黄昆版固体物理学课后答案解析答案
黄昆版固体物理课后习题解答

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理学_答案(黄昆 原著 韩汝琦改编)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案解析答案(1)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
黄昆版固体物理学课后答案

黄昆版固体物理学课后答案《固体物理学》习题解答黄坤原著韩汝琦改编(陈志远答案,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积v所得到的小球总体积nv与晶体原胞体积vc之比,即:晶体原胞的空间利用率,x?(1)对于简立方结构:(见教材p2图1-1)nvvc43?r、 vc=a3,n=134343?RR33∴十、0.526a38r3a=2r,v=(2)对于体心立方:晶胞的体对角线bg=3a?4r?a?n=2,vc=a343x32?∴十、434? r2??r33330.688a3433(R)3(3)对于面心立方:单元面对角线BC=2A?4r,?A.22rn=4,vc=a3444??r34??r3233x0.74336a(22r)(4)对于六角密排:a=2r晶胞面积:s=6?s?abo?6?晶胞的体积:v=s?c?a?asin60332a=223328a?a?32a3?242r323n=1212?11?2??3=6个6246??r323x0.7436242r(5)对于金刚石结构,晶胞的体对角线bg=3a?4?2r?a?8r3n=8,vc=a3一448??r38??r33?33x0.346a3833r33c81。
2.测试:在六角形紧密堆积结构中?()1/2? 一点六三三a3证明:在六角密堆积结构中,第一层硬球a、b、o的中心联线形成一个边长a=2r 的正三角形,第二层硬球n位于球abo所围间隙的正上方并与这三个球相切,于是:na=nb=no=a=2r.也就是说,图中的Nabo形成一个正四面体1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
A.a1?2(j?k)A.证明了:(1)面心立方的法向晶格基向量(固体物理的原胞基向量):?a2?(i?k)2aa3?2(i?j)??2(a2?a3)由倒格子基矢的定义:b1??0,aa1?(a2?a3)?,2a,2a,20,a,2a?i,2aa3a???,a2?a3?,242a0,2?j,0,a,2?kaa2(?i?j?k)240?4a2???2?b1?2??3?(?i?j?k)?(?i?j? k)a4a?2.b2?(I?J?K)a类似地:2即面心立方的倒格子基矢与体心立方的正格基矢相同。
黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
黄昆版固体物理学课后答案解析答案 (3)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
《固体物理学(黄昆)》课后习题答案(2)

1.10——答案在王矜奉《固体物理概念题和习题指导》p10 第 17 题
3.10 设晶体中每个振子的零点振动能为
1 ,使用德拜模型求晶体的零点振动能。 2
证明:根据量子力学零点能是谐振子所固有的,与温度无关,故 T=0K 时振动能 E0 就是各振动
1
模零点能之和。 E0
m
0
E0 g d 将E0
将
M
us ueisKa e it , Vs VeisKa e it . 代入上式有
M 2u C 10 e ika V 11Cu , M 2V C eika 10 u 11CV ,
4
是 U,v 的线性齐次方程组,存在非零解的条件为
2 2 2 2 Kx , 2m 2m a 2m a
2 2 2 2 2 2 2 2 B点能量 B K x K y 2 m 2 , 所以 B / A 2 2m a a 2m a
所以 B / A 3
(c)如果二价金属具有简单立方品格结构,布里渊区如图 7—2 所示.根据自由电子理
2 2 论,自由电子的能量为 K x2 K y K z2 ,FerM 面应为球面.由(b)可知,内切于 2m
4 点的内切球的体积
3
4 3
,于是在 K 空间中,内切球内能容纳的电子数为 a
当 K= / a 时
2 20C / M , 2 2C / M ,
当 K=0 时,
2 22C / M , 2 0,
2 与 K 的关系如下图所示.这是一个双原子(例如 H 2 )晶体
固体物理学答案_黄昆原著_韩汝琦改编

《固体物理学》习题解答黄昆 原著 韩汝琦改编第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aaa a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 213422()()4ab i j k i j k a aππ∴=⨯⨯-++=-++同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω3123,,222(),,2222,,222a a a a a a a a a a a a a-Ω=⋅⨯=-=-,223,,,,()2222,,222i j k a a a a a a j k a a a ⨯=-=+- 213222()()2a b j k j k a aππ∴=⨯⨯+=+同理可得:232()2()b i k ab i j aππ=+=+即体心立方的倒格子基矢与面心立方的正格基矢相同。
所以,体心立方的倒格子是面心立方。
1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G h i k j l k a a aπππ=++晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++22222()a d h k l =++ 面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。
第二章 固体结合2.1、两种一价离子组成的一维晶格的马德隆常数(2ln 2=α)和库仑相互作用能,设离子的总数为2N 。
<解> 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有(1)11112[ (234)ij rr r r r rα±'==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为234(1) (34)n x x x x x x +=-+-+ 当X=1时,有1111 (2234)n-+-+=2.3、若一晶体的相互作用能可以表示为 ()mnu r r r αβ=-+试求:(1)平衡间距0r ;(2)结合能W (单个原子的);(3)体弹性模量;(4)若取02,10,3,4m n r A W eV ====,计算α及β的值。
解:(1)求平衡间距r 0由0)(0==r r drr du ,有:1112[1...]234α=-+-+22n α∴=mn nm n m m n n m r r n r m --++⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⇒=-1101.0100αββαβα结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量称为结合能(用w 表示)(2)求结合能w (单个原子的)题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。
显然结合能就是平衡时,晶体的势能,即U min即:nmr r r U W 000)(βα-+=-= (可代入r 0值,也可不代入)(3)体弹性模量由体弹性模量公式:0220209r r U V r k ⎪⎪⎭⎫ ⎝⎛∂∂=(4)m = 2,n = 10,A r 30=, w = 4eV ,求α、β818105210⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=αβαβr ①)5(54)(802010.200代入αβαβα=-=+-=r r r rr UeV r r U W 454)(200==-=⇒α② 将A r 30=,J eV 1910602.11-⨯=代入①②211523810459.910209.7mN m N ⋅⨯=⋅⨯=⇒--βα (1)平衡间距r 0的计算 晶体内能()()2m n N U r r rαβ=-+ 平衡条件0r r dUdr==,11000m n m n r r αβ++-+=,10()n m n r m βα-= (2)单个原子的结合能01()2W u r =-,00()()m n r r u r r r αβ==-+,10()n m n r m βα-= 1(1)()2mn m m n W n m βαα--=-(3)体弹性模量0202()V UK V V∂=⋅∂ 晶体的体积3V NAr =,A 为常数,N 为原胞数目 晶体内能()()2m n N U r r rαβ=-+ U U r V r V ∂∂∂=∂∂∂1121()23m n N m n r r NAr αβ++=- 221121[()]23m n U N r m n V V r r r NAr αβ++∂∂∂=-∂∂∂ 022222000001[]29m n m n V V U N m n m n V V r r r r αβαβ=∂=-+-+∂ 由平衡条件1120001()023m n V V U N m n Vr r NAr αβ++=∂=-=∂,得00m n m n r r αβ= 0222220001[]29m n V V UN m n V V r r αβ=∂=-+∂ 02220001[]29m nV V U N m n m n V V r r αβ=∂=-+∂2000[]29m n N nm V r r αβ=--+ 000()2m n N U r r αβ=-+ 02022()9V V U mnU V V =∂=-∂ 体弹性模量09mnK U V = (4)若取02,10,3,4m n r A W eV ====10()n mn r m βα-=,1(1)()2mn m m n W n m βαα--=-1002W r β=,20100[2]r W r βα=+-95101.210eV m β=⨯⋅,1929.010eV m α-=⨯⋅第三章 固格振动与晶体的热学性质3.2、讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波解,当M = m 时与一维单原子链的结果一一对应。
解:质量为M 的原子位于2n-1, 2n+1, 2n+3 ……;质量为m 的原子位于2n , 2n+2, 2n+4 ……。
牛顿运动方程2221212121222(2)(2)n n n n n n n n m M μβμμμμβμμμ+-+++=---=---N 个原胞,有2N 个独立的方程设方程的解[(2)]2[(21)]21i t na q n i t n aq n Ae Beωωμμ--++==,代回方程中得到22(2)(2cos )0(2cos )(2)0m A aq B aq A M B βωβββω⎧--=⎪⎨-+-=⎪⎩ A 、B 有非零解,2222cos 02cos 2m aqaq M βωβββω--=--,则 12222()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+ 两种不同的格波的色散关系1222212222()4{1[1sin ]}()()4{1[1sin ]}()m M mM aq mM m M m M mM aq mM m M ωβωβ+-+=+-++=--+一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.当M m =时4cos 24sin 2aq m aq m βωβω+-==,两种色散关系如图所示: 长波极限情况下0q →,sin()22qa qa≈, (2)q mβω-=与一维单原子晶格格波的色散关系一致.3.3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为β和10β,两种原子质量相等,且最近邻原子间距为2a 。