工程图学Ⅰ直线和平面相对位置
免费15秋北航《工程图学》在线作业一答案满分

15秋北航《工程图学》在线作业一答案满分单选题多选题判断题一、单选题(共 10 道试题,共 40 分。
)1.视图是根据有关规定,一般用()法绘制出机件外形的多面投影图。
A.正投影法B.负投影法C.斜投影法D.上投影法免费律师在线解答—-——--—--———-———-选择:A2。
局部剖视用()分界,同一视图中局部剖不宜采用过多,避免使图形过于破碎A.直线B.波浪线C.虚线D.点划线-—————-—---———--—选择:B3. 一张A1幅面图相当于( )张A2幅面图纸A. 2B. 4C. 6D.8---—-—-———-———--—选择:A4. 物体上凡是与投影面相垂直的直线和平面,其投影都具有()。
A.积聚性B.分散性C.多面性D.单一性-——----—-——-—-——-选择:A5. 若需表示剖切面前的结构时,其轮廓可用()按假想投影绘制A.粗实线B.细实线C.虚线D.双点划线——-----—-----—-——选择:D6。
当机件有若干个孔、槽等相同且成规律分布的结构时,可以仅画出一个或几个,其余只画出中心位置或用()连接,但应标明孔槽的总数A.粗实线B.细实线C.虚线D.点划线———-—-———----——--选择:B7. 基本体叠加组合时两立体表面的融合即()。
A.平行B.垂直C.相交D.相切----——-———-——--——选择:C8. 尺寸标注的基本要求为().A.标注正确B.尺寸完整C.布置合理D.以上全部正确—--—-—--—---——-——选择:D9. 假想将物体放在互相垂直且透明的三面投影面体系中,就象隔着透明玻璃观察物体,这样进行投影所得到的图形称为()投影图A.第一角B.第二角C.第三角D.第四角-——-—-—----————-—选择:C10. 重合断面图的轮廓线必须用()绘制,并画上与水平线成45°的剖面线A.粗实线B.细实线C.虚线D.点划线-—-——---———-——--—选择:B北航《工程图学》在线作业一单选题多选题判断题二、多选题(共 5 道试题,共 20 分。
线面投影及位置(工程图学)

g c d
3、平面上的投影面平行线
平面上平行于投影面的直线称为平面上的投影面 平行线。有三类 : 面上水平线 、正平线、侧平线。
V
B
a’ A
图示水平线AB
b a PH
a’
e’
b’ d’
c’ a e
b d
c
分析水平线、正平线且在平面上
例3: 已知点E 在ABC平面上,且点E距离V 面10,距离H面15,试 求点E的投影。本三
EK正面投影可见
e
k
1
a c
a’ f’
作图步骤 1. 利用积聚性求出K点水平投 影k 2. 利用点在线上的投影特性求 出K点正面投影k ’ 3. 判别可见性 c’
b’
1’(2’)
k’ e’
b
f
2
y1>y2,即点Ⅰ在点Ⅱ前方,
EK正面投影可见
e
k
1
a c
1、利用积聚性求交点和交线
(1)一般位置直线与特殊位置平面相交
a′
Zab
x a
ΔZab
α
b′
b
重作
a
YH
3 . 一般位置平面
对三个投影面都处于倾斜位置的平面称为一般位置平面。
投影特性 1 、 △ abc、△abc、△abc 均为 ABC的类似形。 2 、 不反映 、、 的真实角度 。
二、平面上的点和直线
1、平面上的点
在给定平面上取点,可直接取自该平面上的已知直线
e d
据此特性可以解决以下问题:
(1) 作直线垂直平面或平面 垂直直线
(2) 判断线面是否垂直
例1:试过定点S作一平面垂直于已知直线EF。
n’
f’
工程制图第二章习题答案

第二章点、直线、平面的投影————点的投影班级学号姓名. 学习帮手.第二章点、直线、平面的投影————点的投影班级学号姓名. 学习帮手.13 第二章点、直线、平面的投影————点的投影班级学号姓名. 学习帮手.14 第二章点、直线、平面的投影————直线的投影班级学号姓名. 学习帮手.15 第二章点、直线、平面的投影————直线的投影班级学号姓名. 学习帮手.16 第二章点、直线、平面的投影———直线的实长班级学号姓名. 学习帮手.. 学习帮手.17 第二章点、直线、平面的投影———直线的实长班级学号姓名. 学习帮手.18 第二章点、直线、平面的投影———直线上的点班级学号姓名. 学习帮手.19 第二章点、直线、平面的投影———两直线的相对位置班级学号姓名. 学习帮手.. 学习帮手.20 第二章点、直线、平面的投影———直线的相对位置班级学号姓名. 学习帮手.. 学习帮手.21第二章点、直线、平面的投影———两直线的相对位置班级学号姓名. 学习帮手.. 学习帮手.22 . 学习帮手.第二章点、直线、平面的投影———两直线的相对位置班级学号姓名. 学习帮手.23第二章点、直线、平面的投影———两直线的相对位置班级学号姓名. 学习帮手.24第二章点、直线、平面的投影———两直线的相对位置班级学号姓名. 学习帮手.25第二章点、直线、平面的投影——平面的投影班级学号姓名. 学习帮手.. 学习帮手 .26第二章 点、直线、平面的投影——平面的投影 班级 学号 姓名A 面是 正垂面B 面是水平面C 面是 侧平面A 面是 水平面B 面是 圆柱面C 面是 正平面A 面是侧平面 。
B 面是 正平面 C 面是 水平面. 学习帮手 .27第二章 点、直线、平面的投影——平面的投影 班级 学号 姓名A 面是 圆柱面B 面是 水平面A 面是 正平面A 面是 侧垂面 。
B 面是 水平面 。
. 学习帮手.28第二章点、直线、平面的投影——平面的投影班级学号姓名. 学习帮手.. 学习帮手.29第二章点、直线、平面的投影——平面的投影班级学号姓名2-56 完成下列平面的两面投影。
直线与平面的交点两平面的交线

上 一 节
下 一 械制图
精品资源共享课
直线与平面的相对位 置、两平面相对位置
直线与平面的交点 两平面的交线
工程图学教研室
退出
直线与平面的交点、两平面的交线
直线和平面相交只有一个交点,它是直线和平面 的共有点。它既属于直线又属于平面。 两平面相交,交线是一直线。这条直线为两平面 的共有线。欲找出这一交线的位置,只要找出属 于它的两点(获找出一点一方向)就可以了。 一、直线与特殊位置平面相交 二、一般位置平面与特殊位置平面相交 三、直线与一般位置平面相交 四、两个一般位置平面相交
工程制图第二章平面

OY1 投影轴;
重庆交通大学 画法几何与工程制
2019/10/18
图
13
正平面
动画
y
y
投影特性:(1)正面投影反映实形;
(2)水平投影 、侧面投影积聚为一条直线,分别平行于相
应的OX、OZ 投影轴;
重庆交通大学 画法几何与工程制
2019/10/18
图
14
正平面的迹线表示
重庆交通大学 画法几何与工程制
一般位置平面
投影面倾斜面
铅垂面
特殊位置平面
投影面垂直面 投影面平行面
正垂面 侧垂面 水平面 正平面
侧平面
重庆交通大学 画法几何与工程制
2019/10/18
图
5
一般位置平面
动画
投影特性:(1)三个投影均为的类似形;
(2) 投影图不反映、、 的真实角度;
重庆交通大学 画法几何与工程制
2019/10/18
重庆交通大学 画法几何与工程制
2019/10/18
图
43
求作两平面的交线MN。 解:1.取属于Δ ABC的直线AC、BC分别与平面P求交点,即可求得
交线。
(投影面垂直面与一般位置 平面相交)
重庆交通大学 画法几何与工程制
2019/10/18
图
44
2.3.2.2 辅助平面法
针对一般位置直线和一般位置平面与一般位置平面 相交的情况,通常采用辅助平面法,其作步骤如下: 1、含直线作辅助平面(通常是投影面垂直面); 2、求辅助平面与已知平面的交线; 3、求交线与已知直线的交点; 4、然后判断可见性。
2019/10/18
LK⊥平面P 则: LK⊥水平线AB
LK⊥正平线CD
工程图学基础第二章2

|yA-yB|
|yA-yB|
3.求直线的实长及对侧面投影面的夹角
角
b
B b
a
b a
A
a
△x
例10.已知线段AB的正面投影a'b'和A点的水平投影a, 且B点在A点的前方,AB长25毫米,求它的水平投影。
25
b
例11.已知线段AB的正面投影a'b' 和A点的水平投影a, 且B点在A点的前方,求它的水平投影。
a'
A
b' b
B
C
小结
重点掌握:
直线的投影特性。 一般位置线段投影、实长、夹角的关系。
两直线的相对位置的判断方法及投影特性。
直线上的点,定比定理。 直角定理,即两直线垂直时的投影特性。
一、各种位置直线的投影特性 ⒈ 一般位置直线
三个投影与各投影轴都倾斜。
⒉ 投影面平行线
在其平行的投影面上的投影反映线段实长 及与相应投影面的夹角。另两个投影平行于相 应的投影轴。
c
定比定理
例2.已知线段AB的投影图,试将AB分成2:1 两段,求分点C的投影c、c' 。
c'
c
例3.判断点K是否在线段AB上。
b" k"
a"
因k"不在a"b"上, 故点K不在AB上。 另一判断法?
四、两直线的相对位置 空间两直线的相对位置分为:平行、相交、交叉。 1.平行两直线 b' d'
d'
f
2.平面上的点
e'
侧平面
a'b'
A
a" b"
工程制图复习题及答案
8.将一般位置直线变换为投影面的垂直线要经过二次变换,先将一般直线变换为_投影面平行线__,再将_投影面平行线__变换为投影面垂直线。
9.将一般位置平面变换为投影面平行面要经过___二_次变换,先将一般位置平面变换为_投影面垂直面__,再将__投影面垂直面__变换为投影面平行面。
2.注出三棱锥SABC各棱线的水平和正面投影,并判定它们属于哪类直线。
3.判定下列直线的相对位置(平行、相交、交叉)。
4.试判定A、B两点是否在下列平面内。
5.判定3条相互平行的直线是否在同一平面内。
6.下列图中用圆圈标记的线段,哪个等于AB的实长?
7.下列图中哪些投影图反映了两直线垂直相交?
8.判定直线与平面是否平行。
13.已知组合体的两面投影图,补绘第三投影
(1)
(2)
(3)
(4)
(5)
14.作出1-1、2-2剖面图。
.
15.做1―1、2―2剖面图。
16.(1)作出1-1剖面图和2-2断面图。
(2)作出1-1断面图和2-2剖面图。
12.建筑平面图中的定位轴线的横向编号应用_______________从_________至___________顺序编写;竖向编号应用____________从_______________至___________顺序编写。
13.结构施工图主要包括_______________、____________、_______________等。
2.空间两直线的相对位置可分为_________、________、____________和__________四种。
3.在三投影面体系中直线与投影面的相对位置可分_________、___________和________。
机械工程图学习题集加详细答案 第3章
第三章几何元素间相对位置
二、回答问题
1、属于平面的投影面平行线的投影特性?
答:具有投影面平行线的投影特性、满足直线从属于平面的几何特性、与相应的迹线平行。
2、空间两直线平行的投影特性是什么?
答:两直线空间平行同面投影也平行,空间长度之比等于各同面投影长度之比。
3、两直线垂直其投影特性是什么(即直角投影定理)?答:两直线互相垂直(相交垂直或交叉垂直),其中一条直线平行于某投影面时,则两条直线在该投影面中的投影仍互相垂直,即反映直角;反之,若两直线(相交或交叉)在同一投影面中的投影互相垂直(即反映直角),且其中一条直线平行于该投影面,则两直线空间必互相垂直。
二、回答问题
4、直线与平面垂直及两平面垂直的几何定理、投影特性
是什么?解决哪些问题?
答:
1)如果一条直线和一平面内两条相交直线都垂直,那么
这条直线垂直于该平面。
反之,如果一直线垂直于一平面,则必垂直于属于该平面的一切直线。
2)若一直线垂直于一平面,则包含这条直线的一切平面都垂直于该平面。
3)投影特性:两种垂直关系最终都归结为两直线的垂直
问题,应用两直线垂直的投影特性解决此类问题。
4)可以解决各种位置线与线、线与面、面与面的垂直问题。
直线与平面的位置关系
直线与平面的位置关系直线与平面的位置关系是几何学中的重要概念之一,研究它们的相互关系有助于我们深入理解空间几何。
在本文中,我们将探讨直线与平面的几种基本位置关系及其性质。
一、直线与平面的交点直线与平面可以相交于一点,此时它们具有唯一的交点。
假设有直线l和平面P,如果l与P相交于点A,我们可以得出以下结论:1. 点A在直线l上,同时也在平面P上;2. 点A在直线l上,但不在平面P上;3. 点A不在直线l上,但在平面P上。
这些情况中,最常见的是第一种情况,即直线与平面相交于一点,该点同时属于直线和平面。
二、直线与平面的重合直线与平面有可能重合,即它们完全重合于同一几何形状。
在这种情况下,直线与平面的所有点都是重合的,它们具有相同的位置和方向。
三、直线与平面的平行关系直线与平面可能平行,即它们始终保持着固定的距离,永不相交。
对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P平行,则其上的任意点都不在平面P上;2. 若直线l与平面P平行,则直线l上的一切点与平面P上的一切点的距离相等。
需要注意的是,直线与平面的平行关系是相对的,当我们谈论直线l与平面P平行时,必须指定相对于哪种参考系来判断。
四、直线与平面的垂直关系直线与平面可能垂直,即直线与平面形成一个直角。
对于直线l和平面P,我们可以得出以下结论:1. 若直线l与平面P垂直,则直线l上的任意向量与平面P上的任意向量之间的内积为零;2. 若直线l与平面P垂直,则直线l与平面P相交于一点,该点同时属于直线和平面。
需要注意的是,直线与平面的垂直关系也是相对的,需要指定相对于哪种向量或平面来判断。
五、直线与平面的夹角除了垂直关系外,直线与平面之间还可以存在其他夹角。
对于直线l和平面P,我们可以定义它们之间的夹角为直线l上的某条与平面P 垂直的直线与平面P的交线的夹角。
直线与平面的夹角可以是锐角、直角或钝角,具体取决于直线与平面的位置关系和夹角的大小。
工程制图第二章习题答案
第二章点、直线、平面的投影————点的投影班级学号姓名2-1、求各点的第三投影,并填上各点到投影面的距离。
2-2、已知点K(10,15,20)、M(20,15,8)、N(10,15,8)三点的坐标,作出三面投影和在直观图中的位置,并判别可见性。
不可见点用括号括起。
.1A点距V面(5 )、距H面(6)、距W面(8 )B点距V面( 4 )、距H面( 3 )、距W面( 2 )C点距V面( 2 )、距H面( 2 )、距W面(2)D点距V面(0)、距H面( 3 )、距W面( 6 )E点距V面( 2 )、距H面(0 )、距W面( 3 )F点距V面(6 )、距H面(5 )、距W面(0 )2-3、比较A、B、C三点的相对位置。
(下)mmB点在A点(左)mm(前)mm(上)mmB点在C点(左)mm(后)mm(下)mmC点在A点(右)mm (前)mm.2第二章点、直线、平面的投影————点的投影班级学号姓名.32-4 已知E(22,30,20),F点在E点之左10mm,之下10mm,之后10mm;G点在E点的正右方12mm,作出点E 、F 、G的三面投影。
2-5已知A(24,18,20),B点(24,18,0),以及点C在点A之右10mm,之上16mm,之前12mm,作出点A 、B 、C的三面投影。
2-6 作出点D(30,0,20)、点E(0,0,20),以及点F在点D的正前方25mm,作出这三个点的三面投影。
.413第二章点、直线、平面的投影————点的投影班级学号姓名.52-7已知物体的立体图和投影图,试把A、B、C、D、E各点标注到投影图上的对应位置,并把重影点处不可见点加上括号。
2-8已知A、B两点是一对V面重影点,相距10mm;A、C两点是一对H面的重影点,C在H面上;D点在H面上,且在C后15mm,右15mm,求B、C、D三点的三面投影,并判别重影点的可见性。
OXZY HY Wa′(b′)bc′(c)dd′a″ad″c″b″614第二章点、直线、平面的投影————直线的投影班级学号姓名.715第二章点、直线、平面的投影————直线的投影班级学号姓名.916第二章点、直线、平面的投影———直线的实长班级学号姓名.10.1117第二章点、直线、平面的投影———直线的实长班级学号姓名.1218第二章点、直线、平面的投影———直线上的点班级学号姓名.14第二章点、直线、平面的投影———两直线的相对位置班级学号姓名.152-23判别AB和CD两直线的相对位置(平行、相交、交叉)。