2013高一数学上学期期末复习题
2013高一上册数学期末试题(带答案)

2013高一上册数学期末试题(带答案)2012-2013年第一学期期末考试高一数学试题一、选择题(每小题4分,共40分)1、设集合,,则A.B.C.D.2、下列函数中,与函数有相同定义域的是A.B.C.D.3、已知函数,则A.B.C.2D.4、已知点,,,则的形状为A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5、式子的值等于A.B.-C.-D.-6、下列函数中,既是奇函数又是增函数的是A.B.C.D.7、在下列区间中,函数的零点所在区间是A.B.C.D.8、如图是一个几何体的三视图,若该几何体的表面积为9,则正视图中实数的值等于A.1B.2C.3D.49、在下列关于直线、与平面、的命题中,正确的是A.若,且,则B.若,且,则C.若,且,则D.若,且,则10、定义两种运算,,则函数是A.非奇非偶函数且在上是减函数B.非奇非偶函数且在上是增函数C.偶函数且在上是增函数D.奇函数且在上是减函数二、填空题(每小题4分,共16分)11、圆的半径等于12、如图,在棱长为的正方体中,分别是的中点,则异面直线与所成角等于13、设集合,,则=.14、两条互相垂直的直线与的交点坐标为三、解答题(本大题共5小题,共44分.)15(本小题满分8分)已知函数是定义在上的奇函数,且时,.(1)求的值;(2)当时,求的解析式.16(本小题满分8分)已知点和,求(1)线段的垂直平分线的方程;(2)以为直径的圆的方程.17(本小题满分8分)如图,四棱锥的底面是边长为1的正方形,、分别为、的中点。
(1)求证:;(2)求证:平面;(3)求四棱锥的体积.18(本小题满分10分)已知圆O:与直线:(1)当时,求直线被圆O截得的弦长;(2)当直线与圆O相切时,求的值.19(本小题满分10分)设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为,画面的上、下各留8cm空白,左、右各留5cm空白。
(1)用表示宣传画所用纸张面积;(2)判断函数在上的单调性,并证明你的结论;(3)当取何值时,宣传画所用纸张面积最小?参考答案一、选择题题号12345678910答案ADCBADDCBA提示:3、从而选C4、,故又从而选B5、原式==从而选A,也可从符号判断只有A符合题意.6、画出简图易得。
2013-2014学年高一数学上学期期末考试试题及答案(新人教A版 第96套)

湖北省黄冈中学2013年秋季高一期末考试数学试题一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos 210︒等于( ) A.12 B.12-C.2.设集合{1,2,3,4}U =,2{|50}M x U x x p =∈-+=,若{2,3}U M =ð,则实数p 的值为( )A.4-B.4C.6-D.63.函数y ( )A.{}|0x x ≥B.{}|1x x ≥C.{}{}|10x x ≥D.{}|01x x ≤≤ 4.已知角α的终边过点(3,4)P --,则tan α等于( )A.3-B.4-C.34D.435.已知函数x x f xsin )21()(-=,则)(x f 在]2,0[π上的零点个数为( )A.1B.2C.3D.4 6.设13log 2a =,2log 3b =,0.31()2c =,则( )A.a b c <<B.a c b <<C.b c a <<D.b a c <<7.定义行列式运算12142334a a a a a a a a =-.将函数1sin 2cos2()cos 2sin 2x x f x x x+=-的图象向左平移6π个单位后,所得函数图象的一条对称轴是( ) A.4x π= B.2x π= C.3x π= D.12x π=8.函数sin y x =,cos y x =和tan y x =具有相同单调性的一个区间是( )A.(0,)2πB.(,)2ππ C.3(,)2ππ D.(,0)2π-9.M 为正六边形ABCDEF 的中心,O 为平面上任意一点,则OA OB OC ++OD +OE +OF +等于( )A.3OMB.4OMC.5OMD.6OM10.已知1()x f x a =,2()a f x x =,3()log a f x x =,(0a >且1a ≠),在同一坐标系中画出 其中两个函数在第一象限的图象,正确的是( )二、填空题:本大题共5小题,每小题5分,共25分.11.函数2(0y x x α=+>)的图象恒过定点_________.12.函数()sin 2tan 2f x a x b x =++,且(3)5f -=,则(3)f 等于_________. 13.在ABC ∆中,4AB =,30ABC ︒∠=,D 是边BC 上的一点,且,AD AB AD AC ⋅=⋅ 则AD AB ⋅的值等于_________.14.已知函数()|1|f x x =-,方程2[()]()10f x af x -+=有四个不同的实数解,则实数a 的取值范围是_________.15.已知下列四个命题:①若//a b ,//b c ,则//a c ;②设a 是已知的平面向量,则给定向量b 和c ,总存在实数λ和μ,使a b c λμ=+;三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知3cos()sin()223sin(2)cos()x x x x ππππ--+=++-. (1)求tan x 的值;(2)若x.17.(本小题满分12分)已知向量(1,)a y =,(1,3)b =-,且(2)a b b +⊥.(1)求||a ,并求b 在a 上的投影;(2)若(2)//(24)ka b a b +-,求实数k 的值,并确定此时它们是同向还是反向?18.(本小题满分12分)已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的图象的一部分如下图所示:(1)求函数()f x 的解析式,并写出它的单调减区间;(2)当2[6,]3x ∈--时,求函数(2)y f x =+的值域;(3)记(0)(1)(2014)S f f f =++,求S 的值.19.(本小题满分12分)某工厂某种产品的年固定成本为250万元,每生产x 千件..,需另投入成本为)(x C (万元),当年产量不足80千件时,x x x C 1031)(2+=(万元).当年产量不小于80千件时,14501000051)(-+=xx x C (万元).每件..商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润)(x L (万元)关于年产量x (千件..)的函数解析式; (2)年产量为多少千件..时,该厂在这一商品的生产中所获利润最大?20.(本小题满分13分)如图所示,在ABCD 中,3BAD π∠=,2AB =,1AD =,点E 、F 分别是边AD 、DC 上的动点,且||||||||CF DE t CD DA ==,BE 与AC 交于G 点. (1)若12t =,试用向量AB ,AD 表示向量AG ; (2)求BG BF ⋅的取值范围.21.(本小题满分14分)对于函数()f x ,若存在实数对(b a ,),使得b x a f x a f =-⋅+)()(对定义域中的每一个x 都成立,则称函数()f x 是“(b a ,)型函数”.(1) 判断函数1()f x x =是否为 “(b a ,)型函数”,并说明理由;(2) 若函数2()tan f x x =是“(b a ,)型函数”,求满足条件的实数对),(b a 所组成的集合;(3)已知函数()g x 是“(b a ,)型函数”,对应的实数对),(b a 为(1,4).当[0,1]x ∈时,2()g x x =(1)1m x --+(0)m >,若当[0,2]x ∈时,都有1()4g x ≤≤,试求实数m 的取值范围.。
2013高一上学期数学期末联考试题(有答案)

2013高一上学期数学期末联考试题(有答案)(考试时间:2013年1月25日上午8:30-10:30满分:100分)第Ⅰ卷(选择题,共30分)一、选择题:(本大题共10小题,每小题3分,共30分)1.设集合,,则()A.B.C.D.2.已知,则点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设是定义在R上的奇函数,当时,,则的值是()A.B.C.1D.34.下列各组函数中表示同一函数的是()A.与B.与C.与D.与5.设是不共线的两个向量,已知,,.若三点共线,则的值为()A.1B.2C.-2D.-16.下列函数中,既是偶函数,又在区间上单调递减的是()A.B.C.D.7.在平行四边形中,,则必有()A.B.或C.是矩形D.是正方形8.设函数,则下列结论正确的是()A.的图像关于直线对称B.的图像关于点(对称C.的图像是由函数的图象向右平移个长度单位得到的D.在上是增函数。
9.函数的图象可能是()10.设函数满足,且当时,.又函数,则函数在上的零点个数为()A.5B.6C.7D.8第Ⅱ卷(非选择题,共70分)二、填空题:(本大题共5小题,每小题3分,共15分)11.若,则;12.已知幂函数过点,则的值为;13.已知单位向量的夹角为60°,则__________;14.在平面直角坐标系中,以轴为始边作锐角,角的终边与单位圆交于点A,若点A的横坐标为,则;15.用表示a,b两数中的最小值。
若函数的图像关于直线x=对称,则t 的值为.三、解答题:(本大题共6小题,共55分.解答应写出文字说明,证明过程和解题过程.)16.(本小题满分9分)设集合,(I)若,试判定集合A与B的关系;(II)若,求实数a的取值集合.17.(本小题满分9分)已知,,函数;(I)求的最小正周期;(II)求在区间上的最大值和最小值。
19.(本小题满分9分)某服装厂某年1月份、2月份、3月份分别生产某名牌衣服1万件、万件、万件,为了估测当年每个月的产量,以这三个月的产品数量为依据,用一个函数模型模拟该产品的月产量与月份的关系,模拟函数可选用函数(其中为常数)或二次函数。
2013-2014学年高一上学期期末考试数学试卷

2013-2014学年高一上学期期末数学试卷本试卷分选择题和非选择题两部分,共10页,满分为150分。
考试用时150分钟。
参考公式:台体的体积公式12(3hV S S =+第一部分 选择题(共50分)一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数ln(1)y x =-的定义域为A ,函数2x y =的值域为B ,则 A B = ( ) A .[0,1] B .[0,1) C .(0,1] D .(0,1) 2.如图正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图, 则原图形的面积是( )A .22B .1C .2 D)3.下列的哪一个条件可以得到平面α∥平面β ( ) A .存在一条直线a ,a a αβ∥,∥ B .存在一条直线a a a αβ⊂,,∥C .存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D .存在两条异面直线a b a b a b αββα⊂⊂,,,,∥,∥ 4.下列四种说法,不正确...的是 ( )A .每一条直线都有倾斜角B .过点(,)P a b 平行于直线0Ax ByC ++=的直线方程为0)()(=-+-b x B a x A C .过点M (0,1)斜率为1的直线仅有1条D .经过点Q (0,b )的直线都可以表示为y kx b =+5.直线y=x+m 与圆22220x y x y +-+=相切,则m 是 ( ) A .–4 B .–4或0 C .0或4 D . 46.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D . ),1[),,0[+∞+∞1A 第7题7.如图,长方体ABCD —A 1B 1C 1D 1中,∠DAD 1=45 , ∠CDC 1=30 ,那么异面直线AD 1与DC 1所成角的 余弦值是 ( )A B C D8.函数f(x)=2x +3x -6的零点所在的区间是 ( )A .[0,1)B . [ 1,2 )C . [2,3 )D .[3,4)9.在30︒的二面角α-l-β中,P ∈α,PQ ⊥β,垂足为Q ,PQ=2a ,则点Q 到平面α的 距离为 ( ) A .3a B . 32 a C . a D .332 a 10.奇函数)(x f 在区间[]a b --,上单调递减,且)0(0)(b a x f <<>,那么)(x f 在区间[]b a ,上 ( )A .单调递减B .单调递增C .先增后减D .先减后增第二部分非选择题(共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.直线320x +=的倾斜角α= ;12. 两圆C 221:4470x y x y ++-+=,C 222:410130x y x y +--+=的公切线 有 条;13.计算:3239641932log 4log 5-⎪⎭⎫ ⎝⎛-+-= ;14.已知两条直线1l :80ax y b ++=和2l :210x ay +-= (0b <) 若12l l ⊥且直线1l 的纵截距为1时, a = ,b = ;15.用棱长为1个单位的立方块搭一个几何体,使它的正视图和俯视图 如右图所示,则它的体积的最小值为 ,最大值为 .主视图三、解答题(本大题共6小题,共75分. 解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分) (1)求过点P (-1,2)且与两坐标轴的正半轴所围成的三角形面积等于12的直线方程; (2)求圆心在y 轴上且经过点M (-2,3), N (2,1)的圆的方程. 17.(本小题满分12分)已知函数)1(log -=xa a y (1,0≠>a a 且) (1)求此函数的定义域;(2)已知),(),,(2211y x B y x A 为函数)1(log -=xa a y 图象上任意不同的两点,若1>a ,求证:直线AB 的斜率大于0.18.(本小题满分12分)如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC ,AF ⊥PC,PA=AB=BC=2. (1)求证:平面AEF ⊥平面PBC ; (2)求三棱锥P —AEF 的体积.19.(本小题满分12分)已知方程22242(3)2(14)1690()x y t x t y t t R +-++-++=∈表示的图形是一个圆 (1)求t 的取值范围;(2)当实数t 变化时,求其中面积最大的圆的方程。
2013-2014学年高一数学上学期期末考试试题及答案(新人教A版 第119套)

2013~2014学年第一学期期末考试试卷高一数学注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷 选择题 (共60分)一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合={1,2}A ,={2,3}B ,则=B A ( )A.{2}B.{1,2,3}C.{1,3}D.{2,3}2.一个几何体的三视图如图1所示,则该几何体可以是 ( )A.棱柱B.棱台C.圆柱D.圆台3.若直线210ax y a ++-=与直线2340x y +-=垂直,则a 的值为 ( ) A.3 B.-3 C.43 D.43- 4.圆柱底面圆的半径和圆柱的高都为2,则圆柱侧面展开图的面积为 ( )A.4πB. C.8πD.5.过点(1,3)-且与直线230x y -+=平行的直线方程为 ( )A.270x y -+=B.210x y +-=C.250x y --=D.250x y +-=6.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为( )A.12B.24C.7.圆1O :2220x y x +-=和圆2O :2260x y y +-=的位置关系 ( )A.相交B.相切C.外离D.内含8.已知函数()f x 为奇函数,且当0x <时,21()f x x x =-,则(1)f = ( ) A.2 B.1 C.0D.-2图19.函数()3x f x x =+的零点所在的区间为 ( )A.()2,1--B.()1,0-C.()0,1D.()1,210.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A.若//l α,//l β,则//αβB.若l α⊥,l β⊥,则//αβC.若//αβ,//l α,则//l βD.若αβ⊥,//l α,则l β⊥11.若正方体1111ABCD A BC D -的外接球O的体积为,则球心O 到正方体的一个面ABCD 的距离为 ( )A.1B.2C.3D.412.已知,x y 满足22(1)16x y -+=,则22x y +的最小值为 ( )A.3B.5C.9D.25第Ⅱ卷 非选择题(共90分)二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答卷卡的相应位置上)13.直线20x y +-=与两条坐标轴围成的三角形面积为____________.14.已知一个正棱锥的侧棱长是3cm ,用平行于正棱锥底面的平面截该棱锥,若截面面积是底面面积的19,则截去小棱锥的侧棱长是 cm.15.如图2所示,三棱柱111ABC A B C -,则11111B A BC ABC A B C V V --= .16.已知某棱锥的俯视图如图3所示,主视图与左视图都是边长为2的等边三角形,则该棱锥的全面积是________.图2三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知平面内两点A (-1,1),B (1,3).(Ⅰ)求过,A B 两点的直线方程;(Ⅱ)求过,A B 两点且圆心在y 轴上的圆的方程.18.(本小题满分12分) 设函数1221(0)()log (0)x x f x x x ⎧-≤⎪=⎨>⎪⎩,如果0()1f x <,求0x 的取值范围.19.(本小题满分12分)如图4,已知AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上任一点,D 是线段PA 的中点,E 是线段AC 上的一点.求证: (Ⅰ)若E 为线段AC 中点,则DE ∥平面PBC ;(Ⅱ)无论E 在AC 何处,都有BC DE ⊥.20.(本小题满分12分)已知关于,x y 的方程C :04222=+--+m y x y x ,m ∈R.(Ⅰ)若方程C 表示圆,求m 的取值范围;(Ⅱ)若圆C 与直线l :4370x y -+=相交于,M N 两点,且MN=求m 的值.21.(本小题满分12分) 如图5,长方体1111ABCD A BC D -中,E 为线段BC 的中点,11,2,AB AD AA ===. 图3图4(Ⅰ)证明:DE ⊥平面1A AE; (Ⅱ)求点A 到平面ED A 1的距离.22.(本小题满分12分)已知点(1,2),(0,1),A B -动点P满足PA PB =.(Ⅰ)若点P 的轨迹为曲线C ,求此曲线的方程;(Ⅱ)若点Q 在直线1l :34120x y -+=上,直线2l 经过点Q 且与曲线C 有且只有一个公共点M ,求QM 的最小值.2013~2014学年第一学期期末考试参考答案与评分标准高一数学说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分.一.选择题(1)B ; (2)D ; (3)B ; (4)C ; (5)A ; (6)C ;(7)A ; (8)D ; (9)B ; (10)B ; (11)A ; (12) C .二.填空题(13)2; (14)1; (15)13; (16)12.三.解答题(17) 解:(Ⅰ)31=11(1)AB k -=--, ·················· 2分 图5AB ∴⋅直线的方程为:y-3=1(x-1),20x y -+=即. ························· 4分 (Ⅱ)0,2AB 的中点坐标为(),C ∴由已知满足条件的圆的圆心即为(0,2), ·············· 6分|BC |r ===半径············· 8分∴圆的方程为22(y 2)2x +-= . ·················· 10分(18)解:当0x ≤o 时,211,x -<······························ 2分 122,22,x x <<1x ∴<, 0x ∴≤. ······························ 5分 当0x >时12log 1,x <····························· 7分 11221log log ,2x < 12x ∴>, ····························· 10分 综上0x ≤或12x >. ························· 12分 (19)解:(I ),D E 分别为,PA AC 的中点,DE ∴∥PC . ··························· 4分 又,,DE PBC PC PBC ⊄⊂Q 平面平面DE ∴∥.PBC 平面 ·························· 6分 (II )AB Q 为圆的直径,∴⊥AC BC .,PA ABC BC ABC BC PA ⊥⊂∴⊥又平面平面Q .····································· 8分 PA AC =A ,BC PAC ∴⊥平面. ···························· 10分 无论D 在AC 何处,DE PAC ⊂平面,BC DE ∴⊥. ···························· 12分(20)解:(1)方程C 可化为 m y x -=-+-5)2()1(22, ·········· 2分 显然 5,05<>-m m 即时时方程C 表示圆. ············ 4分(2)圆的方程化为m y x -=-+-5)2()1(22,圆心C (1,2),半径 m r -=5, ··············· 6分则圆心C (1,2)到直线l: 4370x y -+=的距离为1d ==. ························· 8分1||||2MN MN ==则 2221(||)2r d MN =+,2251,m ∴-=+ ··························· 10分 得 1m =. ······························· 12分(21) (Ⅰ)1AA ABCD ⊥平面,DE ABCD ⊂平面1AA DE ∴⊥, ······ 2分E 为BC 中点,1BE EC AB CD ====,AE DE ∴==2AD =又222AE DE AD ∴+=,AE DE ∴⊥. ···················· 4分 又1111,,,AE A AE A A A AE AEA A A ⊂⊂=面面且 ∴ DE ⊥平面1A AE ···························· 6分(Ⅱ)设点A 到1A ED 平面的距离为d ,1A -AED 11V =323⨯ ····················· 8分1111==2AA ABCD AA AE AA AE AE ⊥∴⊥∴平面,,又由(Ⅰ)知DE ⊥平面1A AE ,1DE A E ∴⊥1122A ED S ∆∴=⨯=························ 10分1133A A ED V d -==1d ∴= ···················· 12分(22)解:(Ⅰ)设(,)P x y ,由|PA |PB |得=··············· 2分 两边平方得222221442(21)x x y y x y y +++-+=+-+ ··········· 3分 整理得22230x y x +--= ························· 5分 即22(1)4x y -+= ···························· 6分 (Ⅱ)当1|QC|QC l 与垂直时,最小.min |QC|3d ===,····················· 8分又||QM ==················· 10分min ||QM ∴==························ 12分。
2013-2014学年度上学期期末考试高一年级数学科试卷

2013-2014学年度上学期期末考试高一年级数学科试卷一、选择题1.已知集合{}1,2A =,{}1,2,3B =,集合{},,C t t x y x A y B ==+∈∈,则集合C 中元素的个数为()A.4B.5C.6D.72.已知空间两条不同的直线m ,n 和两个不同的平面α,β,则下列命题正确..的是() A.若m α∥,n α⊂,则m n ∥ B.若m αβ= ,m n ⊥,则n α⊥C.若m α∥,n α∥,则m n ∥D.若m α∥,m β⊂,n αβ= ,则m n ∥3.在空间直角坐标系中,以点()4,1,9A ,()10,1,6B -,(),4,3C x 为顶点的ABC △是以BC 为底边的等腰三角形,则实数x 的值为()A.2-B.2C.6D.2或64.设()()()()2,106,10x x f x f f x x -⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩≥,则()5f 的值为() A.10 B.11 C.12 D.135.已知一个几何体的三视图如图所示,则这个几何体的体积是()A.233 B.236 C.113D.103 6.已知函数()21x f x =-,对于满足120x x <<的任意1x ,2x ,给出下列结论: (1)()()()21210x x f x f x --<⎡⎤⎣⎦(2)()()2112x f x x f x <(2)()()2121f x f x x x ->-(4)()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭其中正确的结论的序号是()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)7.设A ,B 是x 轴上的不同两点,点P 的横坐标为2,且PA PB =,若直线PA 的方程为10x y -+=,则直线PB 的方程是()A.50x y +-=B.210x y --=C.240y x --=D.270x y +-= 8.下列结论:①函数y2y =是同一个函数;②函数()1f x -的定义域为[]1,2,则函数()23f x的定义域为0,⎡⎢⎣⎦;③函数()22log 23y x x =+-的递增区间为()1,-+∞;④若函数()21f x -的最大值是3,那么()12f x -的最小值就是3-.其中正确..的个数为() A.0个 B.1个 C.2个 D.3个9.曲线()122y x -≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是() A.53,124⎛⎤ ⎥⎝⎦ B.5,12⎛⎫+∞ ⎪⎝⎭C.13,34⎛⎫ ⎪⎝⎭D.53,,124⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭10.已知()f x 为偶函数,当0x ≥时,()()211f x x =--+,满足()12f f a =⎡⎤⎣⎦的实数a 的个数为()A.2B.4C.6D.811.在正三棱锥S ABC -中,外接球的表面积为36π,M ,N 分别是棱SC ,BC 的中点,且MN AM ⊥,则此三棱锥侧棱SA =()A.1B.2D.12.定义:函数()y f x =,x D ∈,若存在常数C ,对于任意1x D ∈,存在唯一的2x D ∈,使得()()122f x f x C +=,则称函数()f x 在D 上的“均值”为C ,已知()lg f x x =,[]10,100x ∈,则函数()lg f x x =在[]10,100上的均值为() A.32 B.34 C.110D.10 二、填空题13.设()f x 是定义在R 上的奇函数,且()y f x =的图象关于直线12x =对称,则()()()()()12345f f f f f ++++=___________________.14.若圆心在直线y x =M 与直线4x y +=相切,则圆M 的标准方程是______________.15.函数()1122x f x x a ⎛⎫=+ ⎪-⎝⎭定义域为()(),11,-∞+∞ ,则满足不等式()m a f a ≥的实数m 的集合___________.16.如图,三个半径都是10cm 的小球放在一个半球面的碗中,小球的顶端恰好与碗的上沿处于同一水平面,则这碗的半径R 是_____________cm .三、解答题17.已知函数()442xx f x =+. (1)若01a <<,求()()1f a f a +-的值;(2)求122012201320132013f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 18.已知ABC △的顶点()3,1A -,过点B 的内角平分线所在直线方程是4100x y -+=,过点C 的中线所在直线的方程是610590x y +-=.(1)求顶点B 的坐标;(2)求直线BC 的方程.19.如图:C ,D 是以AB为直径的圆上两点,2AB AD ==AC BC =,F 是AB 上一点,且13AF AB =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD上,已知CD(1)求证:AD ⊥平面BCE ;(2)求证:AD ∥平面CEF ;(3)求三棱锥A CFD -的体积.20.某跨国饮料公司对全世界所有人均GDP (即人均纯收入)在0.58-千美元的地区销售该公司M 饮料的情况的调查中发现:人均GDP 处在中等的地区对该饮料的销售量最多,然后向两边递减. (1)下列几个模拟函数中(x 表示人均GDP ,单位:千美元;y 表示年人均M 饮料的销量,单位:升),用哪个来描述人均M 饮料销售与地区的人均GDP 的关系更合适?说明理由.(A )()2f x ax bx =+(B )()log a g x x b =+(C )()x h x a b =+(D )()a k x x b =+(2)若人均GDP 为1千美元时,年人均M 饮料的销量为2升;若人均GDP 为1千美元时,年人均M 饮料的销量为2升;若人均GDP 为4千美元时,年人均M 饮料的销量为5升,把你所选的模拟函数求出来.(3)因为M 饮料在N 国被检测出杀虫剂的含量超标,受此事件的影响,M 饮料在人均GDP 不高于3千美元的地区销量下降5%,不低于6美元的地区销量下降5%,其它地区的销量下降10%,根据(2)所出的模拟函数,求在各个地区中,年人均M 饮料的销量最多为多少?21.已知圆22:228810M x y x y +---=,直线:90l x y +-=,过l 上一点A 作ABC △,使得45BAC ∠=︒,边AB 过圆心M ,且B ,C 在圆M 上,求点A 的纵坐标的取值范围.22.已知函数()()()9log 91x f x kx k =++∈R 是偶函数.(1)求k 的值;(2)若函数()y f x =的图象与直线12y x b =+没有交点,求b 的取值范围; (3)设()94log 33x h x a a ⎛⎫=⋅- ⎪⎝⎭,若函数()f x 与()h x 的图象有且只有一个公共点,求实数a 的取值范围.2013-2014学年度上学期期末考试高一年级数学科试卷参考答案一、选择题ADDBD CAAAD DA二、填空题13.014.()()22112x y -+-=或()()22332x y -+-= 15.{}1m m ≥16.101⎛ ⎝⎭三、17.解()()114414242a aa a f a f a --+-=+++ 44421424244242a a a a a a =+=+=++⋅++. (2)122012110061006201320132013f f f ⎛⎫⎛⎫⎛⎫+++=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 18.解:(1)设(),B x y ,则AB 中点31,22x y +-⎛⎫ ⎪⎝⎭, 由31610590224100x y x y +-⎧⋅+⋅-=⎪⎨⎪-+=⎩,解得105x y =⎧⎨=⎩,故()10,5B (2)设点A 关于直线4100x y -+=的对称点为()',A x y , 则31410022143x y y x +-⎧-⋅+=⎪⎪⎨+⎪=-⎪-⎩,得17x y =⎧⎨=⎩,即()'1,7A ,直线BC 经过点'A 和点B ,故直线BC 的方程29650x y +-=.19.(1)证明:依题意:AD BD ⊥CE ⊥ 平面ABD CE AD ∴⊥BD CE E = AD ∴⊥平面BCE .(2)证明:Rt BCE △中,CEBC =2BE =Rt ABD △中,AB =AD =3BD ∴=.23BF BE BA BD ∴==AD EF ∴∥ AD 在平面CEF 外,EF 在平面CEF 内,AD ∴∥平面CEF .(3)解:由(2)知AD EF ∥,AD ED ⊥,且1ED BD BE =-=F ∴到AD 的距离等于E 到AD 的距离为1.112FAD S ==△. CE ⊥ 平面ABD1133A CFD C AFD FAD V V S CE --∴==⋅⋅=△. 20.解:(1)因为B ,C ,D 表示的函数在区间[]0.5,8上是单调的,所以用A 来模拟比较合适. (2)因为人均GDP 为1千美元时,年人均M 饮料的销售量为2升;若人均GDP 为4千美元时,年人均M 饮料的销售量为5升,把1x =,2y =;4x =,5y =代入(A )函数()2f x ax bx =+, 得25164a b a b =+⎧⎨=+⎩,解得1494a b ⎧=-⎪⎪⎨⎪=⎪⎩ 所以所求函数的解析式为()[]()2190,5,844f x x x x =-+∈ (3)根据题意可得:当[]0,5,3x ∈时,2199818024y x ⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,在[]0,5,3x ∈上递增, 则当3x =时,max 17140y =; 当()3,6x ∈时,299814024y x ⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()93,62∈,则当92x =时,max 729160y =; 当[]6,8x ∈时,2199818024y x ⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,在[]6,8x ∈上递减, 则当6x =时,max 17140y =;显然72917116040>, 所以当人均GDP 在4.5千美元的地区,人均M 饮料的销量最多为729160升. 21.解:由题意圆心()2,2M,半径r =,设()9,A a a -, 因为直线AC 和圆M 相交或相切,所以M 到AC 的距离d r ≤,而d =r ≤29180a a ⇒-+≤ 解得36a ≤≤,故点A 的纵坐标的取值范围是[]3,6.22.解:(1)因为()y f x =为偶函数,所以()()f x f x -=,即()()99log 91log 91x x kx kx -+-=++对于任意x 恒成立. 于是()()()9999912log 91log 91log log 919x x xx x kx x -+=+-+=-+=-恒成立,而x 不恒为零,所以12k =-. (2)由题意知方程()911log 9122x x x b +-=+即方程()9log 91x x b +-=无解. 令()()9log 91x g x x =+-,则函数()y g x =的图象与直线y b =无交点. 因为()99911log log 199x x x g x +⎛⎫==+ ⎪⎝⎭,由1119x +>,则()91log 109x g x ⎛⎫=+> ⎪⎝⎭, 所以b 的取值范围是(],0-∞.(3)由题意知方程143333x x x a a +=⋅-有且只有一个实数根. 令30x t =>,则关于t 的方程()24103a t at t ---=(记为(*))有且只有一个正根. 若1a =,则34t =-,不合题意,舍去; 若1a ≠,则方程(*)的两根异号或有两相等正根. 由304a ∆=⇒=或3-;但3142a t =⇒=-,不合题意,舍去;而132a t =-⇒=; 若方程(*)的两根异号()()1101a a ⇔-⋅-<⇔>综上所述,实数a 的取值范围是{}()31,-+∞ .。
___2013-2014学年高一上学期期末考试数学试题
___2013-2014学年高一上学期期末考试数学试题2013-2014年高一年级上学期期末考试(时间120分钟,满分150分)一.选择题:本大题共12小题,每小题5分,共60分。
1、方程$x^2-px+6$的解集为M,方程$x^2+6x-q$的解集为N,且$M\cap N=\{2\}$,那么$p+q=$(。
)。
A 21.B 8.C 6.D 72.若集合$M=\{a,b,c\}$中的元素是$\triangle ABC$的三边长,则$\triangle ABC$一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.设$f(x)=\begin{cases}x-2,&(x\geq10)\\f[f(x+6)],&(x<10)\end{cases}$,则$f(5)$的值为()A.10B.11C.12D.134.已知函数$y=f(x+1)$定义域是$[-2,3]$,则$y=f(2x-1)$的定义域是()A.$[,\,]$B.$[-1,4]$C.$[-5,5]$D.$[-3,7]$5.函数$y=3\cos(5\pi x-\frac{\pi}{2})$的最小正周期是()A.$\frac{2}{5}$B.$\frac{2}{\pi}$C.$2\pi$D.$\frac{5}{2} $6.已知$y=x^2+2(a-2)x+5$在区间$(4,+\infty)$上是增函数,则$a$的范围是()A.$a\leq-2$B.$a\geq-2$C.$a\geq-6$D.$a\leq-6$7.如果二次函数$y=x^2+mx+(m+3)$有两个不同的零点,则$m$的取值范围是()A.$(-2,6)$B.$[-2,6]$C.$\{-2,6\}$D.$(-\infty,-2)\cup(6,+\infty)$8.将函数$y=\sin(x-\frac{\pi}{3})$的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移$\frac{11}{\pi}$个单位,得到的图象对应的解析式是()A.$y=\sin x$B.$y=\sin(x-\frac{\pi}{3})$C.$y=\sin(x-\frac{\pi}{6})$D.$y=\sin(2x-\frac{5\pi}{3})$9.函数$f(x)=\lg(\sin x-\cos x)$的定义域是()A.$\begin{cases}x2k\pi+\frac{\pi}{4},&k\inZ\end{cases}$B.$2k\pi-\frac{\pi}{3}\frac{3\pi}{4}+k\pi,&k\in Z\end{cases}$D.$k\pi+\frac{\pi}{4}<x<k\pi+\frac{3\pi}{4},k\in Z$10.在$\triangle ABC$中,$\cos A\cos B>\sin A\sin B$,则$\triangle ABC$为()A.锐角三角形B.直角三角形C.钝角三角形D.无法判定11.若$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,$-\pi<\beta<\pi$,且$\sin\alpha\sin\beta-\cos\alpha\cos\beta=\frac{1}{2}$,则$\beta$的取值范围是()A.$(-\frac{5\pi}{6},-\frac{2\pi}{3})\cup(-\frac{\pi}{6},\frac{\pi}{3})$B.$(-\frac{2\pi}{3},-\frac{\pi}{2})\cup(-\frac{\pi}{6},\frac{\pi}{3})$C.$(-\frac{5\pi}{6},-\frac{\pi}{2})\cup(-\frac{\pi}{6},\frac{\pi}{3})$D.$(-\frac{5\pi}{6},-\frac{\pi}{2})\cup(-\frac{\pi}{6},\frac{\pi}{2})$二.填空题:13.-114.f(x)=-x2-|x|+115.[k-/6,k+/6],k∈Z16.f(x)=2sin(2x-π/3)三.解答题:17.解:由xm+1≤x≤2m-1可得x-1≤xm≤2m-x,又x-2≤x-1,所以x-2≤xm,即xm-2≤0,解得m≤2.又由x≤5可得xm+1≤6,即2m-1≤6,解得m≥3.综上所述,m∈[3,2],即m∈[3,2]∩R=∅,无解。
2013-2014学年高一数学第一学期期末试题
2013—2014学年度第一学期末试题高一数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4},A={1,3},则U A =ðA .{1,2}B .{2,4}C .{2,3}D .{1,4}2. 下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.下列四组函数中,表示同一函数的是( ).A.(),()f x x g x ==.2()lg f x x =,()2lg g x x =C .21()1x f x x -=+,()1g x x =- D.()f x =()g x = 4.一个水平放置的三角形的斜二侧直观图是等腰直角三角形'''A B O ,若''1O B =,那么原∆ABO 的面积是( ) A .12B.2CD .5.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .43第4题6.用二分法计算23380x x +-=在(1,2)x ∈内的根的过程中得:(1)0f <,(1.5)0f >,(1.25)0f <,则方程的根落在区间( )A.(1,1.5)B.(1.5,2)C.(1,1.25)D.(1.25,1.5) 7.下列四个命题中错误..的个数是( ) ① 两条不同直线分别垂直于同一条直线,则这两条直线相互平行 ② 两条不同直线分别垂直于同一个平面,则这两条直线相互平行 ③ 两个不同平面分别垂直于同一条直线,则这两个平面相互平行 ④ 两个不同平面分别垂直于同一个平面,则这两个平面相互垂直A. 1B. 2C. 3D. 48. 若1(2,3),(3,2),(,)2A B C m --三点共线,m 则m 的值为( )A .21B .21- C .2- D .29.一个几何体的三视图如图所示,其中正视图与左视图都是边长为2的正三角形,则这个几何体的侧面积为( )AB .2πC .3πD .4π 10.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ).A .22a a ++B .21a +C .222a a ++D .221a a ++11. 如图,ABCD-A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A .BD ∥平面CB 1D 1B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60° 12.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<9题正(主)视左(侧)视俯视图第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷中的横线上)13.设全集U =R ,A ={x |x >0},B ={x |x >1},则U A B ⋂ð=14.过两点222(2,3),(3,2)A m m B m m m +---的直线的倾斜角为45 ,则m =15.已知函数22()2x f x x x +⎧⎪=⎨⎪⎩(1)12)(2)x x x ≤--<<≥(,且()3f a =,则a 的值为 16.以下命题:① 直线的倾斜角α越大,斜率k 越大。
2013-2014学年高一数学上学期期末考试试题(含解析)及答案(新人教A版第99套)_PDF压缩
14、 ( 满分 11 分)某工厂为了制造一个实心工件,先画出了这个工件的三视图(如图),其
中正视图与侧视图为两个全等的等腰三角形, 俯视图为一个圆, 三视图尺寸如图所示 (单位
cm);
( 1)求出这个工件的体积;
( 2)工件做好后,要给表面喷漆,已知喷漆费用是每平方厘米
1 元,现要制作 10 个这
)
A . 8 B . 0 C . 2 D . 10
2、过点 P( 1,3) 且垂直于直线 x 2 y 3 0 的直线方程为()
A . 2x y 5 0
B
. 2x y 1 0
C . x 2y 5 0
D
. x 2y 7 0
3、下列四个结论:
⑴两条不同的直线都和同一个平面平行,则这两条直线平行
.
⑵两条不同的直线没有公共点,则这两条直线平行
湖南省师大附中 2013-2014 学年高一数学上学期期末考试试题 (含解
析)新人教 A 版
必考Ⅰ部分 一、选择题:本大题共 7 小题,每小题 5 分,满分 35 分;在每小题给出的四个选项中,只 有一项是符合题目要求的.
1、已知过点 A( 2, m) 和 B (m, 4) 的直线与直线 2x y 1 0 平行,则 m 的值为(
②若 1,则过 M 、 N 两点的直线与直线 l 平行;
③若
1,则直线 l 经过线段 MN 的中点;
④若 1 ,则点 M 、 N 在直线 l 的同侧,且直线 l 与线段 MN 的延长线相交 .
上述说法中,所有正确说法的序号是
2 19、(满分 13 分)已知:以点 C (t, t )(t ∈ R, t
( 2)求经过原点且被圆 C截得的线段长为 2 的直线方程 . 源 :]
2013年高一数学上册期末复习试题(附答案)
2013年高一数学上册期末复习试题(附答案)成都十一中高2013级高一(上)期末复习模拟训练题(一)一、选择题:1.集合,,则()A.B.C.D.2.下列四个函数中,与表示同一函数的是()A.B.C.D.3.已知,则a,b,c的大小关系是()A.B.C.D.4.若角的终边过点P,则等于A.B.C.D.不能确定,与a的值有关5.式子的值等于A.B.-C.-D.-6.设,则函数的零点位于区间()A.B.C.D.7.要得到函数y=2cos(2x-)的图象,只需将函数y=2cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.已知函数,则()A.B.C.D.9.已知,则的值为()A.B.C.D.10.《中华人民共和国个人所得税》规定,从2011年9月1日起,修改后的个税法将正式实施,个税起征点从原来的2000元提高到3500元,即原先是公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额,新旧税款分别按下表分段累计计算:9月前税率表9月及9月后税率表张科长8月应缴纳税款为475元,那么他9月应缴纳税款为()A.15B.145C.250D.1200二、填空题:11.幂函数的图象过点,则____12.已知扇形半径为8,弧长为12,则中心角为弧度,扇形面积是.13.函数在区间上是减函数,那么实数的取值范围.14.函数的部分图象如图所示,则函数表达式为.15.给出下列命题:(1)函数在第一象限内是增函数(2)函数是偶函数(3)函数的一个对称中心是(4)函数在闭区间上是增函数写出正确命题的序号三、解答题:16.计算:(1)(2)18.已知(1)求的值;(2)求的值.19.设函数f(x)=cos(ωx+φ)的最小正周期为π,且=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在0,π]上的图象.21.某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为元,①求关于的函数表达式;②求该公司可获得的最大毛利润,并求出此时相应的销售单价.22.已知函数,在同一周期内,当时,取得最大值;当时,取得最小值.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调递减区间;(Ⅲ)若时,函数有两个零点,求实数的取值范围.试卷答案一、选择题1.D2.D3.C4.C5.A6.C7.D8.A9.C10.B二、填空题11.312.13.14.15.③三、解答题16.(1)3(2)7/417.解:(1)A={x∣2(2)={x∣x={x∣1(3)a>418.解:(1)(2)原式==19.(1)(2)略20.解:(Ⅰ)易知,函数f(x)的定义域为;(Ⅱ))函数f(x)=x-是奇函数,理由如下:定义域关于原点对称,f(-x)+f(x)=-x++x-=0,所以,函数f(x)是奇函数;(Ⅲ)函数f(x)=x-在上是增函数,证明如下:任取,且,则∵,∴,∵,∴∴,即∴函数f(x)=x-在上是增函数.21.解:(1)由图像可知,,解得,,所以.…………6分(2)①由(1),,10分②由①可知,,其图像开口向下,对称轴为,所以当时,.即该公司可获得的最大毛利润为62500元,此时相应的销售单价为750元/件…………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年度第一学期高一数学期末复习题
一、选择题。
(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )
A 、A ∅∉
B 、2A ∈
C 、2A ∉
D 、
{}2 ⊆A
2、设集合A={a ,b}, B={a+1,5},若A∩B={2},则A∪B=( )
A 、{1,2}
B 、{1,5}
C 、{2,5}
D 、{1,2,5} 3、函数2
1
)(--=
x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞) 4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )
5、三个数70。
3,0.37,,㏑0.3,的大小顺序是( )
A 、 70。
3,0.37,,㏑0.3,
B 、70。
3,,㏑0.3, 0.37
C 、 0.37, , 70。
3,,㏑0.3,
D 、㏑0.3, 70。
3,0.37,
6、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:
f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165
f(1.4065)=-0.052
那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为( ) A 、1.2 B 、1.3 C 、1.4 D 、1.5
7、函数2,02,0
x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )
8、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( ) A 、f(xy)=f(x)f(y) B 、f(xy)=f(x)+f(y) C 、f(x+y)=f(x)f(y) D 、f(x+y)=f(x)+f(y)
9、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 *10、某企业近几年的年产值如图,则年增长率最
高的是( )(年增长率=年增长值/年产值) A 、97年 B 、98年
C 、99年
D 、00年
二、填空题(共4题,每题4分)
11、f(x)的图像如下图,则f(x)的值域为 ;
12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;
13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;
14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数;
②定义域为{|0}x R x ∈≠; ③在(0,)+∞上为增函数.
老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
请你写出一个(或几个)这样的函数
0099
989796(年)
200
4006008001000(万元)
三、解答题(本大题共6小题,满分44分。
)
15(6分)设全集为R ,{}73|<≤=x x A ,{}102|<<=x x B ,求()R C A B 及()R C A B
16(每题3分,共6分)不用计算器求下列各式的值
⑴ ()()122
3
02
1329.63 1.548--⎛⎫
⎛⎫ ⎪ ⎪
⎝⎭⎝⎭---+ ⑵ 74
log 23
27
log lg 25lg 473
+++
17(8分)设2 2 (1)() (12)2 (2)x x f x x x x x +≤-⎧⎪
=-<<⎨⎪≥⎩
,(1)在下列直角坐标系中画出()f x 的图象;
(2)若f (t )=3,求t 值; (3)用单调性定义证明f (x )在[)2,+∞上单调递增。
18(8分)某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件,为了估测以后各月的产量,以这三个月产品数为依据,用一个函数模拟此产品的月产量y (万件)与月份数x 的关系,模拟函数可以选取二次函数y=px 2+qx+r 或函数y=ab x +c (其中p 、q 、r 、a 、b 、c 均为常数),已知4月份该新产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?求出此函数。
19(8分)已知函数f(x)=㏒a 12-x
, ,0(>a 且)
1≠a , (1)求f(x)函数的定义域。
(2)求使f(x)>0的x 的取值范围。
20(8分)已知函数f(x)=2x
(1)写出函数f(x)的反函数()
g x及定义域;
(2)借助计算器用二分法求()
g x=4-x的近似解(精确度0.1)
题号 1 2 3 4 5 6 7 8
9 10 答案 C D A B A C B B B B
一、填空题(共4题,每题4分)
11、[-4,3] 12、2400 13、-x
14、2x y = 或0,10,1{<+≥-=x x x x y 或x
y 2
-=
二、解答题(共44分) 15、 解:}102|{)
(≥≤=⋃x x x B A C R 或
}10732|{)(<≤<<
=⋂x x x B A C R 或
16、解(1)原式=232
21
)2
3()827(1)49(--+-- =2
32
3212)2
3()23(1)23(-⨯-⨯+-- =2
2)2
3()23(123--+--
=2
1
(2)原式=2)425lg(3
3
log 4
33
+⨯+ =210lg 3
log 24
13++-
=4
15
2241=++-
17、○1○3略○2t=3 18、 解:若y =
c bx ax x f ++=2)( 则由题设
⎪⎩
⎪⎨⎧==-=⇒⎪⎩⎪⎨
⎧=++==++==++=7.035.005
.03.139)3(2.124)2(1)1(r q p r q p f r q p f r q p f
)(3.17.0435.0405.0)4(2
万件=+⨯+⨯-=∴f 若c ab x g y x
+==)( 则
⎪⎩⎪⎨⎧==-=⇒⎪⎩
⎪⎨⎧=+==+==+=4.15.08.03.1)3(2.1)2(1)1(32c b a c ab g c ab g c ab g )(35.14.15.08.0)4(4
万件=+⨯-=∴g
∴选用函数c ab y x +=作为模拟函数较好
19、解:(1)12-x >0且2x -1)
,这个函数的定义域是(∞+⇒>⇒≥000x (2)㏒a
12-x >0,当a>1时,12-x >1;1>⇒x 当0<a<1时,12-x <1且
x>010<<⇒x
20、解:(1)g (x )=㏒2x; g (x )的定义域是:(0,+∞) (2)方程g(x)=4-x <==> 方程㏒2x+x-4=0
设h (x )=㏒2x+x-4,则函数h (x )的定义域是(0,+∞),并且在 (0,+∞)上是增函数。
;∵h (2)=-1<0, h (3)=㏒22
3>0
∴函数h (x 在(0,+∞)上有唯一零点0x ,且该零点2<0x <3。
∵h (2.5)=㏒2
32
25
<0, ∴ 2.5<0x <3。
∵h (2.75)=4
1㏒28192
14641 >0, ∴ 2.5<0x <2.75。
∵h (2.625)=㏒22.625-1.375=㏒22.625-㏒2288=㏒288
2625.2=㏒28
8
3125.1
≈8
1㏒28
8.8>0, ∴ 2.5<0x <2.625。
∵h (2.5625)=㏒22.5625-1.4375<0(我猜的)∴ 2.5625<0x <2.625。
精确到0.1得0x ≈2.6 ∴方程g(x)=4-x的近似解为2.6。