固体物理(黄昆)第一章
固体物理黄昆第一章

元激发的能量与寿命
元激发的能量与晶体的振动频率或量子数有关,可以通过量子力学公式计算。
元激发的寿命取决于其与周围环境的相互作用,以及能量的耗散机制。在某些条件下,元激发的寿命 可以很长,使得它们在某些物理过程中起到关键的作用。例如,在超导材料中,声子与电子相互作用 导致电子配对,从而实现超导态。
05
完美晶体
理想状态下,晶体中的原子或 分子应完全规则排列。
线缺陷
晶体中原子或分子的排列出现 中断,形成一条线上的缺陷。
形成原因
晶体缺陷的形成与温度、压力、 杂质等因素有关。
晶体缺陷对物理性质的影响
01
光学性质
晶体缺陷可以影响光的折射、反射 和吸收等性质。
热学性质
晶体缺陷可以影响热导率、热膨胀 等性质。
黄昆的贡献与影响
贡献
黄昆是中国固体物理学领域的奠基人之一,他在固体物理学的多个领域做出了卓越的贡献,包括晶体结构、晶体 振动、相变等方面。
影响
黄昆的学术成果不仅对中国固体物理学的发展产生了深远影响,也对全球固体物理学的发展产生了重要影响。他 的学术思想和方法论对后来的科研工作者提供了宝贵的启示和借鉴。
揭示了声子在固体中的传播特性
通过声子理论,黄昆揭示了声子在固体中的传播特性,包括声速、衰 减等,为理解材料的力学性质和热学性质提供了重要的理论依据。
黄昆的极化子理论
01
提出极化子的概念
黄昆在极化子理论中,提出了极化子 的概念,即某些固体中由于晶格振动 和电子运动的耦合而形成的元激发。
02
发展了极化子的计算 方法
02
元激发与量子力学中的粒子不同,它是一种波动现象,具有 波粒二象性。
03
元激发是晶体中能量的传递和转换机制,是理解固体物理中 许多现象的基础。
黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
固体物理习题第一章(黄昆)资料

对于构成金刚石结构,n= 4 8 1 6 1 8 ,V= ( 8r )3,
则有:x=
8* 4 πr3 3
( 8r )3
3 16
π
8
≈0.34
2
3
3
1.2 试证六方密排堆积结构中 c (8 )1/ 2 1.633. a3
证明:如图所示,六方密排中取出一个正四
面体,有c=2h
在正四面体中有:
]
a1VC
(2 )3
VC
即倒格子原胞体积为(2)3 Vc .
1.5指证数明为(:h倒1h格2h子3)矢的量晶面G系 h.1b1 h2b2 h3b3 垂直于密勒
证明:如图所示,ABC是晶面族(h1h
2
h
)
3
中离原点最近的一晶面.
因为
AC
( a3
a1 )
BC
( a 3
a2 )
h3 h1
k
0 a2i
i (a3 a1) 0
j 0
k
a a2 j
00a
a00
i (a1 a2) a
j 0
k
0 a2k
0a0
代入有:b1
2
a
i ,b2
2
a
j , b3
2
k
a
2
2 2
倒格子矢量:G hb1 kb2 lb3 h
i k a
a
j l
k a
则密勒指数为(hkl)的晶面系,面间距d为:
2
a -a a
2
22
代入有:b1
2
a2 ( 2 a3
j
k)
2
a
(
j
k)
固体物理 黄昆答案 第一章

将上式代入 ε = Az T ε Az 得
⎛ ⎜ 0 ⎞ ⎜ ⎜ ε 23 ⎟ = ⎟ ⎜− ⎜ ε 33 ⎟ ⎠ ⎜ ⎜ ⎜ ⎝ 1 3 ε11 + ε 22 4 4 3 3 ε11 + ε 22 4 4 3 − ε 32 2 − 3 3 ε11 + ε 22 4 4 3 1 ε11 + ε 22 4 4 1 − ε 32 2 − 3 ⎞ ε 23 ⎟ 2 ⎟ ⎟ 1 − ε 23 ⎟ 2 ⎟ ⎟ ε 33 ⎟ ⎟ ⎠
a 2
r
r
r r
a r 2
r
r r
a r 2
r
r
课后答案网
同理: 可见由 为基矢构成的格子为面心立方格子。
面心立方格子原胞基矢: 面心立方格子原胞体积: 倒格子基矢: 同理 可见由
* vc =
ww
晶面系.
r r r r 1.5证明:倒格子矢量 G = h1b1 + h2b2 + h3b3 垂直于密勒指数为 (h1 , h2 , h3 ) 的
倒格子基矢 b1 =
v
kh da w. co m
案 网
1 h k l ( )2 + ( )2 + ( )2 a b c
并说明面指数简单的晶面,其面密度比较大,容易解理解:简单正交系
课后答案网
sc
bcc
fcc 第 n 近距 离 1
n
1 2 3 4 5 6
第 n 近 邻 第 n 近距离 数 6 1 12 8 6
操作构成群 C4 , C4 = ( C1 , C2 , C3 , C4 ) 群中任意两 个元素的乘积仍然是群中的元素(具体过程 乘积在此省略,请验证)。
答
济南大学-固体物理(黄昆)课件-第一章-1

, 为 一组基矢 Rl l1a1 l2a2 l3a3 a1, a2 , a3
x
1
3
二维布拉伐格子几种可能的基矢和原胞取法 2)不同的基矢一般形成不同的布拉伐格子
二维晶格的晶系和布拉伐格子 晶系 轴和角度 布拉伐格子
斜方
长方 正方
六角
a≠b γ ≠90℃ a≠b γ = 90℃ a=b γ = 90℃ a=b γ=120℃
R 等价数学定义: l l1a1 l2a2 l3a3 中取一切整数值
所确定的点 的集合称为布拉伐格子。
(a)基元
(b)晶体结构
: 两类不同的原子 : 基元中特定的点 — 格点 黑点的总体形成 Bravais 格子 布拉伐格子 + 基元 = 晶体结构
③ 格矢量:若在布拉伐格子中取格点为原点,它至其 他格点的矢量 Rl 称为格矢量。可表示为 注意事项: 1)一个布拉伐格子基矢的取法不是唯一的 2 4 ·
用原胞和基矢来描述
描 述 方 式
位置坐标描述
1、 定义:
原胞:一个晶格最小的周期性单元,也称为固体物理 学原胞
晶格基矢:指原胞的边矢量,一般用 a1, a2 , a3 表示
2 、注意:
① 三维晶格原胞(以基矢 a1, a2 , a3 为棱的平行六面体
是晶格体积的最小重复单元) 的体积 为:
A a
A层
B层
近邻原子所分别形成的正三 角形的空间取向,不同于B 面内原子的上、下各3个最 近邻原子所分别形成的正三 六角密排晶格结构的典型单元 角形的空间取向!
B A层内原子的上、下各3个最 c
五、金刚石晶体结构
1· 特点:每个原子有4 个最近邻,它们正 好在一个正四面体的顶角位置 2· 堆积方式:立方单元体内对角线上的原子 — A 面心立方位置上的原子 — B
固体物理第一章

构成。对于单晶体,在整个范围内原子都是规则排列的;对于多
晶体,在各晶粒范围内,原子是有序排列的。
二、自限性
晶体具有自发地形成封闭几何多面体的特
性,称之为晶体的自限性。这一特性是晶
体内部原子的规则排列在晶体宏观形态上 的反映。 理想石英晶体
三、各向异性
晶体的物理性质是各向异性的:
1、平行石英的c轴入射单色光,不产生双折射;而沿其它方向入射产生单色光; 2、晶体沿某些确定方位的晶面发生解理的现象:方解石、云母。
由于晶体的物理性质是各向异性的,因此有些物理常数一般不能用一 个数值来表示。例如弹性常数、压电常数、介电常数、电导率等一般 需要用张量来描述。 晶体的各向异性是晶体区别于非晶体的重要特征。
1.2 一些晶格的实例
晶格:晶体中原子排列的具体形式称为晶体格子,简称晶格。 (1)晶体原子规则排列形式不同,则有不同的晶格结构;
(2)晶体原子规则排列形式相同,只是原子间的距离不同,
则它们具有相同的晶格结构。
处理方法:把晶格设想成为原子球的规则堆积
一、正方堆积
把原子视为刚性小球,在二维平面内最 简单的规则堆积便是正方堆积; 任一个球与同一平面内的四个最近邻相 切。 原子球的正方堆积
第一章 晶体结构
第二章 晶体结构测定
第三章 晶格振动
第四章 金属(I):自由电子
第五章 金属(II):能带论
第一章(1) 晶体结构
1.1 晶体的共性
1.2 一些晶格的实例 1.3 配位数和致密度
1.4 原子的周期性阵列
1.5 晶格的基本类型
1.6 再总结:布喇菲格子
黄昆固体物理习题-第一章 晶体结构

第一章习题参考解答解答:设立方晶格的边长为a,一个晶胞中的原子数为n,原子球半径为R,晶胞体积为V,则致密度(或叫填充率)K为:V Rn K3 34π•= ch1.1 题略3343===0.52(2)6R K R ππ(1) 简单立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R ,体积为(2R)3,所以VR n K 334π•=(2)体心立方晶胞内有2个原子,n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以ππ83)34(342,3433=⨯=R R K R =0.68ππ83)34(342,3433=⨯==R R K R a(3)面心立方晶胞内有4个原子,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a ,ππ62)24(34433=⨯=R RK =0.74,24R a =(4)六角密排原胞内中含2个原子,正四面体四个顶点处的原子球相切,边长为a ,六角柱高h =0.74ππ62322]321)2[(34223=•⨯⨯⨯=a R R K hs 斜边2R=a[(2R)2-[(2Rsin60)х2/3]2=(h/2)2底边竖直边ππ16383433=⨯=a R K =0.34(5)金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线1/4长,体对角线为,38a R =证明1:设六角层内最近邻原子间距为a ,相邻两层间的最近邻为d ,则633.13/8,])2()3[(,])2()3[(21222122≈=+==+=a c c a a a d c a d 由此解出此时有构,时构成理想的密堆积结当ch1.2 题略a d证明2:设六角层内最近邻原子间距为a,相邻两层间的最近邻为d,则a dch1.3 题略解:对于体心立方,原胞基矢为:对于体心立方原胞体积为:1.3)(21k j a a +=)(22i k a a +=)(23j i a a +=对于面心立方,原胞基矢为:根据倒格子基矢定义,并将体心原胞基矢代入计算之,可得:将计算所得到的倒格子基矢与面心立方原胞基矢相同,可知体心立方的倒格子是面心立方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2 晶格的周期性
一、晶格与布拉伐格子 1. 晶格:晶体中原子(或离子)排列的具体形式。
2. 布拉伐格子(空间点 ➢布阵拉)伐格子:一种数学上的抽象,是点在空间中周期性的规 ➢则格排点列:。空间点阵中周期排列的几何点。所有点在化学、物理 和几何环 ➢基元境:上每完一全个相格同点。所代表的物理实体。
第一章 晶体结构
晶体的宏观性质
1. 周期性--从原子排列的角度来讲 (均一 性――从宏观理化性质的角度来讲) ;
2. 宏观对称性; 3. 各向异性和解理性。例如,云母的解理
性; 4. 有固定的熔点。
§1-1 一些晶格的实例
几种常见的晶体结构 1. 元素晶体
一维
二维
二维正方堆积
二维密排堆积
三维 a. 较松散的堆积
physics. (中文版第8版, 或直接看英文原版 ) • 方俊鑫,陆栋. 《固体物理学》(上), 上 海科学技术出版社. • 阎守胜.《固体物理基础》, 北京大学出版社 .
绪论
一、固体物理学的研究对象
固体的结构及其组成粒子(原子、离子、分子、电子等)之间相互 作用与运动规律,以阐明其性能和用途。
1. 格矢: Rl 2. 基矢:
任一格
Rl l1a1 l2 a2 l3 a3
矢
,
如果所有l1、l2和l3均为整数,则称这组坐a标1 基a2 a、3 和
为基矢。对于一个空间点阵,基矢的选择不是唯一的,可
1
3. 原胞 ➢ 空间点阵原胞 • 空间点阵最小的重复单元 • 每个空间点阵原胞中只含有一个格点 • 对于同一空间点阵,原胞有多种不同的取法 ( Wigner-Seitz原胞),但原胞的体积均相等
➢ 简单立方(simple cubic, sc)堆 积
➢ 体心立方(body-centered cubic, bcc)
典堆型积晶体:Li、Na、K、-Fe
配位数:一个原子周围最近邻原子的数目。 对于体心立方(bcc)配位数 为8。
b. 密堆积: ➢ 面心立方(face-centered cubic, fcc)堆 积
复式晶格
SC + 双原子基元
fcc + 双原子基元
由同种原子构成的金刚石晶格也是复式晶格。
1 2
3
1
1
4
41
2
1
32
4
4
1 2
A类碳原子 的共价键方
B类碳原子 的共价键方
hcp也是复式晶格。
复式晶格包含多个等价原子,不同等价原子的简单晶格相同。复式晶 格是由等价原子的简单晶格嵌套而成。
二、基矢和原胞 a2 0 a1
排列方式: ABCABC (立方密堆积)
典型晶体: Cu、Ag 、Au、Ca、Sr、 Al、
fcc的配位数为12;
➢ 密排六方( hexagonal close-packed, hcp ) 堆积
排列方式: ABABAB (六方密堆积)
典型晶体:Be、Mg、Zn、Cd、Ti
hcp的配位数为12;
布拉伐格子一共有14 种。
sc
bcc
fcc
立方晶系的布拉伐格子
实际晶格 = 布拉伐格子 + 基 元
若格点上的基元只包含一个原子,那么晶格为简单晶格。
晶格中所有原子在化学、物理和几何环境上都是完全等同的。
若格点上的基元包含两个或两个以上的原子(或离子),那么晶格为复 式晶格。
简单晶格必须由同种原子组成;反之,由同种原子组成的晶格却不 一定是简单晶格。如金刚石和hcp晶格都是复式晶格。
原胞体积: va a1 a2 a3
➢ 晶格原胞 = 空间点阵原胞+基元
基元中的原子数目可以是一个,也可以是多个。基元中第j个 原子的中心位置相对于一个格点,可以表示为:
rj x ja1 yja2 z ja3
短程有序性,没有固定的熔点。 玻璃 橡胶 ➢ 准晶体: 有长程的取向序,沿取向序的对称轴方 向
有准周期性,但无长程周期性
没有缺陷和杂质的晶体叫做理想晶体。缺陷: 缺陷 是指微量的不规则性。
晶 体
非 晶
体
规则网络
无规网络
准晶
Al65Co25Cu10合金
二、固体物理学的发展历史
阿羽依
↔ 规则几何外形
固体物理是固体材料和器件的基础学科,是新材料、新器件的生 长点。
固体是由大量的原子(或离子)组成,1023个原子/cm3。 固体结构就是指这些原子的排列方式。
固体的分类
➢ 晶 体: 规则结构,分子或原子按一定的周期性排 列。
长程有序性,有固体的熔点。E.g. 水晶 岩盐 ➢ 非晶体:非规则结构,分子或原子排列没有一定的周 期性。
晶格结构
晶格理论
晶格动力学 晶格热力学
理想晶格
固
体
物
电子理论
理
实际晶格理论 能带理论(包括电磁场中的电子运动) 金属中的自由电子气 功函数、接触电势等
输运理论
:电子与晶格的相互作用
固体物理分论
半导体、磁学、超导、非线性光学
本课程学习内容
1、描述晶体周期性的基本方法,典型的晶格结构。 2、固体的结合力(四种) 3、晶格动力学 4、晶体中电子运动规律(能带理论,自由电子气) 5、介绍一些典型固体材料的性质
窥天地之奥而达造化之极。
李时珍
——
为学之道,莫先于穷理; 穷理之要,必在于读书;读书 之法,莫贵于循序而致精;而 致精之本,则又在于居敬而持 志。——朱熹
主要参考书
• 黄昆,韩汝琦.《固体物理》,高教出版社. • Charles Kittel. Introduction to solid state
c. 金刚石结 构➢:金刚石结构
典型晶体:金刚石、Si、Ge
金刚石的配位数为 4;
2. 简单化合物晶体 ➢ NaCl结构
典型晶体:NaCl、LiF、KBr
➢ CsCl结构 典型晶体:CsCl、CsBr、CsI
➢ 闪锌矿结构
在晶胞顶角和面心处的原子与体内原子分别属于 不同的元素。
许多重要的半导体化合物都是闪锌矿结构。典型晶 体:ZnS、CdS、GaAs、-SiC
内部规则性
十九世纪中叶,布拉伐(Bravais)提出空间 点阵学说,提供了经验规律。
魏德曼-弗兰兹定律表征金属导电率和导热率之间的关系。为金属电子 论打下了基础。
20世纪初,在X射线衍射实验和量子力学理论的基础上,建立了固体的 电子态理论和晶格动力学。
成果:半导体 纳米材料 超导体
二、学科领域
形成许多分支学科。 固体物理研究固体材料中那些最基本的、有普遍意义的问题。