r的化简公式 高中数学
高中数学-三角函数公式汇总

高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。
全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结单选题1、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解.因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增,所以f(x)在R 上单调递增,所以lgx >2,解得x >100.故选:D.2、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .3、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间. {10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.4、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A5、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( )A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在 (−∞,−12)单调递增答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0 ,得x ≠±12. 又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ),∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增,在(﹣∞,−12),(12,+∞)上单调递减.故选:B .7、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x与y 3=10−x =(110)x 是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A8、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a 3 (a >0,b >0)的结果是( )A .b aB .a bC .a 2bD .b 2a 答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√a 3=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13 =a 32+16−1+13b 1+13−2−13=ab −1=a b 故选:B 9、函数f (x )=√3−x +log 13(x +1)的定义域是( ) A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3]答案:C分析:由题可得{3−x ≥0x +1>0,即得. 由题意得{3−x ≥0x +1>0, 解得−1<x ≤3,即函数的定义域是(−1,3].故选:C.10、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.填空题11、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.12、已知函数f (x )的定义域是[-1,1],则函数f (log 2x )的定义域为____.答案:[12,2]分析:根据给定条件列出使函数f (log 2x )有意义的不等式组,再求出其解集即可.因函数f (x )的定义域是[-1,1],则在f (log 2x )中,必有−1≤log 2x ≤1,解不等式可得:{12≤x ≤2x >0,即12≤x ≤2, 所以函数f (log 2x )的定义域为[12,2].所以答案是:[12,2]13、函数f(x)=4+log a (x −1)(a >0且a ≠1)的图象恒过定点_________答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题14、对于函数f(x),若其定义域内存在实数x满足f(−x)=−f(x),则称f(x)为“伪奇函数”.(1)已知函数f(x)=x−2x+1,试问f(x)是否为“伪奇函数”?说明理由;(2)若幂函数g(x)=(n−1)x3−n(n∈R)使得f(x)=2g(x)+m为定义在[−1,1]上的“伪奇函数”,试求实数m的取值范围;(3)是否存在实数m,使得f(x)=4x−m⋅2x+1+m2−3是定义在R上的“伪奇函数”,若存在,试求实数m的取值范围;若不存在,请说明理由.答案:(1)不是;(2)[−54,−1];(3)[1−√3,2√2].分析:(1)先假设f(x)为“伪奇函数”,然后推出矛盾即可说明;(2)先根据幂函数确定出g(x)的解析式,然后将问题转化为“2m=−(2x+2−x)在[−1,1]上有解”,根据指数函数的值域以及对勾函数的单调性求解出m的取值范围;(3)将问题转化为“2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解”,通过换元法结合二次函数的零点分布求解出m的取值范围.(1)假设f(x)为“伪奇函数”,∴存在x满足f(−x)=−f(x),∴−x−2−x+1=−x−2x+1有解,化为x2+2=0,无解,∴f(x)不是“伪奇函数”;(2)∵g(x)=(n−1)x3−n(n∈R)为幂函数,∴n=2,∴g(x)=x,∴f(x)=2x+m,∵f(x)=2x+m为定义在[−1,1]的“伪奇函数”,∴2−x+m=−2x−m在[−1,1]上有解,∴2m=−(2x+2−x)在[−1,1]上有解,令2x=t∈[12,2],∴2m=−(t+1t)在t∈[12,2]上有解,又对勾函数y=t+1t 在[12,1)上单调递减,在(1,2]上单调递增,且t=12时,y=52,t=2时,y=52,∴y min=1+1=2,y max=52,∴y=t+1t的值域为[2,52],∴2m∈[−52,−2],∴m∈[−54,−1];(3)设存在m满足,即f(−x)=−f(x)在R上有解,∴4−x−m⋅2−x+1+m2−3=−(4x−m⋅2x+1+m2−3)在R上有解,∴2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解,令2x+2−x=t∈[2,+∞),取等号时x=0,∴2m2−6=−(t2−2)+2mt在[2,+∞)上有解,∴t2−2mt+2m2−8=0在[2,+∞)上有解(*),∵Δ=4m2−4(2m2−8)≥0,解得m∈[−2√2,2√2],记ℎ(t)=t2−2mt+2m2−8,且对称轴t=m,当m∈[−2√2,2]时,ℎ(t)在[2,+∞)上递增,若(*)有解,则ℎ(2)=22−2mt+2m2−8≤0,∴m∈[1−√3,2],当m∈(2,2√2]时,ℎ(t)在[2,m)上递减,在(m,+∞)上递增,若(*)有解,则ℎ(m)=m2−2m2+2m2−8=m2−8≤0,即m2−8≤0,此式恒成立,∴m∈(2,2√2],综上可知,m∈[1−√3,2√2].小提示:关键点点睛:解答本题(2)(3)问题的关键在于转化思想的运用,通过理解“伪奇函数”的定义,将问题转化为方程有解的问题,利用换元的思想简化运算并完成计算.15、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
新教材苏教版高中数学必修一 知识点09 函数的表示方法

高一数学同步精品课堂讲、例、测(苏教版2019必修第一册)知识点9函数的表示方法教材知识梳理函数的表示法-------理解函数表示法的三个关注点(1)列表法、图象法、解析法均是函数的表示法,无论是哪种方式表示函数,都必须满足函数的概念.(2)列表法更直观形象,图象法从形的角度描述函数,解析法从数的角度描述函数.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.函数三种表示法的优缺点比较:求函数解析式的四种常用方法(1)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(2)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x代替两边所有的“g(x)”即可.(3)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.分段函数的实际应用(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解析式.例题研究一、求函数的解析式题型探究例题1已知函数()f x 的定义域为R ,且对任意x ∈R 均满足:2()()31f x f x x --=+,则函数()f x 的解析式为( ) A .()1f x x =+ B .()1f x x C .()1f x x =-+ D .()1f x x =--【答案】A【分析】利用构造方程组的方法,解出()f x 的解析式. 【详解】由2()()31f x f x x --=+,可得2()()31f x f x x --=-+ ①又4()2()62f x f x x --=+①,+①②得:()333f x x =+,解得()1f x x =+故选:A【点睛】考查函数解析式的求法,考查学生计算能力,属于基础题. 例题2如图中的图象所表示的函数的解析式为( )A .31(02)2y x x =-≤≤B .331(02)22y x x =--≤≤ C .31(02)2y x x =--≤≤ D .11(02)y x x =--≤≤【答案】B【分析】分段求解:分别把0≤x≤1及1≤x≤2时的解析式求出即可. 【详解】当0≤x≤1时,设f (x )=kx ,由图象过点(1,32),得k=32,所以此时f (x )=32x ; 当1≤x≤2时,设f (x )=mx+n ,由图象过点(1,32),(2,0),得3202m n m n ⎧=+⎪⎨⎪=+⎩,解得3m 23n ⎧=-⎪⎨⎪=⎩ 所以此时f (x )=3-x 32+.函数表达式可转化为:y =32 32-|x -1|(0≤x≤2) 故答案为B【点睛】考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得.跟踪训练训练1已知()f x 是一次函数,且(1)35f x x -=-,则()f x 的解析式为( ) A .()32f x x =+ B .()32f x x =-C .()23f x x =+D .()23f x x =-【答案】B【分析】设()f x kx b =+,(0k ≠),利用()135f x x -=-两边恒等求出k 即可得结果. 【详解】设()f x kx b =+,(0k ≠)①()()1135f x k x b x -=-+=-, 即35kx k b x -+=-,所以35k b k =⎧⎨-=-⎩,解得3k =,2b =-,①()32f x x =-,故选B .【点睛】考查函数解析式的求法,属于中档题.求函数的解析式常见题型有以下几种:(1)根据实际应用求函数解析式;(2)换元法求函数解析式,利用换元法一定要注意,换元后参数的范围;(3)待定系数法求函数解析式,这种方法适合求已知函数名称的函数解析式;(4)消元法求函数解析式,这种方法求适合自变量互为倒数或相反数的函数解析式. 训练2设函数()f x 的定义域为R ,满足(2)2()f x f x -=,且当[)2,0x ∈-时,()2(2)f x x x =-+.若对任意[),x m ∈+∞,都有3()4f x ≤,则m 的取值范围是( ) A .2,3⎡⎫+∞⎪⎢⎣⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】D【分析】根据题设条件可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈,结合函数在[)0,2上的解析式和函数在[)2,-+∞的图象可求m 的取值范围. 【详解】当[)2,0x ∈-时,()2()212f x x =-++,故()[]2()2120,2f x x =-++∈,因为(2)2()f x f x -=,故当[)0,2x ∈时,[)22,0x -∈-,()()()[]1220,12f x f x x x =-=--∈,同理,当[)2,4x ∈时,()()1120,22f x f x ⎡⎤=-∈⎢⎥⎣⎦, 依次类推,可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈. 所以当2x ≥时,必有3()4f x ≤. 如图所示,因为当[)0,2x ∈时,()f x 的取值范围为[]0,1, 故若对任意[),x m ∈+∞,都有3()4f x ≤,则0m ≥, 令232402x x x ⎧-+≤⎪⎨⎪≤<⎩,322x ≤<或102x ≤≤,结合函数的图象可得32m ≥, 故选:D.【点睛】思路点睛:此类问题考虑函数的“类周期性”,注意根据已知区间上函数的性质推证函数在其他区间上的性质,必要时应根据性质绘制函数的图象,借助形来寻找临界点.二、分段函数的实际应用题型探究例题1已知21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩,则函数()y f x =-的图象是( ) A . B .C .D .【答案】A【分析】先画函数()f x 的图象,再根据函数()f x 的图象与()f x -的图象关于y 轴对称,即可选出正确选项.【详解】先画函数21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩的图象,如下图:因为函数()f x 的图象与()f x -的图象关于y 轴对称,只有A 选项的图象符合.故选:A.【点睛】考查分段函数的画法,同时考查函数有关对称性的知识,解题的关键是把原函数的图象画出,那么对称函数的图象随之可得.例题2函数22,01()2,123,2x x f x x x ⎧≤≤⎪=<<⎨⎪≥⎩的值域是( )A .RB .[0,+∞)C .[0,3]D .{x |0≤x ≤2或x =3}【答案】D【分析】分段函数的值域等于每一段函数的值域的并集. 【详解】解:当01x ≤≤时,2()2f x x =,其值域为[0,2], 所以()f x 值域为[0,2]①{3,2}={x |0≤x ≤2或x =3}. 故选:D【点睛】考查求分段函数的值域,分段函数的值域等于每一段函数的值域的并集,属于基础题.跟踪训练训练1设{},()max ,,,()a ab a b b a b ≥⎧=⎨<⎩则函数22()max{,1}=--f x x x x 的单调增区间为( )A .1[1,0],[,)2-+∞B .1(,1],[0,]2-∞-C .1(,],[0,1]2-∞- D .1[,0],[1,)2-+∞ 【答案】D【分析】由221x x x -=-,解出x 的值,作出两个函数的图像,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-据此可得此时函数的递增区间,当{}22211,(),112x f x max x x x x -<<=--=-,据此可得此时函数的递增区间,综合即可得到结论. 【详解】由221x x x -=-得2210x x --=,解得1x =或12x =-,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-此时函数的递增区间为[1,)+∞, 当{}22211,(),112x f x max x x x x -<<=--=-,此时函数的递增区间为1,02⎡⎤-⎢⎥⎣⎦, 综上所述函数的递增区间为1[,0],[1,)2-+∞. 故选:D【点睛】考查函数单调区间,解题的关键是掌握函数单调性及单调区间的求法,属于中档题. 训练2设定义在R 上的函数()y f x =,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.关于函数()221f x x x =--的2界函数,结论不成立的是( )A .()()()()22 00f f f f = B .()()()()22 11f f f f = C .()()()()2222f f f f = D .()()()()2233f f f f = 【答案】B【分析】先求得函数()f x 的“2界函数”,然后对四个选项逐一进行排除,由此得到正确选项. 【详解】令2212x x --=,解得1x =-或3x =,根据“p 界函数”的定义,有()222,321,132,1x f x x x x x >⎧⎪=---≤≤⎨⎪<-⎩,所以()()()22012f f f =-=,()()()2012ff f =-=,故A 选项成立;()()()22122f f f =-=,()()()2127f f f =-=,故B 选项不成立;()[]22212f f f ⎡⎤=-=⎣⎦,()()()2212f f f =-=,故C 选项成立; ()()()22231f f f ==-,()()()2321f f f ==-,故D 选项成立.故选:B.【点睛】考查新定义函数的概念及应用,考查分段函数求值,考查分析问题和解决问题的能力.属于中档题.解题的突破口在于理解新定义的函数:新定义的函数关键是函数值大于p ,或者函数值小于或等于p ,也就是先要求得函数值等于p 时对应x 的值,由此写出分段函数“p 界函数”.三、函数三种表示法题型探究例题1某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A .B .C .D .【答案】D【分析】根据学生的走法情况,先跑步(快速),再步行(慢速),从离校的距离与出发时间的函数图象来看,先陡后平缓,且y 随着x 的增大而减小,由此可作出判断. 【详解】由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭, 后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大, 最后距离为0,故符合要求的图象为D 选项中的图象. 故选:D.【点睛】考查实际问题中函数图象的识别,属于基础题. 例题2已知函数()y f x =,用列表法表示如下:则(2)[(2)]f f f -+-=( ) A .4- B .0C .2D .3【答案】D【分析】根据表格中自变量x 和函数值y 的对应关系,代入数据,即可得答案.【详解】由表格可得:(2)1f -=,所以[(2)](1)2f f f -==,所以(2)(2)3f f +-=故选:D跟踪训练训练1已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠⎪⎝⎭,则()2f -= A .72-B .92C .72D .92-【答案】C【分析】令1x x=-,代入解析式,通过解方程组即可求得()f x -的解析式,进而求得()2f -的值. 【详解】由()()112?1f f x x x x ⎛⎫+-=⎪⎝⎭, 可得()12? f x xf x x ⎛⎫--=- ⎪⎝⎭(2), 将(1)x ⨯+(2)得:()2222f x x x-=-⇒()21,f x x x -=-()722f ∴-=, 故选C .【点睛】考查了函数解析式的求法,方程组法在解析式求法中的应用,属于中档题. 训练2如图,矩形AOBC 的面积为4,反比例函数(0)ky k x=≠的图像的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .1y x =-B .1y x=C .2y x=- D .2y x=【答案】A【分析】本题首先可设矩形的长为a 、宽为4a,然后结合图像得出点P 的坐标为2,2a a,最后根据点P 在反比例函数(0)ky k x=≠上即可得出结果. 【详解】设矩形的长为a ,则矩形的宽为4a,结合图形可知,点P 的坐标为2,2a a, 因为点P 在反比例函数(0)ky k x=≠上, 所以22a a k=-,解得1k =-,1y x =-,故选:A.【点睛】考查反比例函数解析式的求法,能否根据图像和矩形面积确定点P 坐标是解决本题的关键,考查数形结合思想,考查计算能力,是简单题.综合式测试一、单选题1.已知函数2221,0()log ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则下列判断正确的个数为( ) ①122x x +=-; ①341x x =;①212≤-x x ;①431≤-x x . A .1 B .2C .3D .4【答案】C【分析】先画出()f x 的图象如图所示,令()()()()1234f x f x f x f x t ====,由图可知当1t =时,21x x -和43x x -都取得最大值,从而可求得最值,12,x x 关于二次函数221y xx =++的对称轴1x =-对称,可得122x x +=-,由34()()f x f x =可得2324log log x x -=,化简可得341x x =【详解】解:令()()()()1234f x f x f x f x t ====,即函数()f x 的图象与直线y t =有4个不同的交点,()f x 的图象如图所示,由图可知(0,1]t ∈,12,x x 关于二次函数221y x x =++的对称轴1x =-对称,则122x x +=-,所以①正确;当1t =时,21x x -取得最大值,且此时212x x -=,故212≤-x x ,所以①正确; 因为34()()f x f x =,所以2324log log x x -=,即2324log log 0x x +=,234log ()0x x =,所以341x x =,所以①正确;因为当1t =时,43x x -取得最大值,此时2324log log 1x x -==,解得341,22x x ==,所以此时43132122x x -=-=>,所以①错误, 所以正确的有①①①,共3个, 故选:C【点睛】考查函数和方程的应用,解题的关键是正确画出函数图象,利用数形结合的思想求解,属于中档题2.定义在R 上的函数()f x 满足()()22f x f x +=,且当(]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值范围为( ). A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】D【分析】求出()f x 在[2,4]上的值域,利用()f x 的性质得出()f x 在[2-,0]上的值域,再求出()g x 在[2-,1]上的值域,根据题意得出两值域的包含关系,从而解出a 的范围【详解】解:当[2,4]x ∈时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<≤⎪⎩,可得()f x 在[2,3]上单调递减,在(3,4]上单调递增,()f x ∴在[2,3]上的值域为[3,4],在(3,4]上的值域为11(3,9]2,()f x ∴在[2,4]上的值域为[3,9]2,(2)2()f x f x +=,11()(2)(4)24f x f x f x ∴=+=+, ()f x ∴在[2,0]-上的值域为3[4,9]8,当0a >时,()g x 为增函数,()1g x ax =+在[2-,1]上的值域为[21a -+,1]a +,∴3214918a a ⎧≥-+⎪⎪⎨⎪+⎪⎩,解得18a ;当0a <时,()g x 为减函数,()g x 在[2-,1]上的值域为[1a +,21]a -+,∴3149218a a ⎧+⎪⎪⎨⎪-+⎪⎩,解得14a -;当0a =时,()g x 为常数函数,值域为{1},不符合题意;综上,a 的范围是18a 或14a -. 故选:D .【点睛】考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .3.已知函数()22log (1),142,1x x f x x x x ⎧-<=⎨-+-≥⎩,则方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为( )A .5B .6C .7D .8【答案】B【分析】由()1f x =可得13,1,1,2x x x x ===-=,而由121f x x ⎛⎫+-= ⎪⎝⎭,可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后分别解这四个方程,可得答案 【详解】解:当1x <时,令()1f x =,则2log (1)1x -=,解得1x =-或12x =, 当1≥x 时,令()1f x =,则2421x x -+-=,解得1x =或3x =,因为121f x x ⎛⎫+-= ⎪⎝⎭, 所以121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=, 由121x x+-=-,得210x x -+=,此时2(1)40∆=--<,方程无解; 由1122x x +-=,得22520x x -+=,此时2(5)42290∆=--⨯⨯=>,所以方程有两个不相等的实根,分别2x =或12x =;由121x x+-=,得2310x x -+=,此时2(3)41150∆=--⨯⨯=>,所以方程有两个不相等的实根,即为x =由123x x+-=,得2510x x -+=,此时2(5)411210∆=--⨯⨯=>,所以方程有两个不相等的实根,即为52x =, 所以方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为6, 故选:B【点睛】考查函数与方程的应用,解题的关键是由()1f x =可得13,1,1,2x x x x ===-=,从而可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后解方程可得答案,考查数学转化思想和计算能力,属于中档题4.已知函数()1212,02log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,且()0f m =,则不等式()f x m >的解集为( )A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .11,2⎛⎫- ⎪⎝⎭D .()1,-+∞【答案】C【分析】分0m ≤和0m >解方程()0f m =,求出m 的值,然后分0x ≤和0x >解不等式()f x m >,即可得出结果. 【详解】当0m ≤时,()1202mf m =+>,方程()0f m =无解; 当0m >时,令()12log 0f m m ==,解得1m =,合乎题意.下面解不等式()1f x >.当0x ≤时,令()1212xf x =+>,得出122x >,解得1x >-,此时,10-<≤x ;当0x >时,令()11221log 1log 2f x x =>=,解得12x <,此时,102x <<. 因此,不等式()f x m >的解集为11,2⎛⎫- ⎪⎝⎭.故选:C.【点睛】考查分段函数方程与分段函数不等式的求解,在解题时要注意对自变量的取值进行分类讨论,选择合适的解析式进行计算,考查分类讨论思想的应用与运算求解能力,属于中等题.5.已知2(),()32,()2()()g x f x x g x x x F x f x ⎧=-=-=⎨⎩, ()()()()f x g x f x g x ≥<,则()F x 的最值是( )A .最大值为3,最小值-1 B.最大值为 C .最大值为3,无最小值 D .既无最大值,又无最小值【答案】B【分析】根据函数表达式画出各自图象,()F x 其实表示的是(),()f x g x 较小的值.【详解】如图,在同一坐标系中画出(),()f x g x 图象,又()F x 表示两者较小值,所以很清楚发现()F x 在A 处取得最大值23+222=3+2A A A x x x x y x =-⇒= B.【点睛】取两函数较大值(较小值)构成的新函数问题,有效的手段就是构建图象,数形结合.6.已知函数f (x )=2,02,0x x a x x -⎧⋅≥⎨<⎩(a ①R),若f [f (-1)]=1,则a =( )A .14B .12C .1D .2【答案】A【分析】由题意,函数()f x 的解析式,可得()12f -=,进而求解()(1)f f -的值,列出方程,即可求解. 【详解】由题意,函数()2,02,0x x a x f x x -⎧⋅≥=⎨<⎩,则()(1)122f ---==, 则()2(1)(2)241f f f a a -==⋅==,所以14a =,故选A. 【点睛】考查了分段函数的应用问题,其中解答中根据分段函数的分段条件,合理选择相应的对应法则求解是解答的关键.7.已知f (x )=21102(1)0x x x x ⎧+≤⎪⎨⎪-->⎩,,使f (x )≥–1成立的x 的取值范围是A .[–4,2)B .[–4,2]C .(0,2]D .(–4,2]【答案】B 【解析】①f (x )≥–1,①01112x x ≤⎧⎪⎨+≥-⎪⎩或()2011x x >⎧⎪⎨--≥-⎪⎩,①–4≤x ≤0或0<x ≤2,即–4≤x ≤2.故选B . 8.已知函数()()()()()()()()()2,32,2,,,g x f x g x f x x g x x x F x f x g x f x ⎧≥⎪=-=-=⎨≥⎪⎩则( ) A .()F x 的最大值为3,最小值为1B .()F x的最大值为2C .()F x 的最大值为7-,无最小值D .()F x 的最大值为3,最小值为1-【答案】C【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =2x =结合函数图象可知当2x =()F x 有最大值7- 故选:C .【点睛】考查了函数的图象,以及函数求最值,同时考查了分析问题的能力和作图的能力. 二、填空题9.设函数()f x 对于所有的正实数x ,均有(3)3()f x f x =,且()12(13)f x x x =--≤≤,则使得()(2014)f x f =的最小的正实数x 的值为____.【答案】416【分析】由题可得(2014)173f =,根据13,233()333,123n n nn n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩分情况讨论可求解.【详解】对于所有的正实数x ,均有(3)3()f x f x =,()33x f x f ⎛⎫∴=⎪⎝⎭, 22201420142014(2014)333333n n f f f f ⎛⎫⎛⎫⎛⎫∴==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当6n =时,[]620141,33∈, 662014(2014)3121733f ⎛⎫∴=-+= ⎪⎝⎭,13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩,当13173233n n x x +⎧-=⎪⎨≤≤⎪⎩时,113173233n n n x x ++⎧=-⎨⨯≤≤⎩,当6n =时,x 取得最小正值为556; 当3173123n n x x ⎧-=⎪⎨≤<⎪⎩时,3173323n n nx x ⎧=+⎨≤<⨯⎩,当5n =时,x 取得最小正值为416, 综上,使得()(2014)f x f =的最小的正实数x 的值为416.故答案为:416.【点睛】考查分段函数的应用,考查函数性质等基础知识,解题的关键是由已知得出13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩.10.已知函数2223,2()log ,2x x x f x a x x ⎧-+≤=⎨+>⎩有最小值,则1f a ⎛⎫⎪⎝⎭的取值范围为__________. 【答案】[2,3) 【分析】函数()f x 有最小值,所以求出1a ≥,则有101a<≤,代入()f x 求出()f x 的取值范围. 【详解】当2x ≤时,2()(1)2f x x =-+的最小值为2.当x 2>时,要使()f x 存在最小值,必有2log 22a +≥,解得1a ≥.101a∴<≤,21112[2,3)fa a ⎛⎫⎛⎫∴=-+∈ ⎪ ⎪⎝⎭⎝⎭. 故答案为:[2,3).【点睛】考查分段函数求函数值的范围,属于中档题. 易错点睛:(1)分段函数是一个函数,只有一个最值; (2)分段函数已知函数值求自变量的取值,要分段讨论.11.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.【答案】,162⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭, ()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:,162⎪⎢⎣⎭【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误. 12.定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.若当x ①[),m +∞时,()116f x ≤,则m 的最小值等于________. 【答案】154. 【分析】转化条件为在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,作出函数的图象,数形结合即可得解. 【详解】 由题意,当[)1,2x ∈时,故()()()11112322f x f x x =-=--, 当[)2,3x ∈时,故()()()11112524f x f x x =-=--⋅⋅⋅, 可得在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤, 作函数()y f x =的图象,如图所示,当7,42x ⎡⎫∈⎪⎢⎣⎭时,由()()11127816f x x =--=得154x =, 由图象可知当154x ≥时,()116f x ≤,所以m 的最小值为154. 故答案为:154. 【点睛】考查了分段函数解析式的求解及图象的应用,考查了运算求解能力与数形结合思想,属于中档题. 三、解答题13.根据下列条件,求函数()f x 的解析式;(1)已知()f x 是一次函数,且满足()()3121217f x f x x +--=+;(2)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭; (3)已知等式()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f =;(4)知函数()f x 满足条件()123f x f x x ⎛⎫+= ⎪⎝⎭对任意不为零的实数x 恒成立 【答案】(1)()27f x x =+;(2)3()3(2f x x x x =-≥或2)x ≤-;(3)()21f x x x =++;(4)1()2(0)f x x x x=-≠.【分析】(1)设函数()f x kx b =+,结合等式()()3121217f x f x x +--=+,利用一次项系数和常数项分别相等列出方程组解出k b 、的值,即可得出函数()f x 的解析式;(2)用配凑法根据232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,然后换元1t x x =+可得出函数()y f t =的解析式,利用双勾函数求出1t x x=+的取值范围,即为函数()y f x =的定义域; (3)由已知令x y =,则有()()()021f f x x x x =--+且()01f =,化简即可求得结果;(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,与原式列方程組解出函数()y f x =的解析式. 【详解】(1)设()(0)f x kx b k =+≠,则[][]3(1)2(1)3(1)2(1)5217f x f x k x b k x b kx b k x +--=++--+=++=+所以2,517k b k =⎧⎨+=⎩解得:2,7k b =⎧⎨=⎩所以()27f x x =+;(2)232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴,令1t x x=+,由双勾函数的性质可得2t ≤-或2t ≥, 3()3f t t t =-∴,3()3(2f x x x x =-≥∴或2)x ≤-(3)因为()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f = 令x y =则()()()021f f x x x x =--+,又因为()01f = 所以()()()01=1f f x x x =-+,即()22+1f x x x =+(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,联立12()313()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,变形得:14()2613()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得1()2(0)f x x x x=-≠ 【点睛】考查求函数解析式的一般方法:配凑法、换元法、待定系数法、方程组法.14.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.【答案】(1)12b ≤≤;(2)()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩;[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【分析】(1)先利用已知条件判断函数单调性,再根据分段函数单调性列条件计算即得结果;(2)先讨论()g x 的符号,再代入分段函数()f x 解析式中,即得[]()f g x 的解析式;利用分段函数()f x 的解析式,直接代入()g x 的解析式,即得[]()g f x 的解析式.【详解】解:(1)因为任意的12x x ≠,都有()()12120f x f x x x ->-成立,故设任意的12x x <时,有()()12f x f x <,即分段函数()f x 在R 上单调递增,故当0x >时,()()211f x b x b =-+-单调递增,即210b ->,即12b >; 当0x ≤时,()2()2f x x b x =-+-单调递增,即对称轴202bx -=≥,即2b ≤; 且在临界点0x =处,左边取值不大于右边取值,即01b ≤-,即1b ≥ . 综上,b 的取值范围是12b ≤≤;(2)当b =2时,231,0(),0x x f x x x +>⎧=⎨-≤⎩,又()23g x x =+, 故当()230g x x =+>时,即32x >-时,()()3231610f g x x x ⎡⎤=++=+⎣⎦, 当()230g x x =+≤时,即32x ≤-时,[]()2()23f g x x =-+, 故()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩; 当0x >时,()31f x x =+,则[]()(31)2(31)365g f x g x x x =+=++=+, 当0x ≤时,2()f x x =-,则[]22()()23g f x g x x =-=-+,故[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【点睛】关键点点睛::要讨论分段函数的自变量所在的取值区间确定对应的关系式,进而代入,以突破难点.15.已知函数()f x 的解析式为()()()()350501281x x f x x x x x ⎧+≤⎪=+<≤⎨⎪-+>⎩,(1)求12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;(3)画出()f x 的图象,并求出函数的值域;【答案】(1)3-;(2) 1a =-或3;(3)答案见解析,值域为(],6-∞;【分析】(1)先求出12f ⎛⎫ ⎪⎝⎭,进而可求出12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (2)按0a ≤,01a <≤,1a >三种情况进行讨论,分别由()2f a =列出关于a 的方程,进而可求出a 的值.(3)画出分段函数的图象后,由图象可求出函数的值域.【详解】(1)解:因为1012<<,所以111122f ⎛⎫=> ⎪⎝⎭,则11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)解:当0a ≤时,()352f a a =+=,解得1a =-;当01a <≤时,()52f a a =+=, 解得3a =-,不符合题意;当1a >时,282a -+=,解得3a =,综上所述,1a =-或3.(3)解:如图所示,当1x =时,函数最大值为6,无最小值,所以值域为(],6-∞.【点睛】考查了分段函数函数值的求解,考查了分段函数图象.。
三角函数公式大全高中数学

三角函数公式及练习【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式.【要点梳理】要点一:诱导公式诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z∈诱导公式二:sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=,其中k Z∈诱导公式三:sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-,其中k Z∈诱导公式四:sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-,其中k Z∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈诱导公式六:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z ∈要点诠释:(1)要化的角的形式为α±⋅ 90k (k 为常整数);(2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆记忆口诀“奇变偶不变,符号看象限”,意思是说角90k α⋅± (k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值.①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式.【典型例题】类型一:利用诱导公式求值例1.求下列各三角函数的值:(1)10sin 3π⎛⎫-⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解.【答案】(1)2(2)2-(3)1【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭.(3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1.【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具.举一反三:【变式1】(2018秋南京期末)已知4sin 5x =,其中02x π≤≤.(1)求cos x 的值;(2)求cos()sin()sin(2)2x x x ππ----的值.【答案】(1)35;(2)37【解析】(1)∵4sin 5x =,02x π≤≤,∴3cos 5x ==;(2)∵4sin 5x =,3cos 5x =,∴原式3cos 3534cos sin 755x x x ===++.例2.(1)已知cos 63πα⎛⎫-=⎪⎝⎭,求25cos sin 66ππαα⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭的值.(2)已知1cos(75)3α-︒=-,且α为第四象限角,求sin(105°+α)的值.【答案】(1)233+-(2)223【解析】(1)∵5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫+=--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 63πα⎛⎫=--=-⎪⎝⎭,222232sin sin 1cos 166633πππααα⎛⎡⎤⎛⎫⎛⎫⎛⎫-=--=--=-= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭∴253223cos sin 66333ππαα⎛⎫⎛⎫+--=-=-⎪ ⎪⎝⎭⎝⎭.(2)∵1cos(75)03α-︒=-<,且α为第四象限角,∴α―75°是第三象限角,∴sin(75)α-︒=223==-,∴22sin(105)sin[180(75)]sin(75)3ααα︒+=︒+-︒=--︒=.【总结升华】注意观察角,若角的绝对值大于2π,可先利用2k π+α转化为0~2π之间的角,然后利用π±α、2π-α等形式转化为锐角求值,这是利用诱导公式化简求值的一般步骤.举一反三:【变式1】已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】2213-【解析】∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α),∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴22sin(75)3α︒+===-.∴122221cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.类型二:利用诱导公式化简例3.(2018春陕西长安区期中)(1)计算cos300°―sin(―330°)+tan675°(2)化简sin[(21)]sin[(21)]sin(2)cos(2)n n n n απαπαπαπ+++-++⋅-(n ∈Z ).【思路点拨】(1)原式各项中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数计算即可得到结果;(2)原式利用诱导公式化简,约分即可得到结果.【答案】(1)-1;(2)2cos α-【解析】(1)原式=cos(360°―60°)+sin(360°―30°)+tan(720°―45°)=cos60°―sin30°―tan45°=111122--=-;(2)原式sin sin 2sin 2sin cos sin cos cos αααααααα---===-.【总结升华】诱导公式应用的原则是:负化正,大化小,化到锐角就终了.举一反三:【变式1】(2017江苏连云港月考)化简与求值:(1)cos(2)sin()sin()tan(3)2παπαπαπα-++-.(2.【答案】(1)cos α;(2)1【解析】(1)cos(2)sin()cos sin cos cos tan sin()tan(3)2παπααααπαααπα-+-==-+-.(2|cos10sin10|1cos10sin10︒-︒==︒-︒.类型三:利用诱导公式进行证明例4.求证:tan(2)sin(2)cos(6)tan 33sin cos 22παπαπααππαα----=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.【思路点拨】(1)要证明的等式左边有切有弦,而等式右边只有切;(2)等式左边较复杂但却可以直接利用诱导公式.解答本题可直接把左式利用诱导公式进行化简推出右边.【证明】左边tan()sin()cos()sin 2cos 222αααπππαπα---=⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦(tan )(sin )cos sin cos 222αααππαπα--=⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦22sin sin cos sin sin cos 22ααππαααα==-⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭sin tan cos ααα=-=-=右边,原式得证.【总结升华】利用诱导公式证明等式,主要思路在于如何配角,如何去分析角之间的关系.举一反三:【变式1】设A 、B 、C 为ABC ∆的三个内角,求证:(1)()sin sin A B C +=;(2)sincos22A B C+=;(3)tancot 22A B C+=【证明】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证.(2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证.(3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证.【变式2】设8tan 7a απ⎛⎫+= ⎪⎝⎭.求证:1513sin 3cos 37720221sin cos 77a a πααππααπ⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.【证明】左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦88sin 3cos 7788sin cos 77ππααππαα⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭8tan 33781tan 17a a παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边.∴等式成立【巩固练习】1.对于诱导公式中的角α,下列说法正确的是()A .α一定是锐角B .0≤α<2πC .α一定是正角D .α是使公式有意义的任意角2.已知sin()0πθ+<,cos()0θπ->,则下列不等式关系中必定成立的是()A .sin θ<0,cos θ>0B .sin θ>0,cos θ<0C .sin θ>0,cos θ>0D .sin θ<0,cos θ<03.sin 300 的值为()4.(2017贵州模拟)已知1sin(65)3α︒+=,则cos (25°-α)的值为()A .13-B .13C .223-D .2235.(2018四川广安模拟)已知2sin()43πα+=,则cos()4πα-的值等于()A .23-B .23C .53D .53±6.在直角坐标系,若α与β的终边关于y 轴对称,则下列等式恒成立的是()A .sin()sin απβ+=B .sin()sin απβ-=C .sin(2)sin παβ-=-D .sin()sin αβ-=7.sin34π·cos 625π·tan 45π的值是()A .-43B .43C .-43D .438.)2cos()2sin(21++-ππ等于()A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos29.tan2010°的值为.10.(2018秋苏州期末)已知θ是第三象限角,且2sin 2cos 5θθ-=-,则sin cos θθ+=________.11.sin315°―cos135°+2sin570°的值是________。
高中数学概念公式大全

高中数学概念公式大全一、 三角函数1、以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=xr ,csc α=y r ; 2、同角三角函数的关系中,平方关系是:222222 倒数关系是:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα; 相除关系是:αααcos sin =tg ,αααsin cos =ctg ; 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限;如:=-)23sin(απαcos -,)215(απ-ctg =αtg ,=-)3(απtg αtg -; 4、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心;5、三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈;6、=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos=±)(βαtg βαβαtg tg tg tg ⋅± 1 7、二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -; 8、三倍角公式是:sin3α=αα3sin 4sin 3- cos3α=ααcos 3cos 43-9、半角公式是:sin 2α=2cos 1α-± cos 2α=2cos 1α+± tg 2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +;10、升幂公式是:2cos2cos 12αα=+ 2sin 2cos 12αα=-; 11、降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=; 12、万能公式:sin α=21222ααtg tg + cos α=212122ααtg tg +- tg α=21222ααtg tg - 13、sin βα+sin βα-=βα22sin sin -,cos βα+cos βα-=βα22sin cos -=αβ22sin cos -;14、)60sin()60sin(sin 400ααα+-=α3sin ;)60cos()60cos(cos 400ααα+-=α3cos ;)60()60(00ααα+-tg tg tg =α3tg ;15、ααtg ctg -=α22ctg ; 16、sin180=415-; 17、特殊角的三角函数值:18、正弦定理是其中R 表示三角形的外接圆半径:R Cc B b A a 2sin sin sin === 19、由余弦定理第一形式,2b =B ac c a cos 222-+ 由余弦定理第二形式,cosB=acb c a 2222-+ 20、△ABC 的面积用S 表示,外接圆半径用R 表示,内切圆半径用r 表示,半周长用p 表示则:① =⋅=a h a S 21;② ==A bc S sin 21; ③C B A R S sin sin sin 22=;④R abc S 4=; ⑤))()((c p b p a p p S ---=;⑥pr S =21、三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…22、在△ABC 中,B A B A sin sin <⇔<,…23、在△ABC 中:-tgC B)+tg(A -cosC B)+cos(A sinC=B)+sin(A == 2cos 2sin C B A =+ 2sin 2cos C B A =+ 22C ctg B A tg =+ tgC tgB tgA tgC tgB tgA ⋅⋅=++24、积化和差公式:①)]sin()[sin(21cos sin βαβαβα-++=⋅, ②)]sin()[sin(21sin cos βαβαβα--+=⋅, ③)]cos()[cos(21cos cos βαβαβα-++=⋅,④)]cos()[cos(21sin sin βαβαβα--+-=⋅;25、和差化积公式: ①2cos 2sin2sin sin y x y x y x -⋅+=+, ②2sin 2cos 2sin sin y x y x y x -⋅+=-, ③2cos 2cos 2cos cos y x y x y x -⋅+=+, ④2sin 2sin 2cos cos y x y x y x -⋅+-=-; 二、 函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n ;二次函数c bx ax y ++=2的图象的对称轴方程是ab x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,;用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)c bx ax x f ++=2)(,(零点式))()()(21x x x x a x f -⋅-=和n m x a x f +-=2)()( 顶点式;2、 幂函数nm x y = ,当n 为正奇数,m 为正偶数,m<n 时,其大致图象是3、 函数652+-=x x y 的大致图象是由图象知,函数的值域是)0[∞+,,单调递增区间是)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞;三、 反三角函数1、x y arcsin =的定义域是-1,1,值域是]22[ππ,-,奇函数,增函数; x y arccos =的定义域是-1,1,值域是]0[π,,非奇非偶,减函数; arctgx y =的定义域是R,值域是)22(ππ,-,奇函数,增函数; arcctgx y =的定义域是R,值域是)0(π,,非奇非偶,减函数;2、当x x x x x ==-∈)cos(arccos )sin(arcsin ]11[,时,,; 221)cos(arcsin 1)sin(arccos x x x x -=-=,x x x x arccos )arccos(arcsin )arcsin(-=--=-π,2arccos arcsin π=+x x对任意的R x ∈,有: 2)()()()(ππ=+-=--=-==arcctgx arctgx arcctgx x arcctg arctgx x arctg xarcctgx ctg x arctgx tg ,, 当x arctgx ctg x arcctgx tg x 1)(1)(0==≠,时,有:; 3、最简三角方程的解集:{}{}{}{}。
人教版高中数学必修1至必修5公式

必修二:
直线与方程
1)直线的倾斜角
3
人教版高中数学必修一至必修五公式(必会)
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾
斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k tan 。斜
log a m n log am b n
n log a m
n m
log a
b
(a、b、m
0,n
R, 且a
1)
,
log a
b
log c log c
b a
(a、b、c
0, 且a、c
1)
(换底公式)
函数图像(必须熟)
表1
y ax a 0, a 1
指数函数
定义域 值域
xR
y 0,
对数数函数 y log a x a 0, a 1
○1 在任一直线上任取一点,再转化为点到直线的距离进行求解。
d C1 C2 ( A、B都相等)
○2 设直线 l1 Ax By C1 0, l2 Ax By C2 ; 则两点间的距离为
A2 B2
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac (a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac
高中数学知识点总结及公式大全(7篇)

高中数学知识点总结及公式大全(7篇)高中数学知识点总结及公式大全1空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
面外直线的判定定理:用平面内一点与平面外一点之间的直线,平面内不经过该点的直线为面外直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面的夹角:平面的对角线与其在该平面上的投影所形成的锐角。
高中数学知识点总结及公式大全2(一)导数第一定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义(二)导数第二定义设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化△x ( x - x0 也在该邻域内 ) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为f(x0) ,即导数第二定义(三)导函数与导数如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。
高中数学《三角函数》详解+公式+精题(附讲解)

高中数学《三角函数》详解+公式+精题(附讲解)引言三角函数是中学数学的基本重要容之一,三角函数的定义及性质有许多独特的表现,是高考中对基础知识和基本技能进行考查的一个容。
其考查容包括:三角函数的定义、图象和性质,同角三角函数的基本关系、诱导公式、两角和与差的正弦、余弦、正切。
两倍角的正弦、余弦、正切。
、正弦定理、余弦定理,解斜三角形、反正弦、反余弦、反正切函数。
要求掌握三角函数的定义,图象和性质,同角三角函数的基本关系,诱导公式,会用“五点法”作正余弦函数及的简图;掌握基本三角变换公式进行求值、化简、证明。
了解反三角函数的概念,会由已知三角函数值求角并能用反三角函数符号表示。
由于新教材删去了半角公式,和差化积,积化和差公式等容,近年的高考基本上围绕三角函数的图象和三角函数的性质,以及简单的三角变换来进行考查,目的是考查考生对三角函数基础知识、基本技能、基本运算能力掌握情况。
2.近年来高考对三角部分的考查多集中在三角函数的图象和性质,重视对三角函数基础知识和技能的考查。
每年有 2 — 3 道选择题或填空题,或 1 — 2 道选择、填空题和 1 道解答题。
总的分值为 15 分左右,占全卷总分的约 10 左右。
( 1 )关于三角函数的图象立足于正弦余弦的图象,重点是函数的图象与 y=sinx 的图象关系。
根据图象求函数的表达式,以及三角函数图象的对称性。
如 2000 年第( 5 )题、( 17 )题的第二问。
( 2 )求值题这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换。
如 2002 年( 15 )题。
( 3 )关于三角函数的定义域、值域和最值问题( 4 )关于三角函数的性质(包括奇偶性、单调性、周期性)。
一般要先对已知的函数式变形,化为一角一函数处理。
如 2001 年( 7 )题。
( 5 )关于反三角函数, 2000 — 2002 年已连续三年不出现。
( 6 )三角与其他知识的结合(如 1999 年第 18 题复数与三角结合)今后有关三角函数仍将以选择题、填空题和解答题三种题型出现,难度不会太大,会控制在中等偏易的程度;三角函数如果在解答题出现的话,应放在前两题的位置,放在第一题的可能性最大,难度不会太大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r的化简公式高中数学
相关系数r公式化简是(x的值-x均值)*(y的值-y均值),相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度,着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。
如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。