤其是在需要稳定直流电源的情况下。

通过滤波器的作用,交流信号的频率成分得到去除,得到的直流信号更加平滑,能够有效提供给各种不同类型的设备。

3.3保护设备免受电源干扰交流电源中常常存在着电压的瞬时波动和频率偏移。

这些波动和偏移可能会对设备的正常运行产生不利影响,甚至造成设备损坏。

交流电源滤波器的一个重要作用就是保护设备免受电源干扰,通过滤波和稳压控制,提供一个稳定可靠的电源环境。

3.4改善设备性能与可靠性交流电源滤波器的使用不仅仅是为了保护设备免受电源干扰,它还可以显著改善设备的性能和可靠性。

通过有效滤除电源中的噪声和干扰,设备的工作效率得以提高,同时设备的寿命也会得到延长。

3.5符合电磁兼容性标准现代电子设备往往需要符合一定的电磁兼容性标准。

交流电源滤波器的使用可以有效减小设备对外界电磁辐射的敏感度,降低设备自身的电磁辐射水平,从而更好地符合电磁兼容性标准的要求。

4.结论交流电源滤波器在现代电子设备中起着重要的作用。

它可以滤除高频噪声,平滑直流输出,保护设备免受电源干扰,改善设备性能与可靠性,并符合电磁兼容性标准。

各种电源滤波电路图及工作原理

各种电源滤波电路图及工作原理

各种电源滤波电路图及工作原理在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。

本文将对各种形式的滤波电路进行分析。

一、滤波电路种类滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π型RC滤波电路;π型LC滤波电路;电子滤波器电路。

二、滤波原理1.单向脉动性直流电压的特点图1(a)所示是单向脉动性直流电压波形,从图中可以看出,电压的方向性无论在何时都是一致的,但在电压幅度上是波动的,就是在时间轴上,电压呈现出周期性的变化,所以是脉动性的。

但根据波形分解原理可知,这一电压可以分解成一个直流电压和一组频率不同的交流电压,如图1(b)所示。

在图1(b)中,虚线部分是单向脉动性直流电压U o中的直流成分,实线部分是U o中的交流成分。

图1:单向脉动性电压的分解2.电容滤波原理根据以上的分析,由于单向脉动性直流电压可分解成交流和直流两部分。

在电源电路的滤波电路中,利用电容器的“隔直通交”的特性和储能特性,或者利用电感“隔交通直”的特性可以滤除电压中的交流成分。

图2所示是电容滤波原理图。

图2(a)为整流电路的输出电路。

交流电压经整流电路之后输出的是单向脉动性直流电,即电路中的Uo图2(b)为电容滤波电路。

由于电容C1对直流电相当于开路,这样整流电路输出的直流电压不能通过C1到地,只有加到负载R L上。

对于整流电路输出的交流成分,因C1容量较大,容抗较小,交流成分通过C1流到地端,而不能加到负载R L。

这样,通过电容C1的滤波,从单向脉动性直流电中取出了所需要的直流电压+U。

滤波电容C1的容量越大,对交流成分的容抗越小,使残留在负载R L上的交流成分越小,滤波效果就越好。

图2:电容滤波原理图3.电感滤波原理图3所示是电感滤波原理图。

由于电感L1对直流电相当于通路,这样整流电路输出的直流电压直接加到负载R L上。

对于整流电路输出的交流成分,因L1电感量较大,感抗较大,对交流成分产生很大的阻碍作用,阻止了交流电通过C1流到负载R L。

实例说明电源输入整流桥和滤波电容的参数计算与选型

实例说明电源输入整流桥和滤波电容的参数计算与选型

实例说明电源输入整流桥和滤波电容的参数计算与选型对于非隔离开关电源,可采用输入整流管进行半波整流。

隔离式开关电源一般采用由整流管构成的整流桥,也可选用成品整流桥,完成桥式整流。

全波桥式整流器简称硅整流桥,它是将四个硅整流管接成桥路形式,再用塑料封装而成的半导体器件。

它具有体积小,使用方便,各整流管参数一致性好等优点,广泛应用于开关电源等整流电路。

整流桥有4个引出端,其中交流输入端、直流输出端个2个。

最大整流电路平均值在0.5,1,1.5,2,3,4,6,8,10,15,25,35,40A等规格,最高反向工作电压有50,100,200,400,800,1000V等规格。

小功率整流桥可直接焊到PCB板上,大、中功率整流桥则要用螺钉固定,并需要安装合适大小的散热器。

1.整流桥的导通时间与选通特性50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。

在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C充电。

50Hz交流电的半周期为10ms,整流桥的导通时间tc≈3ms,其导通角仅为54°(导通范围是36°~90°)。

因此,整流桥实际通过的是窄脉冲电流。

桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。

总结几点:(1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。

(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。

(3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007)与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。

如何选用电源滤波器,电源滤波器有哪些重要参数?

如何选用电源滤波器,电源滤波器有哪些重要参数?

如何选用电源滤波器,电源滤波器有哪些重要参数?
电源滤波器在电磁干扰中应用比较广泛,作用是滤除电源中所夹杂的有效频率以外的干扰频率,最终得到一个特定频率的电源信号或者滤除一个特定频率的电源信号。

合理的对滤波器选型可以起到良好的抗干扰作用。

建议从以下几个方面进行选型。

1 额定工作电压
滤波器在工作时,输入的电压不能太高,不能超过其长期稳定工作的电压,这个电压参数叫做额定电压。

如果输入是220V的,则可以考虑额定电压为250V的滤波器。

在选型时,留够余量,防止电压波动造成滤波器损坏。

2 额定工作电流
负载在正常工作时工作电流在一个范围之内,这个数值体现在负载的功耗或者额定电流上。

滤波器加在电源和负载之间。

所以,滤波器的额定工作电流要大于负载正常工作时的电流,在选型时也要留够余量。

3 滤波方式
电源滤波的内部电路是LC滤波电路,可以构成低通滤波、高通滤波、带通滤波以及带阻滤波(陷波)等。

在选用滤波方式时,一定要考虑自己的用途。

一般情况下,带通滤波器最为常用。

4 插入损耗
插入损耗是衡量电源滤波器性能好坏的一个重要指标,用dB来表示,是指滤波器接入前后负载上功率的比值,dB数越大的话,说明滤波器抑制干扰的能力也就越好。

在电源滤波器的规格书上都会有关于共模干扰和差模干扰的插入损耗曲线。

以上几个参数,是与性能紧密相关的参数,除此之外,还有工作温度、漏电流、绝缘电阻以及尺寸等参数,选型时需要注意。

听说文章越短越容易看完,真的是这样吗?
文章虽短,但是干货满满,如果文章对你有所帮助,就“好看”一下吧。

电源滤波器参数精选全文完整版

可编辑修改精选全文完整版电源滤波器参数电源滤波器的目的是在抑制电磁噪声,噪声的影响可分为以下二种:发射(Emissions):是要将由设备产生,影响电源或其他设备的噪声降到法规(例如FCC part 15)允许值以下,例如由开关电源产生的噪声。

抗扰(Immunity):是要将进入设备的噪声降低到不会使设备出现异常动作的程度,例如用在广播电台发射设备中的仪器。

电源滤波器安装1、电源滤波器的不能存在电磁耦合路径①电源输入线过长;②电源滤波器的输入线和输出线靠的过近。

此两种都是不正确的安装方式,问题的本质在于,滤波器的输入端电线和它的输出端电线之间存在有明显的电磁耦合路径。

这样一来,存在于滤波器某一端的EMI信号会逃脱滤波器对它的抑制,不经过滤波器的衰减而直接耦合到滤波器的另一端去。

因此滤波器输入与输出先需有效分开。

另外,如上述两种把电源滤波器都是安装在设备屏蔽的内部,设备内部电路及元件上的EMI 信号会因辐射在滤波器的(电源)端引线上生成EMI 信号而直接耦合到设备外面去,使设备屏蔽丧失对内部元件和电路产生的EMI 辐射的抑制。

当然,如果滤波器(电源)上存在有EMI 信号,也会因辐射而耦合到设备内部的元件和电路上,从而破坏滤波器和屏蔽对EMI 信号的抑制作用。

所以起不到效果。

2、不能将线缆捆扎在一块一般来说,在电子设备或系统内安装电源滤波器时要注意的是,在捆扎设备电缆时,千万不能把滤波器(电源)端和(负载)端的电线捆扎在一起,因为这无疑加剧了滤波器输入输出端之间的电磁耦合,严重破坏了滤波器和设备屏蔽对EMI 信号的抑制能力。

3、要尽量避免使用长接地线电源滤波器输出端连接变频器或电机的接线长度不超过30厘米为宜。

因为过长的接地线意味着大大增加接地电感和电阻,它会严重破坏滤波器的共模抑制能力。

较好方法是,用金属螺钉与星形弹簧垫圈把滤波器的屏蔽牢牢地固定在设备电源入口处的机壳上。

4、电源滤波器输入线、输出线必须拉开距离电源滤波器输入线、输出线必须拉开距离,切忌并行,以免降低滤波器效能。

电源滤波器知识

开关电源产生的噪声有两类:第一类:由于非线性产生的,为电源基频的奇次谐波。

电磁兼容标准对这种谐波发射的都有限制。

(GJB 151A中的CE101)第二类:开关工作模式产生的,频率较低的成分以差模形式出现在电源输入线上,频率较高的成分以共模形式出现。

共模噪声是由于高频成份辐射产生的:三极管与散热片之间的寄生电容,将三极管的开关噪声耦合导地线上,脉冲回路产生的辐射感应导所有导线上负载电流越大,或输入电压越低,则差模干扰越强共模干扰当输入电压最高时,最大,与负载无关。

干扰滤波器的种类根据要滤除的干扰信号的频率与工作频率的相对关系,干扰滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等种类。

电磁兼容设计中,低通滤波器用得最多,因为:电磁干扰大多频率较高的信号,因为频率越高的信号越容易辐射和耦合数字电路中许多高次谐波是电路工作所不需要的,必须滤除,防止对其它电路产生干扰。

电源线上的滤波器都是低通滤波器。

高通滤波器用在干扰频率比信号频率低的场合,如在一些靠近电源线的敏感信号线上滤除电源谐波造成的干扰。

带通滤波器用在信号频率仅占较窄带宽的场合,如通信接收机的的天线端口上要安装带通滤波器,仅允许通信信号通过。

带阻滤波器用在干扰频率带宽较窄,而信号频率较宽的场合,如距离大功率电台很近的电缆端口处要安装阻带频率等于电台发射频率的带阻滤波器。

当信号频率与干扰频率考得很近时,需要滤波器的阶数较高。

考虑到器件的误差,有时过渡带的陡度不能达到理论值,因此要留有一定的富余量。

要注意的是,实际电路的阻抗很难估算,特别是在高频时(电磁干扰问题往往发生在高频),由于电路寄生参数的影响,电路的阻抗变化很大,而且电路的阻抗往往还与电路的工作状态有关,再加上电路阻抗不同的频率上也不一样。

因此,在实际中,哪一种滤波器有效主要靠试验的结果确定低通滤波器的过渡带低通滤波器的阶数(元件数)越高,其过渡带越短。

过渡带与器件数量的关系:当严格按照滤波器设计方法设计滤波电路时,每增加一个器件,过渡带的斜率增加20dB/十倍频程,或6dB/倍频程。

emi emc滤波计算

emi emc滤波计算
EMI(电磁干扰)和EMC(电磁兼容)的滤波计算与设计是确保电子设备在电磁环境中正常工作和减少电磁干扰的重要步骤。

下面是一些常见的EMI/EMC滤波计算方法:
1. EMI滤波器计算
EMI滤波器用于抑制设备产生的电磁干扰。

计算滤波器参数的一种方法是通过设备电源线的线路阻抗和设备的工作电流来确定。

一般来说,滤波器的阻抗应该接近设备的工作电源线路阻抗,以便实现最佳的EMI抑制效果。

2. EMI传导和辐射抑制计算
电子设备的电磁干扰可以通过传导和辐射两种方式传播。

传导抑制主要包括对电源线路、信号线路和接地线路的抑制;辐射抑制则需要通过合适的屏蔽材料和构造来防止电磁波的辐射。

EMI传导抑制计算方法包括:
- 计算设备电源线路和信号线路的阻抗匹配以减少传导干扰;- 计算接地线的阻抗,并确保其足够低以提供有效的接地;
- 通过分析设备的信号线路布局和信号传输速率来确定是否需要添加抑制层以降低传导干扰。

EMI辐射抑制计算方法包括:
- 使用屏蔽效能计算方法,如Faraday笼法(Faraday's Cage Method),来评估设备的辐射抑制能力;
- 根据设备的频率范围和辐射限制要求,选择合适的屏蔽材料
和结构。

以上是一些常见的EMI/EMC滤波计算方法,具体计算和设计
方法会根据设备的具体要求和标准要求进行调整和优化。

有效的EMI/EMC滤波设计可以帮助设备达到相关的电磁兼容标准,并确保其在电磁环境中的正常运行。

为什么要使用音响电源滤波器--争先滤波器介绍

l 电源污染是指什么?为什么要使用音响电源滤波器?l 音响电源滤波器就一定有效果么?l 音响电源滤波器不能接功放么?音响电源滤波器就一定有电感性元件,从而在有些时候会导致大功率器材效果“缩水”么?无感滤波和有感滤波有些什么区别?l 电源的相位接反了,有什么影响?l 音响电源滤波器一定要接地线才可以使用么?(若您只是喜欢音乐,喜欢享受音乐生活而没有怎么烧,看看下面这段)l “告别拖线板时代”不仅是针对发烧友,更是对喜欢享受音乐享受生活的朋友而言的!电源污染是指什么?我家不会被影响吧?为什么要使用滤波器?打个简单的比方:对于电器来说,电源就像上游的水源:如果家里的水源被污染了,任您用什么样的高档厨具也去不掉饭菜里的污水味,同理,如果电源受到了污染,上游的任何污染都会随着电流带到每一个用电器,导致“任何好器材的质量都会被埋没”。

引用一位资深发烧友的话:“这电供给我们的音响系统时,就像我们身体里的血液受到外物的污染会引致生病,试想在这情况下,组合又怎能会靓声呢?”由于现今用电环境复杂,电源中的杂波干扰噪声可谓越来越多,无处不在:雷电会在电网里面造成尖脉冲;附近人家装修用的各种电钻、木材切割机、打钉器、电动设备工作等都会造成干扰,噪声都会随着输配电线进入我们家中;附近工厂的电动机的启停会引起电网干扰,家中电吹风、各种电器(抽油烟机,冰箱,电扇,空调等)电动机启停等都会在电网引起杂波干扰及噪声,这些杂波干扰及噪声会严重影响Hi-Fi、AV音响系统的视听效果(例如电源喇叭有“噼噼波波”的声音)。

至于您家受不受影响,您想想上面说的跟您家周围环境是不是有些相符合,就知道了。

举个最贴近的例子:我家就住在上海一个新式居民楼盘,入住一年旁边40余栋楼的邻居们没有断过装修,我把设备绕过滤波器直接接在插线板上试试,结果高音带刺,小提琴细节被拧干。

有的发烧友认为音响跟其它电器分开拉的线就应该没有问题了:这种方法对于电网里面的污染就不能消除哦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电源滤波器设计与使用原则分析
中心议题:
•城市轨道交通控制系统和电源系统需要加装滤波器
•介绍电源滤波器的基本概念、参数选取以及安装原则等几个方面
•分析电源滤波器得出相关结论
解决方案:
•安装无源EMI滤波器,减少干扰和衰减
•采用横截面积较大的磁芯绕制成多匝线圈,得到共模电感,减小差模电感
•串联电感和并联的滤波电容不能选择太大
•正确安装滤波器,获得预期的衰减特性
引言
为了符合国际电磁兼容标准的要求,使用高频开关器件的电源电子电路必须安装合适的电磁干扰滤波器(以下简称EMI滤波器),以阻止频率范围为150kHz~30MHz的传导干扰侵入电源网络。

由于城市轨道交通的特殊性,其共模和差模干扰很容易引起车载设备传导和辐射干扰升高,使其无法达到电磁兼容标准的要求。

为此,必须在导线和电子设备之间的供电部分安装一个合适的无源EMI滤波器,将干扰衰减到所要求的程度。

常用设计滤波器的公式和图表是在其源阻抗和负载阻抗匹配情况下得出的。

而EMI滤波器存在阻抗失配问题,因此在这种滤波器的实际设计中通常采用试探法。

但采用试探法时,由于高频时寄生参数起主导作用以及对噪声源的内阻抗不了解,使得选择正确的设计参数值变得非常困难。

对于共模干扰尤其如此,因为其大小在很大程度上就取决于电路的布置和电路的寄生参数。

本文结合研究和设计电源滤波器的实践,在简化电源滤波器设计过程的同时,仍能满足实际应用场合的需要。

电源滤波器中共模扼流圈内磁通的分析
电源滤波器中共模扼流圈的作用,一般采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和”。

尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质并非如此。

因为根据电磁场理论中的麦克斯韦方程,可以得到以下结果:
假设电流密度J产生磁场H,则附近的另一个电流不会抵消或阻止磁场或由此而产生的电场;
同样一个相邻的电流可以导致磁场路径的改变;
在环形共模电感的特殊场合中,每条引线中的差模电流密度可假定是相等的,且方向相反。

由此而产生的磁场必定在环形磁芯周边上的总和为零,而在其外部的总和则不为零。

磁芯的作用就好像它在线圈绕组的间隙处裂为两半时所表现出来的效果一样。

每个绕组在环形线圈一半的区域内产生磁场,意指穿过空气的磁场必定会形成自封闭回路。

图1是环形磁芯和差模电流磁路的示意图。

为了得到共模电感,同时使差模电感最小,设计时最好采用横截面积较大的磁芯绕制成多匝线圈。

采用较大的螺旋管磁芯(并非一定要采用这样的磁芯)可在共模扼流圈内并入有效的差模电感。

由于差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射,尤其是滤波器安装在印刷电路板( PCB)上时,这种辐射可以耦合到电源线,使传导发射增强。

当磁性材料被带到场内时(例如环形磁芯放置在铁壳里),差模磁导率就会显著地增加,从而由于差模电流导致磁芯的饱和。

为了实现有效的滤波器设计,必须解决磁通离开磁芯引起的辐射问题。

具体解决办法有两种:或将差模磁通限制在磁性结构物体中(壶形铁芯),或为差模磁通(E形铁芯)提供一条高磁导率的路径。

电源滤波器设计参数的选取
由于电源滤波器接主电源线,因此在设计中除了要考虑源阻抗和负载阻抗不匹配的因素之外,还必须考虑其对串联电感的电感量和并联电容的电容量的严格限制。

滤波器中所采用的串联电感受到电源频率下允许电压降的限制,不能选择太大;并联的滤波电容受到允许接地漏电流的限制,也不能选择太大。

由于以上限制,往往很难同时满足对滤波器插入损耗的要求。

电源EMI滤波器允许的最大串联电感
设滤波器中串联电感器的电感量为L,等效电阻为R,电网频率为ωm,网侧额定工作电流为Im。

在电网频率下,电感器上的压降为:
考虑到电网中可能产生的浪涌电流的影响,通常ΔU被限制在额定工作电压的10%以内。

若忽略R上的电压降,设允许电感器上的电压降为ΔUmax,则允许的最大串接电感值为:
电源EMI滤波器允许的最大滤波电容
电源EMI滤波器中的滤波电容器通常接在相线与大地之间。

该电容容量过大时将造成漏电流过大,从而危及人身安全。

其漏电流值为:
由式(3)可得到在电源EMI滤波器中允许采用的滤波电容为:
式中:Um为电网电压,V;fm为电网频率,Hz;Ig为允许的接地漏电流,mA。

基于以上分析,对电源滤波器中串联电感及并联电容最大值的限制,可以得到LC乘积的最大值为:
对于小功率的电子设备而言,LmaxCy,max的值通常为100μHμF,这是一个非常小的数值。

以单级LC 滤波器为例,为简化分析,用电压衰减来代替插入损耗,可得此时插入损耗为:
若取LmaxCymax值为100μHμF,频率为150kHz,则插入损耗为:
电源滤波器的安装
电源滤波器的安装质量对衰减特性影响很大,只有将滤波器正确地安装在设备上,才能获得预期的衰减特性。

滤波器的安装应遵循以下几个原则:
(1)电源供电线路的电源滤波器应安装在设备或屏蔽壳体的电源入口处,并对滤波器加以屏蔽,屏蔽体应与设备壳体良好搭接;
(2)对于城市轨道交通等载运工具,电动机以及各种电器开关装置等干扰源应与其电源滤波器安装在同一屏蔽箱体内,滤波器装在电源入口处,电源输入线不应在箱体内裸露;
(3)滤波器中电容器引线应尽可能短,以避免感抗与容抗在较低频率上发生谐振,电容应与其它元件正交安装,减小相互间耦合;
(4)滤波器的接地导线上有很大短路电流通过,会造成有害电磁辐射,因此滤波器抑制元件自身要进行良好的电磁屏蔽和接地处理;
5)滤波器的输入和输出引线不能交叉,在输入引线和输出引线之间应有屏蔽层,否则会降低滤波器的滤波特性。

结论
(1)电源滤波器中共模扼流圈内既存在共模磁通也存在差模磁通。

为了得到共模电感,同时使差模电感最小,设计时最好采用横截面积较大的磁芯绕制成多匝线圈,另外必须解决磁通离开磁芯引起的辐射问题。

(2)在电源滤波器设计中除了要考虑源阻抗和负载阻抗不匹配的因素之外,还必须考虑其对串联电感的电感量及并联电容的电容量的严格限制,以满足对滤波器插入损耗的要求。

(3)电源滤波器的安装质量对其衰减特性影响很大,必须遵循相关原则将滤波器正确安装在设备上,以获得预期的衰减特性。

(4)由于城市轨道交通的控制系统和电源系统所处的电磁环境非常恶劣,为减少由于电磁干扰引起的车载设备误动作,保证人身安全,必须针对其电源及传输线加装滤波器。

相关文档
最新文档