飞机总体设计参数估算
飞机飞行性能计算

航空宇航学院
• 计算公式
pH
=
G 0.7 Ma 2 SC L
其中: pH ——计算升限高度上的大气压力 G ——升限计算所用给定重力 CL ——升限飞行升力系数
• 计算方法
航空宇航学院
1.确定升限计算重量;
2.采用逐次逼近的方法,首先假定一个升限,
3.利用图4查得 ∆CD,Re ,再利用图2、3、5查得对应速 度的 CD,0 、A、∆CD,c 值, 4.计算 CF。把这些参数代入公式求得 CL 值,如果≤0.3,
vy
=
(F
− D)v
G
⎜⎜⎝⎛1 +
v g
⋅
dv dH
⎟⎟⎠⎞
其余式与等速爬升相 同。也可以采用给定初值 的数值积分进行计算。
航空宇航学院
航程计算
技术航程——飞机沿预定航线,耗尽其可用燃油所 经过的水平距离(包括爬升、下滑段的水平距离)。 (投掉耗尽燃油的空副油箱。)
实用航程——飞机沿预定航线并留有规定的着陆余 油所能达到的水平距离。(投掉耗尽燃油的空副 油箱。)
ω = g nz2 −1 × 57.3 [(º)/s]
v
盘旋过载:
nz = L CL, pf
航空宇航学院
式中: CL ——盘旋状态飞机升力系数
( ) CL =
CF − CD,0 + ∆CD,Re + ∆CD,c
A
CL, pf ——平飞升力系数
CL, pf = G qS
• 计算方法
航空宇航学院
1.给定计算高度、计算Ma数和计算重量 。
2.着陆滑跑距离计算
航空宇航学院
lzh
=
1 2g
⎡ ⎢
飞机总体设计概略

新飞机的研制分成五个阶段:(1)论证阶段、(2) 方案阶段、(3) 工程研制阶段、(4) 设计定型阶段、(5) 生产定型阶段论证阶段任务:研究新飞机设计的可行性,包括技术可行性和经济可行性。
方案阶段任务:根据批准的《某型飞机战术技术要求》设计出可行的飞机总体技术方案。
主要工作内容:★确定飞机布局形式、总体设计参数★选定动力装置、主要系统方案及主要设备★机体主要结构材料和工艺分离面等★形成飞机的总体布置图、三面图、结构受力系统图★进行重心定位、性能、操稳计算,结构强度和刚度计算★提出对各分系统的技术要求★最终要制造出全尺寸的样机或绘制电子样机,进行人机接口、主要设备和通路布置的协调检查以及使用维护检查。
对飞机而言,此阶段即为飞机总体设计阶段工程研制阶段任务:根据方案阶段确定的飞机总体技术方案,进行飞机的详细设计、试制、地面试验、试飞准备等。
工程研制阶段的最终成果是试制出供地面和飞行试验用的原型机4~10架,并制定试飞大纲和准备好空、地勤人员使用原型机所需的技术文件,具有进行试飞所必需的外场保障设备设计定型阶段新飞机首飞成功后即应按试飞大纲要求,进行定型试飞。
调整试飞、鉴定试飞、定型试飞在其整个寿命期内,机上设备和发动机的更换是必然的,这往往称为寿命中期改进战术技术要求是军用飞机型号研制的重要技术文件,其既是型号研制的依据,又是该型号国家定型验收的依据。
提出战术技术要求的依据通常有四个方面:(1) 对未来战斗的设想和本国的战略战术思想;(2) 空军在未来战争中的任务和战术使用原则;(3) 部队的使用经验和失败教训;(4) 技术上实现的可能性。
制定战术技术要求的基本问题是如何正确处理需要与可能的关系,即新机的战术技术要求既要满足适用性、先进性和系统性的要求,又要符合合理性、现实性和经济性的要求。
战术技术要求的具体内容为:(一) 使用要求(二) 作战效能要求(三) 主要性能指标要求,(四) 研制的主要地面试验(五) 飞行试验干线运输机一般指客座数大于100、满载航程大于3000km以上的大型客货运输机满客航程大于6000~7000km的称为中/远程干线运输机,常用于国际航线上。
2飞行器总体设计-第2章1

2.3 初步重量估计
空机重量估计
对不同类型的飞机,可以统计出一定的趋势
15
2.3 初步重量估计
空机重量估计
We /W0 =AW0C K
vs
A 0.96 1.59 2.34 0.93
{A-公制} C {0.92} {1.47} {2.11} {0.88} -0.05 -0.10 -0.13 -0.07
Wf W0
)W0 (
We )W0 W0
W0估计值
We )W0 Wcrew W payload We/W0方程 W0
W0方程
Wcrew W payload 1 (W f / W0 ) (We / W0 )
迭代计算W0 &Wfuel
任务段中不得进行有效载荷的投放 迭代通常只须几次就可以收敛
40
2.7 飞机气动布局的选择
2.7.1 正常式布局
J8
波音787
41
2.7 飞机气动布局的选择
2.7.2 鸭式布局
随着主动控制技术的发展,电传操纵技术的成熟,把前翼设 计得比较大(相对面积8%~15%)并靠近机翼构成所谓近耦合 鸭式布局已成为现实。
30
2.4 权衡研究(Trade Studies)
方案研究中的一个重要环节是与用户一道 评审和仔细分析设计要求 通过对要求中的项目进行变化,可以分析 出该项目对起飞总重的影响,进而更合理 地确定要求的取值 还可以反映出新技术(如采用某种复合材 料)对设计的影响
ቤተ መጻሕፍቲ ባይዱ
31
2.4 权衡研究(Trade Studies)
对各专业基本知识的全面了解 +创新的思想 +美学观点
概念构思的体现 — 概念草图
飞机气动估算及飞行性能计算-课程设计

本科课程设计报告题目飞机气动估算及飞行性能计算学生姓名班级日期目录气动特性估算................................................. 错误!未定义书签。
升力特性估算............................................. 错误!未定义书签。
外露翼升力估算....................................... 错误!未定义书签。
机身升力的估算...................................... 错误!未定义书签。
尾翼的升力估算...................................... 错误!未定义书签。
合升力线斜率的计算................................... 错误!未定义书签。
临界马赫数的计算..................................... 错误!未定义书签。
阻力特性的估算.......................................... 错误!未定义书签。
全机摩擦阻力的估算................................... 错误!未定义书签。
亚音速压差阻力的估算................................. 错误!未定义书签。
亚声速升致阻力特性估算............................... 错误!未定义书签。
超音速零升波阻估算................................... 错误!未定义书签。
超声速升致阻力....................................... 错误!未定义书签。
飞机基本飞行性能计算......................................... 错误!未定义书签。
飞机总体设计

13
5.2 民机客舱设计与布置-机身剖面
典型的剖面
其他剖面 —适合于无法采用圆形或多圆剖面的情况,如机 身剖面尺寸较小时,为了满足使用要求而必须采 用其他类型的剖面
5.1 机身初始几何参数估计 5.2 民机客舱设计与布置 5.3 民机货舱布置 5.4 民机驾驶舱布置 5.5 作战飞机座舱布置 5.6 武器装载布置
2
本讲主要参考书目
顾诵芬, 解思适. 飞机总体设计. 北京航空航天大学出版社,2001.
Raymer, D. P. Aircraft Design: A Conceptual Approach, 3rd, 1999. (89年版的中译本:《现代飞机设计》,1992) 詹金森, L. R., 辛普金, P., 罗兹 D. (著), 中国航 空研究院(译). 民用喷气飞机设计. 2001 《飞机设计手册》总编委会. 飞机设计手册第7卷: 民机构型初步设计与推进系统一体化设计.2000
FAR-25对视界的要求 -A310
美国机动车工程师协会(SAE)推荐 的视界图(AS580B) -A320、Boeing767
32
5.4 民机驾驶舱布置 驾驶舱的尺寸与布置
33
5.4 民机驾驶舱布置
驾驶舱的尺寸与布置
A380座舱模型
34
5.5 作战飞机座舱布置
座舱视界要求
座舱视界关系着飞机的作战效能和安全 与飞机机头及两侧的外形、座舱盖形状、尺寸和 结构及翼面布置等因素有关
战斗机座舱在机身上的纵向定位主要取决于 下列几种因素
• • • • • 视界要求 座舱空间要求 气动外形要求 设备舱布置 人员及其他要求
飞机主要参数的选择

第五章 飞机主要参数的选择选定飞机的设计参数,是飞机总体设计过程中最主要的工作。
所谓飞机的总体设计,简言之,即已知设计要求,求解设计参数,定出飞机总体方案的过程。
飞机的设计参数是确定飞机方案的设计变量。
确定一个总体方案,需要定出一组设计参数,包括飞机及其各组成部分的质量;机翼和尾翼的面积、展弦比、后掠角、机身的最大直径和长度等几何参数;以及发动机的推力等等。
在总体设计的初期,如果想一下子就把各项参数都选好,是很困难的,而往往需要用原准统计法进行粗略的初步选择。
所谓原准统计法,即参照原准机和有关的统计资料,凭设计者的经验和判断,初步选出飞机的设计参数。
如果所设计的飞机是某现役飞机的后继机,性能指标差别不是很大,或仅在某一两点上有较大的差别,则可以将原来的飞机做为原准机,这样在设计上和生产上可能有良好的继承性,这是很有利的。
但是,如果在性能指标上有量级的突变,则不宜再将原机种做为新机设计的原准机了。
如果选用外国的飞机做为原准机,则应特别注意我国自己的设计风格及科研和生产水平,应尽量多搜集一些统计资料,以便对比分析。
对各种统计数据均应注意其来源、附加条件和可靠程度,这种方法简单方便,但用这种方法时,一是原准机选得要合适,二是统计资料工作要做好。
另一类选择飞机参数的方法是统计分析法,即利用统计资料或科学研究实验结果作为原始数据,建立分析计算的数学模型,并利用计算机进行反复迭代的分析计算,求解出合理的设计参数。
不论是哪一种方法都要求深入地了解飞机主要的设计参数与飞机飞行性能之间的关系,以及在进行参数选择时的决策原则。
在众多的飞机设计参数当中,最主要的有三个:1.飞机的正常起飞质量(kg);0m 2.动力装置的海平面静推力(dan); 0P 3.机翼面积(m S 2)。
这三个参数对飞机的总体方案具有决定性的全局性影响,这三个参数一改变,飞机的总体方案就要大变,所以称之为飞机的主要参数。
它们的相对参数是:1. 起飞翼载荷0p Sg m p 1000=(dan/m 2) 2.起飞推重比0P )/(1000g m P P =§5.1 飞机主要设计参数与飞行性能的关系这一节,回顾过去在飞行力学等课程中所学的一些简单的计算飞机性能的公式,以便对飞机主要参数与飞行性能之间的关系进行研究和分析。
飞机重量和重心计算演示幻灯片

14
航空宇航学院
飞机重心的几个概念
• 飞机重心的前、后限
- 中立重心位置
纵向静稳定度为零时的重心位置
- 重心后限位置
10%; • 如果起落架不安装在机翼,减少5%; • 采用富勒襟翼,增加2%。 • 讨论:
▪ bs W机翼 ▪ 可通过增加翼载来减缓由于bs 带来的不利因素,故大型飞机
通常有较高的翼载
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
3
航空宇航学院
重量的分组
零
燃
全 机 重 量
油 重 量
使
用 空 重
空
机 重 量
• 机翼结构 • 尾翼结构 • 机身结构 • 起落装置 • 操纵系统 • 推进系统 • 固定设备 • 不可用燃油 • 机组乘员
? ? ? ? ? ? ?
√ √
有 • 乘客
效 • 行李 载 • 货物
√ √ √
荷 • 军用装载
Zh — 定义见图:
1/4 — ¼ 弦线后掠角(度); 垂 — 垂尾梯形比; MH — 海平面最大马赫数; W平、 W垂的单位为磅
Zh = 0
From 《Airplane Design》, Part 5 , Roskam.
9
航空宇航学院
机身结构重量
W机身 KWf
VDbf
lt hf
SG 1.2
Kwf = 0.23 VD — 设计俯冲速度(km/h) lt — 机翼根弦1/4处至平尾根弦1/4处之间的距离 bf — 机身最大宽度(m); SG — 机身壳体面积(m);
航空宇航学院
飞机总体设计的主要内容

飞机总体设计的主要内容
飞机总体设计主要包括3各⽅⾯:⽅案设计、总体参数详细设计、决策和优化。
⽅案设计
⽅案设计的输⼊在飞机设计的前两个阶段(⽬标确定和概念设计)中确定,并在⽅案设计任务书中给出,⼀般包括:
(1)装载和装载类型
(2)航程或待机要求
(3)起飞着陆场长
(4)爬升要求
(5)机动要求
(6)鉴定基准(例如:试验、航标或军⽤标准)
⽅案设计的主要任务是确定下列主要总体参数:
(1)起飞总重:飞机为了完成设计⽬标任务所需的起飞前总重量。
(2)最⼤升⼒系数:在飞⾏器的仿真计算中,升⼒求解的⼀般表达式是 Y=Cx*q*S,其中q为动压,S为参考⾯积,Cx即为升⼒系数。
(3)零升阻⼒系数
(4)推重⽐
(5)翼载
对应的,⽅案设计的内容可分为
(1)重量估算:计算起飞总重、空机重量、载重、油重等参数
(2)升阻特性估算:计算升⼒系数、阻⼒系数
(3)确定推重⽐和翼载:
(4)总体布局形式选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(m)
计算模型(进场速度 )
• 进场速度
进场速度的计算公式为:
Va = 1.3Vstall
其中Vstall飞机失速速度,由下式确定:
Vstall = nM ld 1 ρ SCL max, L 2
(m/s)
Mld 飞机最大着陆重量; ρ 机场空气密度,一般为标准大气压下海平面空气密度。 S 机翼面积; CLmax,L 为着陆状态时机可以达到的最大升力系数。 n 法向过载系数,取0.88
军用喷气运输机/轰炸机的重量统计数据
军用喷气运输机/轰炸机重量统计数据拟合
运输机的统计数据
拟合出的统计关系
燃油系数的计算
• 燃油系数主要由任务剖面中巡航阶段确定,其它阶段 巡航阶段以外)的燃油系数为:
• 巡航阶段燃油系数可用Breguet航程方程确定
Breguet航程方程
对于喷气为推力的飞机,航程计算公式为:
界限线和地毯图
界限线图
根据给定各项性能指标,形成一个关于能满足设计要求的推 重比和翼载的可选区域。
起飞距离 = f1(T0/ Wto, Wto/S) 着陆距离=f2(T0/ Wto, Wto/S) 升限 = f3(T0/ Wto, Wto/S) 第二阶段爬升= f4(T0/ Wto, Wto/S) V进场 = f5(T0/ Wto, Wto/S) ……
关键:性能~翼载和推重比的计算模型
计算模型(起飞距离)
• 起飞距离
– 正常起飞情况(发动机正常工作)的计算公式:
k ToL = e CLUS ⎛ T ⎞ ⎜ ⎟ ⎝ Mg ⎠
−1.35
⎛ Mg 0 ⎞ ⎛ Mg ⎞ + 6⎜ ⎟ ⎜ ⎟ SCLUS ⎠ ⎝ S ⎠0 ⎝
1/ 2
⎡ ⎛ T ⎞ ⎤ + H1 ⎢1 − ⎜ ⎟ ⎥ ⎝ Mg ⎠0 ⎦ ⎣
主要参数的初步确定
概念设计流程
设计
全机布局设计 全机布局设计 No 机身外形初步设计 机身外形初步设计 确定主要参数 确定主要参数 满足要求? 满足要求? 方案最优? 方案最优?
设计要求、适航条 设计要求、适航条
Yes
初初 步步 方方 案案
方案分析与评估 方案分析与评估
分分 系系 统统 发动机选择 发动机选择 机翼外形初步设计 机翼外形初步设计 尾翼外形初步设计 尾翼外形初步设计 总体布置 总体布置 形成初步方案 形成初步方案 重量特性 重量特性 动力特性 动力特性 操稳特性 操稳特性 噪声特性 噪声特性 气动特性 气动特性 性能评估 性能评估 经济性分析 经济性分析 排放量 排放量
典型民机的升阻比
机型
Fokker F27 B707-320 B727-200 B737-300 B747-400 B757-200 B767-200 A300 B4 A320
升阻比
17.6 18.6 16.2 15.1 17.4 17.1 18.1 15.0 17.6
机型
L1011-100 DC-3 DC-7C DC-10-30 MD-80 MD-11 Laerjet 湾流GⅢ
+
W fuel Wto
=1
Wempty Wto
-空重系数
W payload Wto
-商载系数
W fuel Wto
-燃油系数
几个关于飞机重量的术语
最大起飞重量 备用燃油 任务燃油 货物 旅客+行李 使用项目 最大着陆重量
最大零燃油重量
Байду номын сангаас
• 机组人员重量(含机 组人员需要的相关物品) • 安全设备(应急氧气 和救生艇) • 装货设备 • 水、食品等
单通道客机的重量统计数据
重量关系图
重量估算的实质:假设的重量不仅要满足任务载荷和燃油 重量,而且要满足最大起飞重量与使用空重的统计关系。
公务机的重量统计数据
公务机的重量统计关系
Weight Trend Data - Business Jet
双通道客机的重量统计数据
双通道客机的重量统计数据拟合
巡航阶段燃油系数计算
Winitial ln W final
其中: Range:巡航段航程(N. Mi) a: 是巡航高度上的声速(Knots) C: 是发动机耗油率(lb/hr/lb) L/D: 巡航阶段的升阻比 M:马赫数
=
Range ⎛ a ⎞⎛ L ⎞ ⎜ ⎟⎜ M ⎟ ⎝ C ⎠⎝ D ⎠
其中:ΔC DT = (0.03FF − 0.004) / A0.33
式中:FF 是襟翼阻力因子:FF = 1.0 (单缝后缘襟翼) =1.2 (双缝后缘襟翼或Fowler襟翼) =1.5 (三缝后缘襟翼)
爬升时升阻极曲线特性
CDZ计算式如下:
代入数据: Range=1500 n. mi a:=576.4 Knots ( 巡航高度35000ft) C=0.6 lb/hr/lb (涵道比假设为6) L/D=17.6 M=0.82
Range = ⎛ a ⎞⎛ L ⎞ ⎜ ⎟⎜ M ⎟ ⎝ C ⎠⎝ D ⎠
计算得:
Winitial = 1.142 W final
当飞机发动机个数为2台发动机时,上式的α = 2.74, 其中:
γ = 0.020。
( β )C 0 = (CD )C 0 ( KV )0
2 由爬升时升阻极曲线特性确定:CD = (C D )C 0 + ( KV ) 0 CL
需用推力TC0 和海平面静推力T0 的关系式为:TC 0 = T0τ C 0
其中:γ为进场时下滑角,对于民机一般取3度;μG 为刹车系数,可取0.38。
计算模型(爬升推力)
• 第二阶段爬升推力TC0需要满足:
⎧ ⎡ (CD )C 0 ⎤ ⎫ TC 0 0.71( β )C 0 ⎪ ⎪ = α ⎨⎢ + +γ ⎬ ⎥ ( Mg )0 CLUS ⎦ [ (CD )C 0 / CLUS ] ⎪⎣ ⎪ ⎩ ⎭
• 统计数据
– Wempty/Wto的统计关系
重量的预估
几个关于飞机重量的术语
最大起飞重量
Wto = Wempty + W payload + W fuel
其中:Wempty是使用空重;Wpayload是有效载荷重量;Wfuel是燃油重量
或用系数表述:
Wempty Wto
+
W payload Wto
CL,max,CL,max,TO和CL,max,L统计数据
机型 单发螺旋浆 双发螺旋浆 战斗机 喷气运输机 喷气公务机 CL,max (干净构形) 1.3 - 1.9 1.2 - 1.8 1.2 - 1.8 1.2 - 1.8 1.4 – 1.8 CL,max,TO (起飞构形) 1.3 - 1.9 1.2 - 2.0 1.4 - 2.0 1.6 – 2.2 1.6 – 2.2 CL,max,L (着陆构形) 1.6 - 2.3 1.6 - 2.5 1.6 - 2.6 1.8 – 2.8 1.6 – 2.6
爬升时升阻极曲线特性
爬升时升阻极曲线 (起落架收起,襟翼尚处于起飞状态位置)
2 2 CD = (CD )C 0 + ( KV )0 CL = (CDZ + ΔCDT ) + ( KV )0 CL
CDZ 是巡航状态的零升阻力系数;
ΔCDT 是由于襟翼打开引起的阻力增量;
KV 是诱导阻力因子,下标0代表爬升状态。
(m)
其中,涡扇喷气式飞机 ke=0.1;CLUS为飞机离地时升力系数,可近似为最大 起飞升力系数的80%。 当起飞安全高度为10.7m时,H1=120;当安全高度为15.3m时, H1=170。
– 起飞平衡场长的计算公式:
⎧⎛ T ⎞ −1.35 ⎫ 0.82ke ⎛ Mg ⎞ ⎪ ⎪ + 2.2 ⎬ ASL = ⎟ ⎜ ⎟ ⎨⎜ CLUS ⎝ S ⎠0 ⎪⎝ Mg ⎠0 ⎪ ⎩ ⎭
使用空重 制造空重
基本空重
• 死油
关于着陆重量
• 对于多数轻型飞机,最大着陆重量一般等于最大起飞量量。 • 对于航程较大的飞机,最大着陆重量与航程有关。
– 一般为0.7 至0.9倍的最大起飞量量。
着陆重量与航程之间的关系
重量估算过程
• 根据同类飞机,假设3个最大起飞重量值。 • 对每个Wto trial计算出对应的燃油重量系数和燃油重量 Wfuel ,并计算“可用空重” Wempty avail: Wempty avail= Wto trial-Wfuel-Wpayload • 获取同类飞机Wto和Wempty的数据,画在坐标系中,并通 过数据拟合方法,获得Wto和Wempty之间的统计关系图。 • 在Wto与Wempty的统计图中,画出3个Wto trial 及对应的 Wempty avail点,并连成直线,二条线的交点就是所需求解 的最大起飞重量和使用空重。
确定飞机主要参数的方法
• 估算飞机最大起飞重量的方法 – 重量系数(Weight Fractions)方法
• 确定翼载和推重比的方法
– 界限线/地毯图(Carpet Plot) – 对比分析法
有关数据的来源
• “硬”数据:
– 设计要求,包括商载、航程、航速、巡航高度等
• 假设数据:
– 巡航耗油率(与发动机有关) – 巡航升阻比(与气动布局有关) – 起飞、着陆升力系数(与增升装置有关)
可靠性 维修性 可靠性 维修性 机场适应性 …… 机场适应性 ……
分析
设计工作中的难题
主要总体参数
• 飞机最大起飞重量: • 机翼面积: • 相对参数 :
– 翼载荷 Wto/ S (kg/m2) – 推重比 T 0 / Wto (10N/kg)
Wto(kg) S (m2)
• 动力装置的海平面静推力: T0 (10N)