电炉丝电阻率的测量设计性实验
《测量金属丝的电阻率》的实验报告

《测量金属丝的电阻率》实验报告徐闻一中:麦昌壮一、实验目的1.学会使用伏安法测量电阻。
2.测定金属导体的电阻率。
3.掌握滑动变阻器的两种使用方法和螺旋测微器的正确读数。
二、实验原理设金属导线长度为l ,导线直径为d ,电阻率为ρ,则: 由Sl ρR =,得: lR d l RS 42⋅==πρ。
三、实验器材已知长度为50cm 的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。
四、实验电路五、实验步骤1.用螺旋测微器测三次导线的直径d ,取其平均值。
2.按照实验电路连接好电器元件。
3.移动滑动变阻器的滑片,改变电阻值。
4.观察电流表和电压表,记下三组不同的电压U 和电流I 的值。
5.根据公式计算出电阻率ρ的值。
六、实验数据d/m U/V I/A R/Ω ρ/Ω·m 第一次测量2.80×10-4 5.00×10-1 7.8×10-2 6.41 1.97×10-7 第二次测量2.78×10-4 8.00×10-1 1.18×10-1 6.78 2.06×10-7 第三次测量2.82×10-4 1.00 1.46×10-1 6.84 2.18×10-7七、实验结果 ρ平均=(1.97+2.06+2.18)÷3×10-7Ω·m=2.07×10-7Ω·m八、实验结论金属丝的电阻率是2.07×10-7Ω·m 。
九、 【注意事项】1.本实验中被测金属导线的电阻值较小,因此实验电访必须采用电流表外接法2.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待洲金属导线的两端3.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两并入点间的部分待测导线长度.测量时应将导线拉直.4.闭合电键S 之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置5.在用伏安法测电阻时,通过待测导线的电流强度正的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中逐渐增大.6.求R的平均值可用两种方法:第一种是用R=U/I算出各次的测量值,再取平均值;第二种是用图像(U-I图线)的斜率来求出.若采用图像法,在描点时,要尽量使各点间的距离拉大一些,连线时要让各点均匀分布在直线的两侧,个别明显偏离较远的点可以不予考虑.十、误差分析1.测金属丝直径时会出现误差,通过变换不同的位置和角度测量,然后再求平均值方法,达到减小误差的目的;2.测金属丝长度时出现的误差,一定要注意到测量的是连入电路中的电阻丝的长度;3.电压表、电流表读数时会出现偶然误差;4.不论是内接法还是外接法,电压表、电流表内阻对测量结果都会产生影响;本实验中,由于金属丝的电阻不太大,应采用电流表外接法测电阻;5.电流过大,通电时间过长,会使电阻丝发热导致电阻发生变化,产生误差。
电阻率实验报告

目的:了解电阻率与材料性质的关系
实验材料:不同种类的导体和绝缘体
实验方法:测量不同材料的电阻率
实验结果:分析电阻率与材料性质的关系,得出结论
实验原理
实验原理:通过测量材料的电阻率,可以了解材料的导电性能,为材料的选择和应用提供依据。
电阻率:表示材料导电性能的物理量,与材料的长度、横截面积和温度有关。
物理意义:电阻率反映了材料对电流的阻碍作用,是材料导电性能的重要指标。
实验方法:通常采用四端法测量电阻率,以提高测量的准确性和可靠性。
直流法测量电阻率时,需要测量电压和电流,然后根据欧姆定律计算电阻率
交流法测量电阻率时,需要测量电压和电流的相位差,然后根据阻抗公式计算电阻率
电阻率测量的准确性受测量仪器、环境温度、湿度等因素的影响
表格制作:将分析结果以表格的形式展示,便于理解和比较
结果分析:根据数据分析结果,得出实验结论和改进措施
数据可视化:使用图表(如柱状图、折线图、饼图等)展示数据结果
数据分析:对数据进行描述性统计分析,如平均值、标准差等
数据处理方法:使用Excel或其他数据分析软件进行数据处理
实验数据收集:记录电阻值、电流值、电压值等数据
实验结果:测量值与理论值的比较
误差来源:系统误差、随机误差、人为误差等
误差分析:对误差进行定性和定量分析,找出影响误差的主要因素
改进措施:根据误差分析结果,提出改进实验方法和提高测量精度的措施
实验数据:列出实验中测量得到的数据
01
02
数据分析:对实验数据进行分析,找出规律和趋势
结果对比:将实验结果与理论值或预期值进行对比,分析差异原因
电阻率是衡量材料导电性能的重要参数
电阻率与材料的成分、结构、温度等因素有关
测量电阻率实验报告

测量电阻率实验报告测量电阻率实验报告引言:电阻率是描述材料导电性能的一个重要参数,它反映了材料对电流的阻碍程度。
测量电阻率的实验是电学实验中的基础实验之一,通过该实验可以了解不同材料的导电性能,并为电路设计和材料选用提供参考。
实验目的:本次实验的目的是测量不同材料的电阻率,并探究不同因素对电阻率的影响。
实验原理:电阻率(ρ)的定义为:ρ = R × A / L,其中R为电阻值,A为截面积,L为长度。
实验中,我们使用恒流源和电压表来测量电阻值,然后根据样品的几何尺寸计算出电阻率。
实验步骤:1. 准备实验装置:将恒流源和电压表连接好,并确保测量仪器的正常工作。
2. 测量导体的电阻值:将待测导体接入电路中,调节恒流源的电流大小,并使用电压表测量电压值。
3. 计算电阻率:根据实测的电阻值和导体的几何尺寸,计算出电阻率。
实验结果与分析:在实验中,我们选择了几种常见的导体材料进行测量,包括铜线、铁丝和铝片。
通过测量得到的电阻值和样品的几何尺寸,我们计算出了它们的电阻率。
结果显示,铜线的电阻率最低,铝片的电阻率次之,而铁丝的电阻率最高。
这是因为铜具有良好的导电性能,电子在铜中的迁移速度较快;而铝的导电性能稍差一些,电子迁移速度较慢;而铁的导电性能相对较差,电子迁移速度较慢。
因此,不同材料的电阻率存在差异。
此外,我们还发现了一些影响电阻率的因素。
首先是导体的长度,长度越长,电阻率越大;其次是导体的截面积,截面积越小,电阻率越大。
这与电阻率的定义式一致,即电阻率与长度成正比,与截面积成反比。
实验误差分析:在实验中,由于仪器的精度限制和操作的不准确性,存在一定的误差。
例如,电压表的示数误差、导体表面的接触电阻等都会对实验结果产生一定的影响。
为减小误差,我们可以多次测量并取平均值,同时注意操作的准确性。
结论:通过本次实验,我们测量了不同材料的电阻率,并探究了影响电阻率的因素。
实验结果表明,不同材料的电阻率存在差异,同时电阻率与导体的长度和截面积相关。
电阻率的测量实验报告

电阻率的测量实验报告电阻率的测量实验报告引言电阻率是描述物质导电性能的重要物理量。
本实验旨在通过测量不同材料的电阻和尺寸,计算出它们的电阻率,并探讨电阻率与材料性质之间的关系。
实验目的1. 掌握电阻率的测量方法;2. 了解不同材料的电阻率差异;3. 分析电阻率与材料性质之间的关系。
实验材料和仪器1. 电源;2. 电流表;3. 电压表;4. 导线;5. 不同材料的样品。
实验步骤1. 将电源与电流表、电压表和导线连接好,确保电路正常工作;2. 选取一个样品,将其两端与电路相连;3. 调节电源输出电压,使电流表读数在合适范围内;4. 记录电流表和电压表的读数;5. 重复步骤2-4,测量其他样品的电阻和电压。
实验数据处理根据欧姆定律,电阻的计算公式为R = V/I,其中R为电阻,V为电压,I为电流。
根据测得的电阻和电压,可以计算出每个样品的电阻值。
根据电阻的定义,电阻率的计算公式为ρ = R × A/L,其中ρ为电阻率,R为电阻,A为横截面积,L为长度。
根据样品的尺寸,可以计算出每个样品的电阻率。
实验结果通过测量和计算,得到了不同材料的电阻和电阻率数据。
观察数据可以发现,不同材料的电阻率存在明显差异。
例如,金属材料具有较低的电阻率,而绝缘材料则具有较高的电阻率。
这与材料的导电性能和电子结构有关。
讨论与分析1. 材料的导电性能对电阻率有重要影响。
金属材料中的自由电子能够自由移动,因此具有较低的电阻率。
而绝缘材料中的电子几乎无法移动,导致较高的电阻率。
2. 材料的电子结构也对电阻率产生影响。
例如,半导体材料中的能带结构使得电子在特定条件下能够移动,导致其电阻率介于金属和绝缘体之间。
3. 温度也会对电阻率产生影响。
在金属中,随着温度升高,电阻率会增加;而在半导体中,随着温度升高,电阻率会减小。
结论通过本实验,我们成功测量了不同材料的电阻和电阻率,并发现了电阻率与材料性质之间的关系。
电阻率是描述材料导电性能的重要物理量,对于材料科学和工程应用具有重要意义。
实验测量电阻测定金属丝的电阻率

• 实验目的 • 实验原理 • 实验步骤 • 实验结果分析 • 实验总结与展望
01
实验目的
掌握电阻率的测量方法
01
电阻率是描述导体材料导电性能 的重要参数,通过实验测量电阻 ,可以掌握电阻率的测量方法。
02
实验中需要使用电学测量仪器, 如伏安表、恒流电源等,通过测 量金属丝在不同温度下的电阻值 ,计算出电阻率。
用于测量金属丝中的电流和电 压。
导线
连接各个实验器材,形成完整 的电路。
搭建实验电路
将电源、电流表、电压表、滑动变阻 器和金属丝依次串联起来,形成一个 闭合的电路。
确保连接牢固,避免出现接触不良或 短路的情况。
进行实验测量
将滑动变阻器调节到最小值,逐渐增大金属丝中的电流和 电压,观察电流表和电压表的读数变化。
在不同的电流和电压下,分别记录电流表和电压表的读数 。
数据记录与整理
将实验过程中测量的电流和电压 值记录在表格中。
根据测量的数据,计算金属丝在 不同电流和电压下的电阻值。
分析实验数据,绘制电阻与电流、 电压的关系图,并求出金属丝的
电阻率。
04
实验结果分析
数据处理与图表绘制
数据处理
将实验测得的数据进行整理、计算和校准,得出金属丝的电阻率。
对未来研究的展望
深入研究电阻率的影响因素
我们可以进一步研究不同温度、压力、金属种类等因 素对电阻率的影响,以更深入地理解电阻率的本质。
探索新型测量方法
随着科技的发展,可能会有更精确、更简便的测量方 法出现,我们可以积极探索并应用这些新方法。
THANKS
感谢观看
实验体会
实验过程中,我们感受到了理论与实践相结合的重要性,提高了动手能力和解决问题的能力。
实验:金属丝电阻率的测量

高中物理
高中物理
实验器材
电流表A1:0~0.6 A量程,内阻约为0.125 Ω; 电流表A2:0~3 A量程,内阻约为0.025 Ω; 电压表V1:0~3 V量程,内阻约为3 kΩ; 电压表V2:0~15 V量程,内阻约为15 kΩ; 电源电压约为3 V,滑动变阻器最大值5 Ω; 待测金属丝的总电阻约为10 Ω; 一个开关和若干导线; 测量长度的工具:毫米刻度尺、游标卡尺和螺旋测微 器
2
3 平均值
d/mm 0.395 0.396 0.399 0.397
高中物理
进行实验与收集证据
(4)测量电阻丝的电阻R 1 2 345 6
电压/V 0.45 0.70 1.09 1.40 1.74 2.19 电流/A 0.06 0.10 0.15 0.20 0.25 0.32
高中物理
(4)请在纸上画出实验电路图,指出电流表和电压 表的正负接线柱,说明滑动变阻器的滑片应该放在 哪端。
- V+ Rx
-A+
ab
K
滑片在a端
进行实验与收集证据
(1)根据原理图连接实物图
高中物理
进行实验与收集证据
(2)测量电阻丝的有效长度l
高中物理
1
2
3 平均值
l/cm 56.50 56.45 56.46 56.47
I 0.50 ρ = πd 2 R =1.3×10-6 Ω·m
4l 答:该金属丝的电阻率是1.3×10-6 Ω·m
高中物理
高中物理
设计实验方案
2. 电阻丝电阻的测量 电流表内接法
V
A Rx
电流表外接法
V
A Rx
高中物理
测量金属丝的电阻率实验报告单

测量金属丝的电阻率实验报告单实验报告单实验名称:测量金属丝的电阻率一、实验目的1.学习并掌握电阻定律和电阻率的概念;2.通过实验测量金属丝的电阻率;3.培养实验操作技能和数据处理能力。
二、实验原理电阻定律表明,在温度不变的情况下,导体的电阻R与其长度L成正比,与其横截面积S成反比,即:R = ρ × (L/S)其中,ρ为导体的电阻率,是反映导体导电性能的物理量。
本实验通过测量金属丝的长度、直径和电阻,进而计算其电阻率。
三、实验器材1.金属丝(待测);2.电流表;3.电压表;4.滑动变阻器;5.电源;6.开关;7.导线若干;8.米尺;9.千分尺。
四、实验步骤1.使用米尺测量金属丝的长度L,并记录数据;2.使用千分尺测量金属丝的直径d,并计算其横截面积S(S = π ×(d/2)^2);3.按图连接电路,将电流表、电压表、滑动变阻器、电源、开关和待测金属丝连接成串联电路;4.打开电源,调节滑动变阻器,使电流表和电压表读数稳定;5.记录电流表的读数I(单位:A)和电压表的读数U(单位:V);6.计算金属丝的电阻R(R = U/I);7.根据电阻定律,计算金属丝的电阻率ρ(ρ = R × S/L)。
五、实验数据记录与处理1.金属丝长度L = 1.00m;2.金属丝直径d = 0.50mm;3.金属丝横截面积S = π × (0.50/2)^2 = 0.196mm^2;4.电流表读数I = 0.50A;5.电压表读数U = 0.40V;6.金属丝电阻R = U/I = 0.40/0.50 = 0.80Ω;7.金属丝电阻率ρ = R × S/L = 0.80 × 0.196/1.00 =0.157Ω·mm^2/m。
六、实验结论与分析通过本次实验,我们得出金属丝的电阻率为0.157Ω·mm^2/m。
实验中,我们采用了电流表、电压表测量电流和电压,使用滑动变阻器调节电路中的电流。
测量电阻率的实验报告

测量电阻率的实验报告一、实验目的1、掌握测量电阻率的基本原理和方法。
2、学会使用伏安法测量电阻,并通过数据处理计算电阻率。
3、熟悉实验仪器的使用,提高实验操作技能和数据处理能力。
二、实验原理电阻率是用来表示各种物质电阻特性的物理量。
某种材料制成的长为 L、横截面积为 S 的导体的电阻 R 为:\(R =\rho \frac{L}{S}\)则电阻率\(\rho\)为:\(\rho = RS/L\)在本实验中,我们使用伏安法测量电阻。
通过测量导体两端的电压U 和通过导体的电流 I,根据欧姆定律\(R = U/I\)计算出电阻 R。
然后测量导体的长度 L 和横截面积 S,即可计算出电阻率\(\rho\)。
三、实验仪器1、直流电源(输出电压可调)2、电流表(量程 0 06 A、0 3 A)3、电压表(量程 0 3 V、0 15 V)4、待测电阻(金属丝或电阻丝)5、滑动变阻器6、毫米刻度尺7、螺旋测微器8、开关9、导线若干四、实验步骤1、用螺旋测微器测量待测电阻丝的直径d,在不同位置测量多次,取平均值。
根据圆的面积公式\(S =\pi(d/2)^2\)计算横截面积 S。
2、按照电路图连接实验电路。
将电源、开关、滑动变阻器、电流表、待测电阻串联,电压表并联在待测电阻两端。
注意电表的量程选择要合适,连接电路时开关要断开,滑动变阻器的滑片要置于阻值最大处。
3、闭合开关,调节滑动变阻器,使电流表和电压表的示数在合适的范围内,分别读出几组电压 U 和电流 I 的值,并记录下来。
4、用毫米刻度尺测量电阻丝的有效长度L,测量多次,取平均值。
5、根据记录的数据,计算出每次测量的电阻值\(R = U/I\),然后求出电阻的平均值\(R_{平均}\)。
6、将测量得到的平均值\(R_{平均}\)、长度 L 和横截面积 S 代入公式\(\rho = RS/L\),计算出待测电阻的电阻率\(\rho\)。
五、实验数据记录与处理1、电阻丝直径的测量|测量次数| 1 | 2 | 3 | 4 | 5 |平均值||||||||||直径 d(mm)|_____ |_____ |_____ |_____ |_____ |_____ |2、电阻丝长度的测量|测量次数| 1 | 2 | 3 |平均值||||||||长度 L(cm)|_____ |_____ |_____ |_____ |3、电压和电流的测量|测量次数| 1 | 2 | 3 | 4 | 5 |||||||||电压 U(V)|_____ |_____ |_____ |_____ |_____ ||电流 I(A)|_____ |_____ |_____ |_____ |_____ |4、电阻的计算|测量次数| 1 | 2 | 3 | 4 | 5 |平均值||||||||||电阻 R(Ω)|_____ |_____ |_____ |_____ |_____ |_____ |5、电阻率的计算横截面积\(S =\pi(d/2)^2 =\pi \times (_____/2)^2 =_____mm^2 =_____cm^2\)电阻率\(\rho = RS/L =_____ \times _____ /_____ =_____Ω·m\)六、误差分析1、测量电阻丝直径和长度时存在读数误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电炉丝电阻率的测量设计性实验
电炉丝电阻率的测量设计性实验
实验原理:电炉丝电阻率是指电炉丝材料的导电能力,它具有保温功能,改变交流电路中的电容或电感,并通过改变电路结构来改变总阻抗大小。
电炉丝电阻率的测量是通过在交流电路中添加电枢电阻,将电流流入到电炉丝,然后测量电流和电压的变化,根据Ohm定律计算得出电炉丝的电阻率。
实验材料:高精度电压电流变换器,多参量示波器,电炉丝,五组阻抗电路:1Ω阻抗电路,2Ω阻抗电路,4Ω阻抗电路,6Ω阻抗电路,8Ω阻抗电路
实验布线:将高精度电压电流变换器输入端接入电源,将多参量示波器输入端连接电压变换器,电炉丝接入五组阻抗电路尾端,电源接地,将输出端连接到多参量示波器上。
实验步骤:
(1)将电压变换器的输出设置在120 V。
(2)将多参量示波器的增益设置为1。
(3)从五组阻抗电路中选择一个1Ω、2Ω、4Ω、6Ω或者8Ω,将电炉丝接至电路尾端。
(4)用多参量示波器观测和测量电炉丝的电阻率。
(5)用Ohm定律计算以上数据获得结果并保存。
实验过程中可能出现的问题:
1.实验用电炉丝未经验证,可能会影响准确性;
2.多参量示波器可能不稳定,导致测量数据的不准确;
3.实验中可能出现计算和记录数据的错误,也会影响结果的准确性;
(4)由于环境的条件变化可能会影响实验结果;
(5)设备的异常可能会影响实验结果。
结论:经过本次实验,我们可以正确测量电炉丝材料的电阻率,了解其电学性能及其对电路结构和总阻抗大小的影响,从而找到合适的电炉丝材料,可以有效地把实验结果应用到工程实践中。