根据matlab的指纹图像增强方法

合集下载

数字图像处理实验报告 实验一 图像增强实验

数字图像处理实验报告 实验一 图像增强实验

实验一图像增强实验一、实验目标:掌握图像增强的算法。

二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。

(2)图像的直方图处理算法。

四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。

matlab数字图像处理实验报告

matlab数字图像处理实验报告

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 1962.给定函数的累积直方图。

用matlab数字图像处理四个实验

用matlab数字图像处理四个实验

数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:➢亮度图像(Intensity images)➢二值图像(Binary images)➢索引图像(Indexed images)➢RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

基于MATLAB的数字图像课程设计-图像频域增强高通滤波器算法设计

基于MATLAB的数字图像课程设计-图像频域增强高通滤波器算法设计

基于MATLAB的数字图像课程设计-图像频域增强高通滤波器算法设计目录1 设计任务及目的 (2)1.1 设计任务 (2)1.2 设计目的 (2)2 课程设计相关知识 (3)2.1 数字图像处理简介 (3)2.1.1 数字图像发展概述 (3)2.1.2 数字图像处理内容 (3)2.1.3 数字图像处理技术 (4)2.2 MATLAB简介 (5)2.2.1 MATLAB基本功能 (5)2.2.2 MATLAB产品应用 (6)2.2.3 MATLAB特点 (6)2.2.4 MATLAB系列工具优势 (6)3 图像频域高通滤波原理 (7)3.1 频域滤波增强步骤及流程框图 (7)3.2 傅立叶变换原理 (8)3.3 高通滤波器原理 (9)3.3.1 理想高通滤波 (9)3.3.2 巴特沃斯高通滤波 (9)3.3.3 指数高通滤波 (10)3.3.4 梯形高通滤波 (10)3.3.5 高斯高通滤波 (10)4 MATLAB程序代码 (10)5 仿真结果与分析 (15)5.1 仿真结果 (15)5.2 结果分析 (19)结论 (20)参考文献 (21)图像频域增强算法设计——高通滤波1设计任务及目的1.1设计任务利用所学的数字图像处理技术,建立实现某一个主题处理的系统,利用MATLAB软件系统来实现图像的频域滤波技术,要求:(1)学习和熟悉MATLAB软件的使用方法;(2)熟悉和掌握MATLAB 程序设计过程;(3)利用所学数字图像处理技术知识和MATLAB软件对图像进行高通滤波处理;(4)能对图.jpg、.bmp、.png格式进行打开、保存、另存、退出等一系列功能操作;(5)在程序开发时,必须清楚主要实现函数目的和作用,需要在程序书写时做适当注释说明,理解每一句函数的具体意义和使用范围;(6)比较几种高通滤波器对图像数字化处理效果的异同。

1.2 设计目的本次课程设计的目的在于提高发现问题、分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。

MATLAB的7种滤波方法(重制版)

MATLAB的7种滤波方法(重制版)

MATLAB的7种滤波方法(重制版)滤波是信号和图像处理中常用的一种方法,用于去除噪音,增强信号或图像的特征。

MATLAB提供了丰富的滤波函数和工具箱,包括7种常用的滤波方法,分别是均值滤波、中值滤波、高斯滤波、拉普拉斯滤波、Sobel滤波、Prewitt滤波和Canny边缘检测。

1.均值滤波:均值滤波是使用一个窗口对图像进行平滑处理的方法,窗口内的像素值取平均值作为输出像素值。

这种滤波方法可以有效地去除高频噪声,但会导致图像细节的模糊。

2.中值滤波:中值滤波是一种非线性滤波方法,它使用一个窗口对图像进行平滑处理,窗口内的像素值按照大小排序,然后取中值作为输出像素值。

这种滤波方法能够很好地去除椒盐噪声和脉冲噪声,但无法处理其他类型的噪声。

3.高斯滤波:高斯滤波是一种线性平滑滤波方法,它使用一个高斯函数对图像进行卷积处理,窗口内的像素值按照高斯分布加权求和作为输出像素值。

这种滤波方法能够平滑图像并保持图像的细节信息,但会导致图像的边缘模糊。

4.拉普拉斯滤波:拉普拉斯滤波是一种边缘增强滤波方法,它使用一个拉普拉斯算子对图像进行卷积处理,突出图像中的边缘信息。

这种滤波方法能够提高图像的锐度和对比度,但会增强图像中的噪声。

5. Sobel滤波:Sobel滤波是一种边缘检测滤波方法,它使用Sobel算子对图像进行卷积处理,突出图像中的边缘信息。

这种滤波方法能够检测出图像中的水平和垂直边缘,但对于斜向边缘检测效果较差。

6. Prewitt滤波:Prewitt滤波是一种边缘检测滤波方法,它使用Prewitt算子对图像进行卷积处理,突出图像中的边缘信息。

与Sobel滤波类似,Prewitt滤波也能够检测出图像中的水平和垂直边缘,但对于斜向边缘检测效果较差。

7. Canny边缘检测:Canny边缘检测是一种广泛应用的边缘检测算法,它使用多个步骤对图像进行处理,包括高斯滤波、计算梯度、非极大值抑制和双阈值处理。

这种滤波方法能够检测出图像中的所有边缘,并进行细化和连接,对于复杂的边缘检测有较好的效果。

基于MatLab的数字图像清晰化方法

基于MatLab的数字图像清晰化方法
图 5 直方图匹配的图像 图 6 直方图匹配的图像直方图 对自适应阈值增强后的图像(图 3),使用直方图匹配调整
直方图的分布,使得直方图移向暗区,可以看出图像的视觉效
·62·
Computer Era No. 4 2008
基于 Web 的授课质量评价系统的研究与实践
刘利俊 1,吴达胜 2 (1. 杭州广播电视大学网络中心,浙江 杭州 310012;2. 浙江林学院信息工程学院)
g1 和 g2 分别为门限阈值(g1<g2)。当噪声较小时,它对小波
系数的增益较大;当噪声较大时,对小波系数的增益较小。该算
法达到了自适应增强的效果。在 MatLab 中使用自适应阈值增
强方法的代码如下。
[x,ma p]=imre a d‘( 中值滤波后图像.tif’); %读取原图像
x=double (x);
直方图均衡化是较好的直方图修正方法,它生成了自适应 的变换函数,它是以已知图像的直方图为基础的。然而,一旦一 幅图像的变换函数计算完毕,它将不再改动,除非直方图有变 动。直方图均衡化通过扩展输入图像的灰度级到较宽亮度尺度 的范围来实现图像的增强,但这种方法并不总能得到成功的结 果。在 MatLab 中使用如下代码实现直方图匹配增强对比度,相 应的图像与图像直方图示于图 5 及图 6。
指标体系的适应性原则。 系统运行的性能和分布与集中处理。由于整个学校学生
人数众多,同时用户可能会很多,有时也许会多达几千个,因 而系统运行的性能是非常关键的,系统应该具有分布与集中 处理功能。
系统的安全性。为了尽量避免报复现象的产生,系统的安 全保密工作应该规定不同的用户具有不同的操作权限。系统用 户可以分成四个群体:学生、教师、领导、专家。安全性问题主要 考虑以下几点:①学生群体只能对当前任课教师进行评价;② 教师群体只能看到他人(学生、同时、领导、专家)对自己的评价 结果,而看不到具体的评价者情况,以免教师对他人实行报复; 同时教师可以对同行进行评价,这些同行必须是与评价者在同 一 学 院(系)的 ,否 则 代 表 性 不 强 ;③ 领 导 群 体 只 能 对 本 学 院 (系)教师进行评价;④专家群体可以评价学校的全体教师。同 时系统还要能够对一些不负责任的学生进行监督控制,需要设 置专门的超级用户可查看学生对教师的评价细节(包括学生学 号、姓名、班级、评价分数等信息)。

运用Matlab7.0实现利用ORL头像数据库的检索

运用Matlab7.0实现利用ORL头像数据库的检索

运用Matlab7.0实现利用ORL头像数据库的检索引言数字图像处理(Digital Image Processing)是指利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术。

一般,图像处理是用计算机和实时硬件实现的,因此也称之为计算机图像处理(Computer Image Processing)。

在日常生活中,图像处理已经得到广泛应用。

例如,电脑人像艺术,电视中的特殊效果,自动售货机的钞票识别,邮政编码的自动识别和利用指纹、虹膜、面部等特征的身份识别等。

在医学领域,很早以前就采用X射线透视、显微镜照片等来诊断疾病。

现在,计算机图像处理已成为疾病诊断的重要手段,用一般摄影方法不能获取的身体内部的状况,也能由特殊的图像处理装置获取,最具有代表性的就是X射线CT(Computed Tomograph,计算机断层摄像)。

1 数字图像处理的目的一般而言,对图像进行加工和分析主要有如下三方面的目的:(1)提高图像的视感质量,以达到赏心悦目的目的。

如去除图像中的噪声,改变图像的亮度、颜色,增强图像中的某些成份、抑制某些成份,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。

(2)提取图像中所包含的某些特征或特殊信息,以便于计算机分析,例如,常用作模式识别、计算机视觉的预处理等。

这些特征包括很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性及关系结构等。

(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。

2 数字图像处理研究的主要内容不管图像处理是何种目的,都需要用计算机图像处理系统对图像数据进行输入、加工和输出,因此数字图像处理研究的内容主要有以下7个过程。

(1)图像获取、表示和表现。

(Image Acquisition,Representation and Presentation)该过程主要是把模拟图像信号转化为计算机所能接受的数字形式,以及把数字图像显示和表现出来(如打印)。

基于Matlab的指纹图像特征提取

基于Matlab的指纹图像特征提取

摘要随着社会的发展,传统的基于信物或口令的安全系统显得越来越脆弱,不能适应现代安全系统的需要,因而人们需要研究更加安全可靠,防伪性能更好的安全系统。

指纹识别技术就是在这种背景下产生的,它借助人体的生理特征来提高身份识别的可靠性,目前已经成为国内外研究的热点。

指纹识别大体分为三个步骤:预处理、特征提取和特征匹配。

本文集中于研究特征提取部分,并针对特征提取中的一些关键算法和实现进行了研究和优化,其主要内容如下:在特征提取方面,本论文采用了一种8邻域编码纹线跟踪算法,标注出端点和分叉点来进行特征提取;在剔除伪特征点时,先进行去边缘处理,再根据不同类型伪特征点的特征,采用相应剔除算法。

实验表明,以上算法具有较小的运算量和较高的准确性。

上述算法在本文中均用Matlab实现,取得了较好的效果,为后续的特征匹配工作打下了良好的基础。

关键字:指纹特征提取,去除伪特征,算法仿真Matlab-based fingerprint image feature extractionAbstractWith the development of society, the traditional safety system based on keepsake and password has been weaker, Which can not meet the requirement of modern safety system. In this case, the need of a more reliable safety system with higher anti-fake performance prompts the appearance of fingerprint identification technique. This technique, with a higher safety and reliable performance, can improve the reliability of identity resolution in virtue of human body’s physiological feature, and it has been a research focus these days.Fingerprint identification falls into three parts, they are pretreatment, feature extraction, and characteristic matching. The thesis mainly focus feature extraction, it optimized and innovated some key algorithms of this parts, which can be described as follows: in the feature extraction part, the thesis used a eight-neighborhood coding ridge tracing algorithm, removing some templates of consecutive points and bifurcate points which have been optimized and removed in the thinning algorithm, and finally marking terminate points as well as bifurcate Points to execute feature extraction. Experiment result indicated that such new algorithm has a less operation but with a higher accuracy. All the algorithms introduced above have been implemented on Matlab, and result proved an adaptive good effect, which facilitates the next characteristic matching process.Key words:Feature extraction, Removing of false characteristic points, Algorithm simulate目录1绪论 (1)1.1引言 (1)1.2 生物识别技术简介 (1)1.3指纹识别技术 (2)1.3.1指纹识别简介 (2)1.3.2指纹识别原理 (3)1.3.3指纹识别的发展 (3)1.3.4指纹识别的优缺点 (5)1.3.5指纹识别系统 (5)1.4指纹图像特征提取 (6)1.5主要内容和结构安排 (7)1.5.1主要内容 (7)1.5.2结构安排 (7)2指纹图像的预处理 (9)2.1归一化 (9)2.2图像增强 (9)2.3二值化 (10)2.4细化 (11)2.5本章小结 (12)3指纹图像特征的提取 (13)3.1指纹图像的特征 (13)3.1.1全局特征 (13)3.1.2局部特征 (13)3.2指纹图像特征点的提取 (14)3.2.1直接灰度图像法 (15)3.2.2基于细化图像的模板匹配法 (16)3.2.3算法比较 (1)3.3伪特征点的滤除 (18)3.3.1伪特征点分类及特点 (18)3.3.2伪特征点的剔除算法 (19)3.4特征提取算法Matlab算法仿真 (21)3.5本章小结 (24)4总结与展望 (25)4.1总结 (25)4.2展望 (25)致谢 (26)参考文献 (27)附录A 主程序 (30)附录B 提取特征点程序 (31)附录C 剔除伪特征点程序 (33)1绪论1.1引言随着社会经济的发展,人们的工作生活越来越依赖现代信息技术和网络技术,越来越多的场合,小到个人的虚拟账户密码,大到一个公司甚至是国家机密都需要对使用者、来访者进行身份识别,从而达到对自身的信息、资料以及财产进行可控制的保护,努力避免被不法分子非法入侵或者占有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.- 课程设计报告

设计题目:指纹图像的增强 学院:电子工程学院 专业:电子信息工程 班级: 学号: 姓名: 电子邮件: 日期: 2013 年 9 月 成绩: 指导教师: .- 一、 设计概述 1. 课程设计题目:指纹图像的增强方法 2. 基本要求:读取初始指纹图像,设计程序,实现指纹图像的增强,使指纹的纹理更加清晰,便于识别。 3. 指纹图像增强的意义: 指纹是人类手指末端指腹上由凹凸的皮肤所形成的纹路。指纹能使手在接触物件时增加摩擦力,从而更容易发力及抓紧物件。是人类进化过程式中自然形成的。目前尚未发现有不同的人拥有相同的指纹,所以每个人的指纹也是独一无二。由于指纹是每个人独有的标记,近几百年来,罪犯在犯案现场留下的指纹,均成为警方追捕疑犯的重要线索,使得指纹识别技术得到了飞快的发展,指纹图像的识别也就变得非常具有意义,但是通过传感器等方式获取到的指纹图像往往是比较模糊的,识别率相对较低,此时,指纹图像增强就孕育而生,通过对指纹图像的增强处理,得出了具有较清晰的图像,是识别率更高。

二.设计思路:指纹图像增强的主要步骤及方法 ① 读取指纹图像 ② 指纹图像灰度化处理 ③ 指纹图像平滑处理 ④ 指纹图像的腐蚀处理 ⑤ 指纹图像的锐化处理 ⑥ 指纹图像二值化 .- ⑦ 指纹图像纹理的细化处理

三.具体的处理流程及其分析 1.指纹图像的读取 将通过传感器或者别的方式获取到的指纹图像读取到matlab中;如 .bmp .jpg等格式的图片文件。 通过matlab实现: I=imread(‘文件路径+图像名.jpg');

2. 指纹图像灰度化处理 数字图像可分为灰度图像和彩色图像。通过灰度化处理和伪彩色处理,可以使伪彩色图像与灰度图像相互转化;灰度化就是使彩色的R,G,B分量值相等的过程 I=rbg2gray(I)

3.指纹图像平滑处理(此处我们使用的是中值滤波的方法处理) 图像平滑的主要目的是减少图像噪声。图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声、电器机械运动而产生的抖动噪声等内部噪声)。实际获得的图像都因受到干扰而含有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或频率域处理。在空间域中进行时,基本方法就是求像素的平均值或中值;在频率域中则运用低通滤波技术。 .- 图像平滑总是要以一定细节模糊为代价,因此如何尽量平滑掉图像的噪声,又尽量保持图像细节,是图像平滑研究的主要问题之一。 此处我们使用的是中值滤波的方法处理。中值滤波是一种非线性处理技术,由于它在实际运算过程中并不需要知道图像的统计特性,所以比较方便。在一定的条件下,中值滤波可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效;但是,对一些细节多,特点是点、线、尖顶细节较多的图像则不宜采用中值滤波的方法。中值滤波的目的是在保护图像边缘的同时,去除噪声。 中值滤波的特性: (1) 对某些输入信号中值滤波具有不变性 (2)中值滤波的去噪声性能 中值滤波可以用来减弱随机干扰和脉冲干扰。由于中值滤波是非线性的,因此对随机输入信号数学分析比较复杂。中值滤波的输出与输入噪声的概率密度分布有关,而领域平均法的输出与输入分布无关。中值滤波在抑制随机噪声上要比领域法差一些,但对于脉冲烦扰,中值滤波是非常有效的。 (3)中值滤波的频谱特性: 由于中值滤波是非线性运算,在输入与输出之间的频率上不存在一一对应的关系,故不能用一般线性滤波器频率特性分析方法。采用总体实验观察法,经大量实验表明,中值滤波器的频率响应与输入信号的频谱有关,呈现不规则波动不大的曲线,中值滤波幅谱特性起伏不大,可以认为信号经中值滤波后,频谱基本不变。 中值滤波的matlab实现: .- I1=medfilt2(I,[5,5]); figure,imshow(I); figure,imshow(I1); 对带有噪声的指纹图像进行预处理,经过滤波后的图像能够消除图像中的一部分干扰影响。

4. 指纹图像的腐蚀处理 指纹图像腐蚀运算后使得指纹纹路更细,便于后续的处理,但指纹图像显得模糊,但是接下来我们将对指纹图像进行锐化,使得图像边缘更加清晰。 灰度腐蚀的matlab实现程序: s=ones(3,3); I2=imerode(I1,s); figure,imshow(I2);

5. 指纹图像的锐化处理 图像锐化即对图像进行处理,使图像的边缘变得鲜明。目的是为了突出图像的边缘信息,加强轮廓特征,以便于人眼的观察和机器的识别对比。 这里我们采用的是Sobel算子对图像增强。Matlab实现程序如下 I3=double(I2); h=fspecial('sobel'); K=filter2(h,I3); figure,imshow(K) .- K1=I3-K; figure,imshow(K1); 指纹图像竖直方向的纹路有很大的残缺,显然该图像的清晰度不令人满意,为了获得较清晰的指纹图像,我们将对上述图像进行修补,本文所使用的方法是将锐化处理前的图像逆时针旋转90度,再以上述同样的方法对图像进行锐化增强,由此得到的图像再顺时针旋转90度。 matlab实现程序: %图像逆时针旋转90度再进行锐化 I=imread('f:\image2_0.jpg'); J=double(I); h=fspecial('sobel'); K=filter2(h,J); figure,imshow(K) K1=J-K; figure,imshow(K1'); imwrite(K1','f:\s2.jpg'); 先将两幅指纹图像进行配准,配准完成后,再进行简单的融合。 %两幅图像配准 I1=imread('f:/s1.jpg'); I2=imread('f:/s2.jpg'); J1=double(I1); J2=double(I2); .- K1=fft2(J1); K2=fft2(J2); out=dftregistration(K1,K2,1); 两幅图像进行配准后再相加的的MATLAB程序 %配准后相加 I1=imread('f:/s1.jpg'); I2=imread('f:/s2.jpg'); I4=double(I1); I5=double(I2); [width,height]=size(I5); NewR2=zeros(width,height); for i=1:width for j=1:height source_x=i+1; source_y=j+1; if(source_x>width||source_y>height) NewR2(i,j)=0; else if(source_x/double(uint16(source_x))==1.0&source_y/double(uint16(source_y))==1.0) NewR2(i,j)=I5(int16(source_x),int16(source_y)); End .- end end end I6=NewR2; I3=uint8(I4); I7=uint8(I6); figure,imshow(I3); figure,imshow(I7); K=imadd(I3,I7,'uint16'); figure,imshow(K,[]);

6.指纹图像的二值化 对指纹图像进行二值化,其基本要求就是二值化后的图像能真实地再现原指纹。具体要求为: ① .脊线中不出现空白。 ② .二值化后的脊线基本保持原来指纹的特征。 ③ .指纹的纹线不应有太多的间断和相连。 ④ .指纹纹线间的间距应大致相同。

⑤ .由于指纹识别系统的特性,二值化算法的速度也应是一个评价指标。

二值化的matlab实现: %二值化 I=imread('f:\image3.jpg'); level=graythresh(I); .- J=im2bw(I,level); figure,imshow(J); imwrite(J,'f:\image4.jpg')

7.指纹图像的细化 细化又称骨骼化,是指在不影响图像的拓扑关系的情况下,将图像中宽度大于一个像素的线条转变为只有一个像素宽度的图像的处理过程。 细化的matlab实现: %细化 I=imread('f:/image4.jpg'); J=I(:,:,1)>160; K=bwmorph(~J,'thin','inf'); figure,imshow(~K); 四、思考及总结 在此课程设计完成之际,向我们的邓成老师表示衷心的感谢。因为通过本次的课程设计,我们能够有一个很好的机会对过去学到的知识进行巩固和实践。由于未学习过数字图像这门课程,并且对matlab软件的掌握也不够精通,在设计的过程中遇到不少的陌生名词,我们基本是边学习边进行的课程设计。能力有限,设计的结果并不尽如人意,未能将所有的思路投入到实践中。 我同时也要感谢我身边的同学,在设计期间给予了我不少有益的信息和建议,使我顺利解决了许多问题,在此向大家表示真诚的感谢。 最后衷心地感谢信息科学与工程学院领导与老师,为我们提供了良好的学习环境和实践机会,给予了我们许多有益的指导与帮助。

相关文档
最新文档