连铸坯表面质量缺陷及处理措施

合集下载

防止连铸坯夹渣杂缺陷的措施及规定

防止连铸坯夹渣杂缺陷的措施及规定

防止连铸坯夹渣杂缺陷的措施及规定在连铸生产过程中,坯料夹杂或夹渣是一个常见的问题。

坯料夹渣或夹杂会造成铸造坯料表面缺陷,严重的情况下会导致铸坯折断。

为了防止连铸坯夹杂或夹渣缺陷,我们制定了以下的措施及规定。

坯料的质量控制坯料的质量是影响连铸坯料夹杂或夹渣的一个重要因素。

为了保障坯料质量的稳定,需要做到以下几点:1.选择原材料时,需要严格按照规定采购车间标准,增加试做,检查原材料质量的合格率。

2.要求原材料供应商提供合格证明和检验报告,保证原材料的质量符合车间标准要求。

3.对原材料的人工检验和自动检验要做好记录,及时发现和解决问题。

4.对重点原材料,比如矿渣等,要做好监测和抽样分析,及时发现问题。

5.对原材料的质量问题,需要做到及时沟通和处理。

连铸机操作规范连铸机操作规范是实现铸造质量控制的重要手段。

以下是进行连铸操作的规定:1.连铸机操作人员需要经过专业的培训和技术能力考核。

2.连铸机操作人员在接班时,需要对前一班的连铸机操作记录进行查看和交接,及时了解连铸机运行情况。

3.对于连铸机在运行过程中出现的异常情况,需要及时进行处理,保证连铸机运行的稳定性。

4.操作人员需要通过联合巡视和自检来发现问题和解决问题。

5.班组和质量检查组应定期开展连铸机检查和检验,及时发现和解决质量问题。

连铸模具的管理连铸模具是保障连铸坯料质量的关键性因素。

以下是连铸模具的管理规定:1.对连铸模具进行清洗和修理,以便发现隐患和进行预防性维护。

2.对连铸模具进行周期性的检测和检验,判断模具的状况和使用寿命。

3.对连铸模具进行标记和记录,以便在使用过程中进行跟踪和管理。

4.严格控制连铸模具的使用寿命和使用次数,保证坯料的质量和稳定性。

坯料质量的检验和测试坯料质量的检验和测试是确保连铸坯料夹渣杂缺陷的措施之一。

以下是坯料质量的检验和测试规定:1.要求在连铸过程中不断地进行袖口检测,确保坯料不夹杂夹渣。

2.对于连铸生产中的中间产品进行定期检验,以便发现和解决质量问题。

连铸坯缺陷的产生与防止措施 Microsoft Word 文档1

连铸坯缺陷的产生与防止措施 Microsoft Word 文档1

连铸坯裂纹的产生与防止措施连铸坯裂纹的分类 :铸坯表面裂纹包括表面纵裂纹、表面横裂纹、网状裂纹(星裂)、发裂、角部纵裂纹、角部横裂纹等;铸坯内部裂纹包括中间裂纹、角部裂纹、中心线裂纹、三角区裂纹、皮下裂纹、矫直裂纹等。

1.1 铸坯表面裂纹部纵裂纹等几种主要的缺陷形式。

铸坯表面裂纹主要有表面纵裂纹、表面横裂纹、网状裂纹、角部横裂纹、边铸坯表面裂纹是在结晶器内产生的,在二冷段得到扩展。

它会导致轧制板材表面的微细裂纹,影响最终产品的表面质量。

图1为表面裂纹示意图图 1 铸坯表面裂纹示意图1-表面纵裂纹;2-表面横裂纹;3-网状裂纹;4-角部横裂纹;5-边部纵裂纹1.1.1 表面纵裂纹连铸坯表面纵裂纹是指沿着拉坯方向在铸坯表面上发生的裂纹。

它可由工艺因素或设备因素引起。

由工艺因素引起的纵裂,大多出现在铸坯宽面的中央部位,是表面裂纹中最常见的一种裂纹缺陷。

纵裂主要是由于初生坯壳在结晶器内冷却强度不均匀,造成应力的集中,在坯壳相对较薄的地方坯壳厚度不足以承受这种应力,致使坯壳裂开而产生裂纹,并在二冷区得到扩展,形成表面纵裂纹。

图2 图3 图4为表面纵裂纹示意图图2图3 图41.影响连铸坯表面纵裂纹因素:实际生产过程中,主要有以下因素影响连铸坯表面纵裂纹的产生:1) 成品成分及钢水质量(1) 成品钢中碳含量处在亚包晶和包晶反应区时,由于初生坯壳在结晶器弯月面内激冷时收缩较大,容易造成初生坯壳厚薄不均,从而使铸坯发生纵裂纹的倾向增加。

因此,在实际生产中各连铸厂家都尽量控制其成品钢中碳含量,使其避开亚包晶和包晶反应区,从而减少铸坯纵裂纹的发生机率。

(2) 成品钢中硫、磷含量也会影响铸坯纵裂纹的产生。

钢中硫、磷含量增加时,钢的高温强度和塑性明显降低,在应力作用下就容易产生裂纹,因此,在实际生产中各连铸厂家都尽量控制其成品钢中硫、磷含量,尽量控制在0.02%以内。

(3) 钢中微合金如铌、钒等对铸坯纵裂纹的产生也有重要影响,因为微合金而产生的铸坯纵裂纹在铸坯表面上分布不规则,缺陷较短、数量较多。

防止连铸坯夹渣(杂)缺陷的措施及规定精选

防止连铸坯夹渣(杂)缺陷的措施及规定精选

防止连铸坯夹渣(杂)缺陷的措施及规定连铸质量及干净钢消费决定了提供连铸钢水的温度、成分和纯洁度都要进展操纵,同时平衡有节拍的为连铸机提供合格质量的钢水,也是保证连铸机消费顺利及质量保障的首要条件。

提高质量认识,标准质量行为,使炼钢-连铸消费过程的质量受控,是本规定的主旨。

1连铸坯夹渣(杂)缺陷的成因1.1定义:来自于炼钢和浇注过程中的物理化学产物、耐火材料侵蚀产物或卷入钢液的保护渣被称为非金属夹杂物。

非金属夹杂物在酸浸低倍试样上表现为暗黑色斑点。

而铸坯夹渣是夹杂物镶嵌于铸坯外表(形状不规那么)或皮下(深浅不一)的渣疤。

1.2成因:1.2.1钢水氧化性强、温度高、夹杂物多,流淌性不好,中包水口壁上高熔点的大块附着物忽然脱落进入结晶器钢水。

1.2.2保护渣功能不良,渣条多,渣条未捞净,以及中间包液面、结晶器液面急剧波动,造成中间包下渣、结晶器内卷渣并镶嵌于坯壳处。

1.2.3钢包底吹制度执行不好,造成脱氧产物上浮排除不充分。

1.2.4保护浇注执行不好,造成钢液被二次氧化。

1.2.5中包钢水过热度高,耐火材料质量差。

1.2.6中间包内吹氧、加调温料以及金属料等。

2连铸坯夹渣(杂)缺陷的危害2.1破坏了钢的连续性和致密性,轧制过程不能被焊合消除,对钢材质量造成危害。

2.2夹渣部位坯壳薄,容易破裂导致漏钢;夹渣铸坯轧制后,钢材外表遗留为结疤。

3钢水质量操纵措施及规定3.1在一定的消费条件下,要降低转炉终点溶解氧[O]溶,必须精确操纵终点钢水碳和温度。

3.1.1冶炼Q195及其他钢种,终点[C]操纵≥0.06%。

3.1.2开机第一炉及热换第一炉,终点温度操纵在1735~1755℃,出钢温度操纵在1715~1735℃。

特别情况下按机长要的温度操纵。

连浇时那么按温度制度规定操纵。

3.1.3提高转炉终点碳和温度的命中率,杜绝后吹。

挡渣出钢操纵下渣量。

3.1.4冶炼Q195,开机及热换第一炉,成品[Mn]按0.45%左右操纵,成品[Si]按0.15%左右操纵,锰硅比≥2.8;并按3.0左右操纵。

连铸坯质量缺陷

连铸坯质量缺陷

连铸坯的质量缺陷及控制摘要连铸坯质量决定着最终产品的质量。

从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。

连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。

(2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。

连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。

(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。

二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。

(4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。

与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。

下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。

关键词:连铸坯;质量;控制1 纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。

夹杂物的存在破坏了钢基体的连续性和致密性。

夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。

此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。

一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。

随着薄板与薄带技术的发展,S/V可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。

所以降低钢中夹杂物就更为重要了。

提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。

为此应采取以下措施:⑴无渣出钢。

连铸方坯的缺陷及其处理

连铸方坯的缺陷及其处理

连铸方坯的缺陷及其处理连铸方坯的缺陷及其处理1 表面缺陷1.1 气孔和针孔定义 : 垂直铸坯表面并在铸坯表面肉眼可见的小气孔并可能以针孔的形式深入表面。

原因 : 钢水脱氧不足、凝固时产生一氧化碳;脱氧后又钢流二次氧化吸收的气体;结晶器保护渣质量不合要求;钢包及中间包烘烤不好改进方法: 钢水完全脱氧;不浇注过氧化的钢水;保持浇注温度;(注温不能过高)使用干燥的钢水罐及中间罐;保护渣不能受潮,摆放时间不能太久。

1.2 坯头气孔及针孔定义: 同1.1,但仅出现在每次浇注的第一根钢坯坯头处原因: 钢液温度太低;结晶器中钢水氧化;保护渣受潮或杂质多;结晶器内壁上有冷凝水;引锭头潮湿;填入结晶器中切屑及废钢有锈、有油或潮湿;中间罐内衬及钢水罐内衬潮湿;改进方法: 保持浇注温度;采用适宜的保护渣;采用干燥和洁净的废钢及切屑;绝对避免在结晶器内壁及锭头上产生冷凝水;干燥及烘烤中间罐;1.3 夹渣定义: 表面分布不均匀的夹渣,有时针孔和渣聚集,呈疏松态的外观原因: 由保护渣耐火材料颗粒和钢水氧化产物以及出钢渣等引起,随着钢流带入并被卷至铸坯表面。

改进方法: 用挡渣出钢;采用适宜的保护渣及耐火材料;钢水不能过氧化,注温要合适。

1.4 振动波纹及折叠定义: 在与铸坯轴线垂直方向上,铸坯表面上以均匀间距分布的波纹振痕,在不利的情况下出现折叠。

原因: 浇注速度波动大,使结晶器中钢液面不稳定。

改进方法: 保持均匀的浇注速度,稳定结晶器钢水液面。

调整振动频率使其与拉速相适应。

1.5 结疤与重皮定义: 铸坯角部和表面上出现的疤痕原因: 由于结晶器内坯壳破裂、钢水渗入到结晶器和铸坯之间的夹缝,以及保护渣结块造成。

改进方法: 保证结晶器具有准确的锥度,当结晶器使用时间过长而磨损会使坯壳过早脱离结晶器内壁而导致坯壳破裂。

1.6 分层: (双浇)定义: 铸坯中间出现分界层原因: 浇注中断又重新开始浇注时,使两次浇注连接出现重接。

改进方法: 浇注过程中不要断流,拉速要相对稳定,不要忽高忽低。

防止连铸坯夹渣(杂)缺陷的措施及规定

防止连铸坯夹渣(杂)缺陷的措施及规定

防止连铸坯夹渣(杂)缺陷的措施及规定连铸坯夹渣缺陷是指坯料表面或内部存在杂质、气泡、夹杂等不良缺陷,影响钢材的质量、抗拉强度和弯曲性能等。

为了达到优良的钢材质量,必需实行有效的措施和规定来防止连铸坯夹渣缺陷。

本文将从以下三个方面进行阐述:一、提高原材料采购质量1. 严格掌控原材料入厂质量,切实保证原材料质量符合生产要求。

对于原材料中含有较多夹杂物、矿物质等的,必需进行筛选、洗涤等处理。

2. 检验原材料物理化学性质,特别是对低熔点元素(如锌、铅等)的含量进行监控,以避开因过高的含量而引起的夹渣问题。

3. 尽可能避开原材料采纳较差的杂质来源,如回炉钢、铸造铁水等,以免发生连铸坯夹渣缺陷造成挥霍。

二、加强连铸设备及工艺掌控1. 针对连铸消耗品(如喷嘴、钢水箱等)进行补修或更换,保证其完好无损,确保钢水顺畅流动。

2. 对连铸工作过程中的电子设备进行定期维护保养,避开设备显现失灵情况。

3. 加强连铸实时监控,适时把握连铸过程中的各项参数,特别是钢水温度、流速、液面高度等指标,对显现异常情况要适时进行调整。

4. 订立连铸操作规定,严格掌控好连铸的操作时间、温度、速度等参数,防止显现突发事件,尽力避开连铸坯夹渣缺陷的发生。

5. 对于连铸工艺中加入的各种药剂和保护剂,要严格依照比例和规定加入,以确保连铸炉体内的化学环境稳定,避开发生夹渣现象。

三、加强质量监测与数据分析1. 加强对坯料全过程的监控,包括原材料采购、加工过程、连铸过程等方面,对质量异常情况进行记录,以便进行分析和改进。

2. 严格执行连铸产品检验规定,对检验结果不合格的坯料适时予以退换,避开将有问题的坯料流入后续生产环节。

3. 利用科学的统计方法,对连铸产品(如钢板、钢管等)质量进行分析和统计,发觉质量异常情况时,要适时订立矫正措施。

4. 对每一批次的连铸坯料,要进行全方位的检测与检验,对于可能引发夹渣缺陷的界限要进行特别关注。

为了有效防止连铸坯夹渣缺陷,需要各个环节搭配,形成一个完整的质量管理闭环。

连铸方坯脱方及表面缺陷的成因与对策

连铸方坯脱方及表面缺陷的成因与对策
205. 205. 204. 205. 205. 205. 205. 206. 40370500
202. 202. 202. 202. 202. 202. 202. 203. 30055550
202. 202. 202. 202. 202. 202. 202. 202. 00060555
表 7 WF—A 理化指标
水缝宽度决定着结晶器的冷却效果,其控制精度有特殊要求,设计技术条件为 5+0.5 0mm 范围,现场抽查实际情况表 5,由于定位方式不当,支撑刚度不够,水套易变形,使水 缝间隙远远超过标准要求,并有冷却死角。水缝超宽,水速达不到设计 6m/s 要求,引起 边界处冷却水间隙沸腾,使铸坯受到不均匀冷却。
流号
表 6 抽查在线铜管尺寸情况/mm 标 准 1号 2号 3号 4号 5号 6号 7号 8号

上 口
西
下 口

上 口

下 口
206.2~ 206.8
204.9~ 205.7
203.2~ 203.8
201.9~ 202.7
206. 205. 205. 205. 205. 206. 206. 206. 05590005
及操作问题。
4 实施措施
4.1 结晶器改进 将螺栓调水缝改为水套与铜管间线接触,端面四周用 5mm×50mm 钢条定位,使水缝
平整光滑,将水套板厚由 5mm 改为 8mm,增加刚度减少变形,可以保证达到技术要求。取 消压盖和中间压板,消除了上水室冷却死角,改进了密封方式。足辊靠四角立柱定位,间 距由立柱上螺栓调节,调整范围 0~30mm,总装配底部增设存放底座,便于吊装找正定位, 受到碰撞时辊距不移位,有利于准确对弧。在同罐次条件下进行新旧结晶器浇铸 Q235 对比(表 8),减少脱方率 6.54%,平均对角线差减小 0.24mm,新结晶器的脱方趋势明显要 小。

连铸坯的缺陷与控制技术

连铸坯的缺陷与控制技术

目录摘要 (1)ABSTRACT (2)引言 (3)1 连铸坯的形状质量控制 (4)1.1鼓肚变形 (4)1.1.1 鼓肚产生的原因 (4)1.1.2 采取的措施 (4)1.2菱形变形(脱方) (4)1.2.1 脱方成因 (5)1.2.2 减少脱方的措施 (5)1.3圆铸坯变形 (6)1.3.1 椭圆形变形 (6)1.3.2 不规则变形 (6)2 连铸坯的表面质量控制 (7)2.1振动痕迹 (7)2.2表面裂纹 (7)2.2.1 表面纵裂纹 (7)2.2.2 表面横裂纹 (8)2.3表面夹渣 (10)2.3.1 表面夹渣形成的原因 (10)2.3.2 解决表面夹渣的方法[5] (11)2.4保护渣性能对连铸圆坯表面质量的影响[7] (11)3 连铸坯的内部质量控制 (13)3.1连铸坯的中心裂纹 (13)3.1.1内部裂纹产生的原因及预防措施 (13)3.2连铸坯的内部夹杂物 (14)3.2.1夹杂物的分类 (15)3.2.2 夹杂物的来源[9] (15)3.2.3 连铸坯中夹杂物的控制方法[10] (16)结论 (18)致谢 (19)参考文献 (20)摘要连铸坯质量决定着最终产品的质量。

从广义来说所谓的连铸坯质量是得到严格产品所允许范围以内,叫合格产品。

连铸坯质量是从一下几个方面进行评价的:1. 连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。

与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。

2. 连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹,夹渣等缺陷。

连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度,拉坯速度,保护渣性能,浸入式水口的设计,结晶式的内腔形状,水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。

3. 连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹,偏析,疏松等缺陷程度。

二冷区冷却水的合理分配,支撑系统的严格对中是保证铸坯质量的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连铸坯表面质量缺陷及处理措施
【摘要】对于连铸板坯而言,振痕和裂纹是其主要的质量缺陷问题。

虽然这个缺陷在大多数情况下对连铸坯的质量影响不大,但是如果不及时有效的处理调还会带来很多附加的质量问题。

尤其是在生产不锈钢和高强度钢品种时,这种质量缺陷所带来的弊端更加明显。

【关键词】连铸坯;振痕;质量影响
1振痕形成机理
在连铸坯生产中,振痕和裂纹是两种最为常见的质量缺陷问题,主要是由于弯月面顶端溢流造成的,该缺陷形成以后会附带其他质量缺陷一并产生。

2振痕对铸坯质量的影响
振痕对连铸坯的质量影响会导致后期出现列裂纹,包括横裂纹、角部横裂纹及矫直裂纹。

如果连铸坯内掺杂的杂质较多,会导致大规模网状裂纹的出现,甚至出现穿钢现象。

如果在连铸坯出现振痕的地方晶粒很大,就会产生晶间裂纹现象,在这样的情况下需要对连铸坯修磨,从而提高成材率。

3影响振痕深度的因素
振动参数对振痕形状和深度有重要影响。

其中振幅、频率、负滑脱时间及振动方式最为重要;结晶器保护渣的耗量、粘度、保温性能及表面性能等有着重要影响;.钢的凝固特性对振痕有着重要影响,特别是当钢中碳含量和钢中Ni/Cr 比影响最突出。

当钢中碳含量为0.1%左右,Ni/Cr≈0.55左右,铸坯表面振痕最深。

4减少振痕深度的措施
采用小振幅(s)、高频率(f)及减少负滑脱时间(tN),可以有效的减少振痕的深度;采用非正弦振动方式可以减少振痕的深度,这是因为非正弦振动其负滑脱时间tN比正弦振动短;采用渣耗量低,粘度高的保护渣,可以使振痕深度变浅。

采用保温性能好和能增加弯月面半径的保护渣可以减少振痕深度;提高不锈钢、钢液的过热度,尤其是含钛和含铝的不锈钢对减少该钢表面振痕深度是有效的。

提高结晶器进出冷却水的温差,对减少振痕深度是有利的。

5铸坯表面裂纹
5.1表面纵裂纹
铸坯表面纵裂纹是铸坯最主要表面缺陷,对铸坯质量影响极大,特别是板坯和圆坯最为突出,报废量和整修量很大。

5.1.1纵裂纹类型
铸坯表面沟槽纵裂纹。

这种裂纹在铸坯表面纵向沟槽内,裂纹通常又长、又宽、又深,严重时引起漏钢事故发生;铸坯表面平纵裂。

这种裂纹与表面一样平(或凹下很浅),而且直,长度较短(50~200mm左右),其深度和宽度在1~2mm 范围内;结晶器划痕引起铸坯表面纵裂纹。

5.1.2铸坯表面纵裂纹产生原因
铸坏表面纵裂纹产生的条件,一是由于初生坯壳生长不均匀;二是由于传热速度快(温度梯度大和传热不均匀);纵裂纹产生在结晶器由上部和水口附近。

似隐纹(未裂开)形成存在,随着铸坯下行时隐裂纹裂开成为开放式的纵裂纹。

同样钢种板坯比方坯纵裂要多。

与钢种密切相关,特别是碳的含量在0.09~0.14%纵裂纹最为严重,或者说亚包晶钢最为严重;结晶器内液面波动大,使弯月处传热不均匀,从而使初生坯壳生长不均匀引起纵裂纹产生;铸机对中(或对弧)不良和夹持辊开口度过大,使铸坯发生鼓肚,造成纵裂纹的产生;保护渣性能选择不当,这是板坯表面纵裂纹产生的最重要原因,尤其是保护渣的传热性能;结晶器振动参数选择不当,尤其是S、f、tN、NS和NSR的选择较为重要,因为这些参数对传热均匀性有影响;钢水质量对纵裂纹影响较大,尤其是过热度、可浇性及成分控制(C、S、P、Mn/S)最为重要。

同时不能忽视钢中Cu和As的含量对纵裂纹的影响;伸入水口尺寸选择不当和使用不当都能使铸坯表面纵裂纹增加;结晶器状况不良,如安装精度差、结晶器变形和结晶器锥度选择不当等都会引发表面纵裂纹;中间包塞捧吹Ar过大和冲棒操作增加纵裂纹的产生。

拉坯速度选择不当及变化频繁都会引起纵裂的产生。

5.1.3防治铸坯表面纵裂纹的措施
严格控制钢水的质量,如浇注温度、可浇性和成份,其中C、S、P、Mn/S 及Cu和As含量,通常将S和P控制0.02%左右,优质钢在0.01%以下;Mn/S≥25,最好大于30,S+P+As≤0.075;采用结晶器液面自动控制对减少纵裂纹是很有效的;铸机应保持良好状态,板坯采用密节辊铸机,尤其铸机对中(对弧)和夹持辊开口度的精度非常重要。

板坯要求小于±0.5mm方坯,控制在±1mm如宝钢板坯铸机对中精度大于0.5mm时,纵裂纹增多;选择性能良好的板坯结晶器保护渣是当今控制板坯纵裂纹最经济,最有效的手段,是控制纵裂特效“药”;选择合理的振动参数不仅能保持结晶器内传热均匀,而且保持工艺的顺利,从而减少纵裂纹;采用恒速浇注对减少纵裂纹是有益的。

严防塞棒吹Ar过大和“冲棒”操作,否则将会增加表面纵裂纹;选择合理的一冷和二冷制度,即采用“弱冷”。

5.2铸坯角部纵裂纹
5.2.1角部纵裂纹产生原因
板坯窄面支撑不当,造成窄面鼓肚,如窄面有6~12mm鼓肚,伴随角部纵裂纹产生,甚至导致漏钢;结晶器锥度选择不当——锥度过小;窄面冷却水不足,产生鼓肚;结晶器转角半径选择不当;水口在结晶器偏流(即不对中);
5.2.2防治角部纵裂纹的措施
调整窄面足辊间隙使其向内1~2mm,限制鼓肚;选择合适的锥度(1.0%/m);控制好侧边水量,不使窄面产生鼓肚;选择合适的结晶器转角半径;水口要对中不应偏流。

5.3表面横裂纹
表面横裂纹都出现在铸坯振痕谷处,而且内弧多于外弧,尤其是宽厚板坯更易出现。

C-Mn-Nb(V)钢更易出现,往往在横裂纹处有AlN的沉淀。

5.3.1横裂纹产生的原因
铸坯振痕过深易产生横裂纹;有Al、Nb、V、B含量的钢,易出现横裂纹;矫直温度选择不当,温度过低或在脆性区矫直易产生横裂纹;结晶器保护渣性能选择不当,使结晶内摩擦力过大;结晶器锥度选择过大,使结晶器内铸坯阻力过大;振动参数选择不当,使铸坯振痕较深阻力增加;二冷强度过大,又不均匀,易产生横裂纹;拉坯速度变换过频、过大。

5.3.2防止表面横裂纹的措施
结晶器采用高频率小振幅的振动方式;二冷采用均匀的弱冷制度,避免铸坯表面温度反复回升;矫直温度应高,并避开脆性区;选用性能良好的结晶器保护渣,尤其是润滑性能;结晶器液面波动要采用液面自动控制。

5.4角部横裂纹
由于结晶器锥度过大,铸坯阻力较大;结晶器表面划伤严重,增大结晶器铸坯阻力;结晶出口与零段对弧不准或对弧不对中造成拉坯阻力过大;矫直时铸坯角部温度过低,内弧角部产生横裂纹;拉矫机的压力在横向上不对称造成铸坯偏离中心线,使铸坯一侧边受压,另一侧边受拉,造成角部和侧边产生横裂纹。

通常在宽厚板坯和大方坯出现率较多,尤其是内弧角部横裂纹比外弧多。

防止期产生的措施是选择合适的结晶器锥角;严格对弧对中;调整二冷水,使铸坯角部在矫直时有较高的温度,应不小于800℃;选择良好性能的保护渣,减少角部振痕深度和良好润滑性能。

5.5铸坯表面星状和网状裂纹
通常在铸坯氧化铁皮覆盖的情况下表面星状裂纹和网状裂纹是难以发现的,经过技术处理后才显现出来,它们往往是成群在一起的细小的晶间隙裂纹,或呈星状或呈网状分布,有的也称龟裂,其深度3mm左右。

矫直时可能扩展成横裂纹,而这种裂纹是沿晶界开裂的。

严格意义上来讲星状裂纹与网状裂纹是有区别的。

星状裂纹主要由高温铸坯表面吸收了Cu而引起的;网状裂纹主要由中、高强度钢和钢中含有Nb、AlN、V、BN元素引的。

在轧制时这两种裂纹可以造成成品报废。

参考文献:
[1]田燕翔主编.《现代连铸新工艺、新技术与铸坯质量控制》.当代中国音像出版社.
[2]蔡开科程富士主编.《连续铸钢原理与工艺》.冶金工业出版社.
[3]冯捷贾艳主编.《连续铸钢实训》.冶金工业出版社.。

相关文档
最新文档