晶体分布形态
第七章实际晶体的形态

线缺陷:位错、层错等
位错
晶体中原子排列的局部错乱现象,表现为一条线状的缺陷。位错会破坏晶体的周期性结构,导致晶体强度降低、 塑性增加,同时也会影响晶体的电学和热学性能。
层错
晶体中原子层之间的相对滑移现象。层错会改变晶体表面的形貌和粗糙度,影响晶体的力学性能和摩擦学性能。
面缺陷:晶界、孪晶界等
晶界
立方体晶体具有高度的对称性和稳定 性,是自然界中常见的晶体形态之一 。
正八面体形态
正八面体晶体由八个等边三角形 组成,每个面都是等边三角形。
正八面体晶体具有高度的对称性 和稳定性,也是自然界中常见的
晶体形态之一。
典型的正八面体晶体有钻石和萤 石等。
十二面体形态
十二面体晶体由12个 正五边形组成,每个 面都是正五边形。
电子显微镜观察法
透射电子显微镜(TEM)
利用高能电子束穿透样品,通过电磁透镜成像来观察晶体形貌和 结构。
扫描电子显微镜(SEM)
利用电子束扫描样品表面,通过收集样品发射的次级电子或反射电 子来形成图像,观察晶体表面形貌和微结构。
分析型电子显微镜
结合能谱仪等分析附件,可对晶体成分、晶体缺陷等进行定性和定 量分析。
应用领域
可用于观察晶体表面形貌、测量表面粗糙度、研究晶体生长机制等。
06
实际晶体形态应用领域及 前景展望
材料科学与工程领域应用举例
晶体形态对材料性能的影响
晶体形态的不同会导致材料在力学、热学、电学等方面的 性能差异,因此可以通过控制晶体形态来优化材料性能。
晶体生长与材料制备
在材料制备过程中,晶体生长是一个重要环节。通过控制 晶体生长条件,可以获得具有特定形态和性能的材料。
生长界面结构与性质
晶体的理想形态和结晶

a = b = g = 90
a=b≠c a = b = 90 g = 120
三方晶系 及六方晶系
斜方晶系
单斜晶系
以互相垂直的L2或P的法线为X、Y、 Z轴
以L2或P的法线为Y轴,以垂直于Y轴 的主要晶棱方向为X、Z轴 以三个主要的晶棱方向为X、Y、Z轴
a≠b≠c
a = b = g = 90
a≠b≠c a = g = 90b > 90 a≠b≠c abg
单位晶面(在三个晶轴上所截得得截距比等于 该晶体的轴率的晶面。 )的选择必须符合晶 体的对称特点。
从上例可以看出, ①晶面在晶轴上的截距系属愈大,则在晶 面符号中与该轴相应的米氏符号指数则越 小; ②如果晶面平行于晶轴,则其米氏指数为0。 ③晶面与某一晶轴的负端相交时,即在某 晶轴的米氏指数上方加一“-” ④也就是说,单位面在三个晶轴上所截得 得截距比等于该晶体的轴率。
三斜晶系
各晶系的晶体几何常数特点
二、整数定律(有理指数定律或阿羽毛依定律, R.J. Hauy,1784) 如果以平行于三根不共面晶棱的直线作为坐标轴, 则晶体上任意二晶面在三个坐标轴上所截截距的比 值之比为一简单整数比。
晶体的整数定律是晶体定向理论基础和确定结 晶符号的依据。 晶体的整数定律是由晶体的格子构造决定的。
z
unknown face (A2B2C2) 2 reference face (A1B1C1) 1
C1
2 4 4 2
2 3 3 2
invert
C2
1 2
clear of fractions
A1
(1
4
3)
O
B2 B1
A2
x
y
bo
3晶体结构

自范性是晶体的本质特征
2. 对称性 晶体理想外形中常常呈现形状和大小 相同的等同晶面,具有特有的对称性。
晶体的宏观对称性只有32种可能组合, 称为32晶类或32点群。
m.p.
3. 均一性
晶体质地均匀,具 有确定的熔点。
t
4. 各向异性
③. 晶胞的内容(组成)
原子的种类、数目及其在晶胞中的相对位置。
二. 布拉维系
按晶胞参数的差异可分成七种不同几何特征的三维晶胞。
立方cubic (c) 四方tetragonal (t) 正交orthorhomic (o) a = b = c α=β=γ=900 a = b ≠ c α=β=γ=900 a≠ b≠ c α=β=γ=900 1个晶胞参数a 2个晶胞参数a c 3个晶胞参数a b c
晶体类型
组成 粒子 金属晶体 原子晶体 离子晶体 分子晶体 原子 正离 子 原子 正、负 离子 分子 粒子 间作 用力 金属 键 共价 键 离子 键 分子 间力 物理性质 熔沸 点 高低 高 高 低 硬度 大小 大 大 小
熔融导 电性
例
好 差 好 差
Cr, K
SiO
2
NaCl 干冰
§4 金 属 晶 体
(c) 面心立方: d = m/a3 = (4M/NA)/(81/2r)3 = 4M/(83/2NAr3) (a):(b):(c) 1:1.299:1.414 面心立方堆积密度最大
4. 2 金属键理论
金属晶体中原子之间的化学作用力叫做金属键。金 属键没有方向性和饱和性,是一种遍布整个晶体的离域 化学键。
单斜monoclinic (m)
三斜anorthic (a) 六方hexagonal (h) 菱方rhombohedeal (R)
第二章 晶体结构

晶胞
• 有实在的具体质点所 组成
平行六面体
• 由不具有任何物理、化学 特性的几何点构成。
是指能够充分反映整个晶体结构特征的最小结构单位, 其形状大小与对应的单位平行六面体完全一致,并可用 晶胞参数来表征,其数值等同于对应的单位平行六面体 参数。
晶胞棱边长度a、b、c,其单位为nm ,棱间夹角α、β、 γ。这六个参数叫做点阵常数或晶格常数。
面网密度:面网上单位面积内结点的数目; 面网间距:任意两个相邻面网的垂直距离。
相互平行的面网的面网密度
和面网间距相等; 面网密度大的面网其面网间 距越大。
空间格子―――连接分布在三维空间的结点构成空 间格子。由三个不共面的行列就决定一个空间格子。
空间格子由一系列 平行叠放的平行六 面体构成
2-1 结晶学基础
一、空间点阵
1.晶体的基本概念 人们对晶体的认识,是从石英开始的。 人们把外形上具有规则的几何多面体形态的 固体称为晶体。 1912年劳厄(德国的物理学家)第一次成功 获得晶体对X射线的衍射线的图案,才使研究 深入到晶体的内部结构,才从本质上认识了 晶体,证实了晶体内部质点空间是按一定方 式有规律地周期性排列的。
第二章 晶体结构
第二章 晶体结构
1
结晶学基础 晶体化学基本原理 非金属单质晶体结构
2
3 4 5
无机化合物晶体结构
硅酸盐晶体结构
重点:重点为结晶学指数,晶体中质点的堆 积,氯化钠型结构,闪锌矿型结构,萤石型 (反萤石型)结构,钙钛矿型结构,鲍林规 则,硅酸盐晶体结构分类方法。 难点:晶体中质点的堆积,典型的晶体结构 分析。
• 结点分布在平行六面
体的顶角; •平行六面体的三组棱长 就是相应三组行列的结 点间距。
方解石的晶体形态

方解石的晶体形态
方解石是一种重要的碳酸盐矿物,在自然界中广泛分布。
它的晶体形态非常多样,可以是六角棒状、六角板状、立方体状、菱形状等。
其中,最常见的是六角棒状的方解石晶体。
方解石的晶体形态与它的晶体结构密切相关。
方解石的晶体结构属于正交晶系,由钙离子(Ca2+)和碳酸根离子(CO32-)组成。
钙离子和碳酸根离子的结合方式不同,导致方解石晶体形态的多样性。
除了晶体形态外,方解石还具有一些其他特征,如颜色、光泽、硬度等。
方解石的颜色多种多样,可以是白色、灰色、黄色、棕色、红色、绿色、蓝色等。
它的光泽较强,可以是玻璃光泽或油脂光泽。
方解石的硬度较低,仅为3.5-4,可以用指甲轻易划伤。
总之,方解石的晶体形态多样,与其晶体结构密切相关。
它还具有丰富的颜色、光泽和硬度等特征,是研究矿物学和地质学的重要对象。
- 1 -。
晶体及晶体分类

• 3、低级晶族 • 斜方晶系、单斜晶
系、三斜晶系
• a0≠b0≠c0
黄玉(斜方)
2020/4/18
透辉石(单斜)
长石(三斜)
按晶系分类的常见宝石
• 高级晶族:等轴:金刚石、石榴石、尖晶石
• 中级晶族:六方:祖母绿、海蓝宝石
•
三方:红宝石、蓝宝石、碧玺、水晶
•
四方:锆石
• 低级晶族:斜方:黄玉、橄榄石、金绿宝石
同晶面。 • 如等轴晶系中: • 八面体+立方体
2020/4/18
2020/4/18
单形(萤石)与聚形(水晶)
(七)、单晶体与多晶体
• 单晶体——由单个矿 物组成的晶体。
• 宝石为单晶体 • 如:金刚石、红宝石
、蓝宝石
2020/4/18
• 多晶体——由一种或多种矿物组成的集合体。
• 岩石:指天然产出的、具有一定结构构造的矿物集 合体。属于多晶体。
• 单位晶胞(Unit cell) -----组成晶体的最小单位
2020/4/18
c0
α0 β α γ
b0
• 晶胞参数 • 结晶轴:X、Y、Z • 轴单位:a0 、b0、c0 • 轴角:α、β、γ
2020/4/18
Z
c0
α0 β α γ
b0
X
Y
(二)、晶体的空间格子类型
• 根据平行六面体中结点的分布不同,分为 四类型:
•
人工晶体--合成晶体和人造晶体
• 2、晶体的空间格子及分类
•
晶胞参数 (结晶轴、轴单位、轴角)
•
空间格子类型
• 3、晶体对称分类(三大晶族七大晶系)
• 4、单形与聚形
• 5、单晶体与多晶体(宝石与玉石)
04-05 晶体几何学基础概述

晶体结构
萤石结构( CaF2 )
氯化钠结构(NaCl)
晶体结构
辉钼矿的化学成分:
MoS2,Mo 59.94%,S 40.06%;
辉钼矿的特征:
铅灰色,金属光泽, 硬度低,底面解理极 完全,比重大,光泽 强。
晶体结构
石墨的晶体结构
C60的晶体结构
金刚石的晶体结构
晶体结构X衍射图谱
石墨
金刚石
C60
b c c a * * a b (b c )(c a ) (c c )(b a ) V V cos * = * * = = abc2 sin a sin b | a b | bc sin a ca sin b V V cosa cos b cos = 同样可求 得α *, β *。 sin a sin b
a=bc, a=b==90
简单三角
四方 六角 立方
简单四方 体心四方
a=b, 六角 b==90, a=120 a=b=c, a=b==90 简单立方,体心立方 面心立方
七大晶系所要求最低的对称性
晶系 三斜 最低特征对称素 无对称素 晶胞形状 任意的平行六面体
单斜 正交 三角 四方 六角 立方
a = = d(200) 2 2 2 2 2 0 0
\ (200)
(110)
a
intersects with
a d(110) = 2 2 2 = 2 1 1 0
\ (110)
晶面间距
晶面间距(d)公式:
立方晶系:
1 d hkl
2
h k l = 2 a
2 2
2
h k l 四方晶系: = 2 2 2 a c d hkl 2 2 2 1 h k l 正交晶系: = 2 2 2 2 b c d hkl 1
结晶学与矿物学 第六章 单形与聚形

(4)开形与闭形: 所有晶面可以封闭一定空间的单形称为闭形
(closed form),反之称开形(open form) (5)定形与变形:
晶面间角度恒定的单形称为定形(constant form), 反之为变形(various form)
四角三八面体{hkk}变形的晶面符号比较
二、聚形 Combination form
素关系相同——合 并一个单形,共5个 结晶单形
六八面体晶类(m3m, 3L44L36L29PC)
2
6
3
5
7
最小重复单位 原始面
4 1
146种结晶单形的导出:按以上方法对32个对称型中的单 形逐一进行推导,最终可得出146种结晶学上不同的单形
结晶单形的确定: 几何形态+单形的对称性及与对称要素的取向关系(平行、
5. 从不同角度划分单形
(1)特殊形与一般形
特殊形(special form):单形晶面垂直或平行于某对称要素,或 与相同的对称要素以等角度相交;反之为一般形(general form) (等 轴晶系中的一般形有时可平行于三次轴的情况除外)
一个对称型中只有1个一般形,该一般形的原始晶面位于对称型 赤平投影图中最小重复单位(似三角形)内非角顶或边线的部位 ,其 名称为相应晶类的名称。
1. 概念:
两个或两个以上单形按照一定对称 规律组合起来构成的晶体的几何多面体 便是聚形。 如: 四方柱和四方双锥的聚形
2.单形聚合的原则
单形的聚合不是任意的,能够在同一对称型中 出现的结晶单形才能相聚。 即:组成聚形的所有单形的对称型,都应 当与该聚形的对称型一致
注意—— 单形都是指结晶单形
四方四面体 四方偏方面体 复四方偏三角面体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体分布形态
晶体的分布形态主要有三种:
1. 等轴晶系:三个轴长度一样,且相互垂直,对称性最强。
通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。
如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。
2. 四方晶系:四个轴相互垂直,其中两个水平轴(x轴、y轴)长度一样,但z轴的长度可长可短。
通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。
3. 斜方晶系:晶体中三个轴的长短完全不相等,它们的交角仍然是互为90度垂直。
此外,晶体还有长程有序、均匀性、各向异性等特点。
长程有序是指晶体内部原子在至少在微米级范围内的规则排列;均匀性是指晶体内部各个部分的宏观性质是相同的;各向异性是指晶体中不同的方向上具有不同的性质。
以上信息仅供参考,如有需要,建议查阅相关书籍或咨询专业人士。