同济 自动控制原理 控制系统 资料 系统动刚度的概念
刚度是什么意思刚度系数

刚度是什么意思刚度系数刚度是指材料或结构在受力时抵抗弹性变形的能力。
一起来看看小编为大家精心整理的“刚度是什么意思刚度系数”,欢迎大家阅读,供您参考。
更多内容请关注。
刚度是什么意思刚度系数拼音:[gāng dù]英文:Stiffness类别:物理名词释义:刚度是指材料或结构在受力时抵抗弹性变形的能力。
是材料或结构弹性变形难易程度的表征。
材料的刚度通常用弹性模量E来衡量。
在宏观弹性范围内,刚度是零件荷载与位移成正比的比例系数,即引起单位位移所需的力。
它的倒数称为柔度,即单位力引起的位移。
刚度可分为静刚度和动刚度。
基本介绍刚度是使物体产生单位变形所需的外力值。
刚度与物体的材料性质、几何形状、边界支持情况以及外力作用形式有关。
材料的弹性模量和剪切模量(见材料的力学性能)越大,则刚度越大。
细杆和薄板在受侧向外力作用时刚度很小,但细杆和薄板如果组合得当,边界支持合理,使杆只承受轴向力,板只承受平面内的力,则它们也能具有较大的刚度。
在自然界,动物和植物都需要有足够的刚度以维持其外形。
在工程上,有些机械、桥梁、建筑物、飞行器和舰船就因为结构刚度不够而出现失稳,或在流场中发生颤振等灾难性事故。
因此在设计中,必须按规范要求确保结构有足够的刚度。
但对刚度的要求不是绝对的,例如,弹簧秤中弹簧的刚度就取决于被称物体的重量范围,而缆绳则要求在保证足够强度的基础上适当减小刚度。
研究刚度的重要意义还在于,通过分析物体各部分的刚度,可以确定物体内部的应力和应变分布,这也是固体力学的基本研究方法之一。
静刚度与动刚度概述静载荷下抵抗变形的能力称为静刚度。
动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需的动态力。
如果干扰力变化很慢(即干扰力的频率远小于结构的固有频率),动刚度与静刚度基本相同。
干扰力变化极快(即干扰力的频率远大于结构的固有频率时),结构变形比较小,即动刚度比较大。
当干扰力的频率与结构的固有频率相近时,有共振现象,此时动刚度最小,即最易变形,其动变形可达静载变形的几倍乃至十几倍。
自动控制原理常用名词解释

第一章系统:系统泛指由一群有关联的个体组成,根据预先编排好的规则工作,能完成个别元件不能单独完成的工作的群体。
自动控制(Automatic Control):是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。
开环控制(open loop control):开环控制是最简单的一种控制方式。
它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。
也就是说,控制作用的传递路径不是闭合的,故称为开环。
闭环控制(closed loop control):凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制Feedback Control系统。
这种自成循环的控制作用,使信息的传递路径形成了一个闭合的环路,故称为闭环。
复合控制(compound control):是开、闭环控制相结合的一种控制方式。
被控对象:指需要给以控制的机器、设备或生产过程。
被控对象是控制系统的主体,例如火箭、锅炉、机器人、电冰箱等。
控制装置则指对被控对象起控制作用的设备总体,有测量变换部件、放大部件和执行装置。
开环控制系统:不将控制的结果反馈回来影响当前控制的系统闭环控制系统:可以将控制的结果反馈回来与希望值比较,并根据它们的误差调整控制作用的系统开环控制系统:是没有输出反馈的一类控制系统。
其结构简单,价格低,易维修。
精度低、易受干扰。
(2.5分)闭环控制系统:又称为反馈控制系统,其结构复杂,价格高,不易维修。
但精度高,抗干扰能力强,动态特性好。
(2.5分)手动控制系统:必须在人的直接干预下才能完成控制任务的系统自动控制系统:不需要有人干预就可按照期望规律或预定程序运行的控制系统判断:骑自行车——人工闭环系统,导弹——自动闭环系统,人打开灯——人工开环系统,自动门、自动路灯——自动开环系统被控量(controlled variable):指被控对象中要求保持给定值、要按给定规律变化的物理量。
自动控制原理基本概念总结

《自动控制原理》基本概念总结1.自动控制系统的基本要求是稳定性、快速性、准确性2.一个控制系统至少包括控制装置和控制对象3.反馈控制系统是根据被控量和给定值的偏差进行调节的控制系统4.根据自动控制系统是否形成闭合回路来分类,控制系统可分为开环控制系统、闭环控制系统。
根据信号的结构特点分类,控制系统可分为:反馈控制系统、前馈控制系统和前馈-反馈复合控制系统。
根据给定值信号的特点分类,控制系统可分为:恒值控制系统、随动控制系统和程序控制系统。
根据控制系统元件的特性分类,控制系统可分为:线性控制系统、非线性控制系统。
根据控制信号的形式分类,控制系统可分为:连续控制系统、离散控制系统。
5.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程6.系统的传递函数完全由系统的结构和参数决定7.对复杂系统的方框图,要求出系统的传递函数可以采用梅森公式8.线性控制系统的特点是可以应用叠加原理,而非线性控制系统则不能9.线性定常系统的传递函数,是在零初始条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比。
10.信号流图中,节点可以把所有输入支路的信号叠加,并把叠加后的信号传送到所有的输出支路。
11.从控制系统稳定性要求来看,系统一般是具有负反馈形式。
12.组成控制系统的基本功能单位是环节。
13.系统方框图的简化应遵守信号等效的原则。
14.在时域分析中,人们常说的过渡过程时间是指调整时间15.衡量一个控制系统准确性/精度的重要指标通常是指稳态误差16.对于二阶系统来说,系统特征方程的系数都是正数是系统稳定的必要条件17.若单位反馈系统在阶跃函数作用下,其稳态误差ess为常数,则此系统为0型系统18.一阶系统的阶跃响应无超调19.一阶系统G(s)= K/(Ts+1)的T越大,则系统的输出响应达到稳态值的时间越长。
20.控制系统的上升时间tr、调整时间tS等反映出系统的快速性。
21.二阶系统当0<ζ<1时,如果ζ增加,则输出响应的最大超调量将减小。
动刚度和一阶模态-概述说明以及解释

动刚度和一阶模态-概述说明以及解释1.引言1.1 概述概述:动刚度和一阶模态是结构动力学领域中常被讨论和研究的两个重要概念。
动刚度是指结构在受到外部力作用下发生变形的能力,它是结构刚度在动力学问题中的体现。
一阶模态则是指结构在自由振动时,最低频率下的振动模式。
这两个概念在结构分析、设计和优化中具有重要的作用,对于确保结构的安全性、稳定性和性能具有不可忽视的影响。
动刚度与一阶模态之间存在紧密的关系。
一方面,动刚度决定了结构的振动特性,包括固有频率、模态形态和振动幅值等。
结构的刚度越大,其固有频率越高,振动幅值越小。
另一方面,一阶模态反过来也影响了结构的动刚度。
一阶模态所对应的固有频率是结构自由振动的最低频率,而自由振动对应的形变和变形会影响结构的刚度分布,进而影响整个结构的动刚度。
动刚度和一阶模态在工程实践中具有广泛的应用。
动刚度分析可以帮助工程师评估结构在外部载荷下的响应和变形情况,为结构设计和优化提供依据。
一阶模态分析则可以用于确定结构的固有频率,为结构抗震设计和振动控制提供参考。
例如,在桥梁设计中,动刚度分析可以帮助确定桥梁的刚度需求,从而满足桥梁在运行过程中的荷载要求;而一阶模态分析可以帮助设计人员理解桥梁的振动特性,并采取相应的措施来避免共振现象的发生。
本文将重点探讨动刚度与一阶模态的关系,分析它们在结构动力学中的相互影响关系,并结合实际案例进行分析。
同时,本文还将对动刚度和一阶模态的重要性进行总结,并强调它们之间关系的研究意义。
最后,本文将提出未来研究的方向,以期为相关领域的研究者提供参考和启示。
文章结构部分的内容可以如下所示:1.2 文章结构本文主要分为三个部分:引言、正文和结论。
引言部分将首先对本文的主题进行概述,介绍动刚度和一阶模态的基本概念和定义。
接着,文章将介绍本文的结构和各个章节的内容安排,使读者能够更好地了解整篇文章的逻辑结构。
正文部分分为三个小节。
首先,将详细阐述动刚度的定义和概念,探讨其在工程和物理学中的重要性。
同济 自动控制原理 控制系统 答案 第二章例题

p1 = G1G2G3G4 G5 , Δ1 = 1
由梅逊公式可得:
G1G2 G3 G4 G5 C ( s) = R ( s ) 1 + G 2 H 2 + G 2 G 3 H 3 + G3 G 4 H 2 + G 4 G5 H 4 + G 2 G3 G 4 H 1 H 2 + G 2 G 4 G 5 H + + G 2 G3 G 4 G 5 H 3 H 4
4 3
k 2 (Bs + k1 ) M 1M 2 s + (M 1 + M 2 )Bs + (M 1k1 + M 1k 2 + M 2 k1 )s 2 + Bk 2 s + k1k 2
2)
Fs (s) k 2 M 1 M 2 s 2 + (M 1 + M 2 )Bs + (M 1 k1 + M 2 k1 ) s 2 = X i (s) M 1 M 2 s 4 + (M 1 + M 2 )Bs 3 + (M 1 k1 + M 1 k 2 + M 2 k1 )s 2 + Bk 2 s + k1 k 2
Gk ( s ) = G2 ( s ) +
G1 ( s )[(G2 ( s ) − 1)][(1 − G2 ( s )] 2G1 ( s )G2 ( s ) + G2 ( s ) − G1 ( s ) = 1 + G1 ( s )G2 ( s ) 1 + G1 ( s )G2 ( s )
因而,闭环传递函数
例7
图 2-11 为汽车在凹凸不平路上行驶时承载系统的简化力学模 型,路面不平度 xi (t ) 为激励源,由此造成汽车的垂向运动和轮 胎受力,画出框图,试求: 1)xi (t ) 作为输入,汽车质量垂直位移 x0 (t ) 作为输出的传递函数; 2) xi (t ) 作为输入,轮胎垂直受力 f s (t ) 作为输出的传递函数。
自动控制原理知识点

自动控制原理知识点 The document was finally revised on 2021第一章自动控制的一般概念自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。
◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。
◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。
除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。
测量元件:用以测量被控量或干扰量。
比较元件:将被控量与给定值进行比较。
执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。
参与控制的信号来自三条通道,即给定值、干扰量、被控量。
2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。
而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。
◎解决的基本问题:建模:建立系统数学模型(实际问题抽象,数学描述)分析:分析控制系统的性能(稳定性、动/稳态性能)综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。
◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。
◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。
◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。
◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。
《自动控制原理》课程考试复习要点

《自动控制原理》课程考试复习要点第1章控制原理绪论一、主要内容1、自动控制的概念,控制系统中各部分名称及概念2、开环控制于闭环控制的区别,负反馈原理3、系统的分类4、方框图绘制(原理图)5、对自动控制系统的一般要求(稳、准、快)二、自动控制概念中的基本知识点1、闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用。
2、典型闭环系统的功能框图。
自动控制在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。
自动控制系统由控制器和被控对象组成,能够实现自动控制任务的系统。
被控制量在控制系统中.按规定的任务需要加以控制的物理量。
控制量作为被控制量的控制指令而加给系统的输入星.也称控制输入。
扰动量干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
反馈通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
负反馈反馈信号与输人信号相减,其差为偏差信号。
负反馈控制原理检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
开环控制系统系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。
开环控制又分为无扰动补偿和有扰动补偿两种。
闭环控制系统凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。
自动控制原理课程中所讨论的主要是闭环负反馈控制系统。
复合控制系统复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。
它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。
自动控制系统组成组成一个自动控制系统通常包括以下基本元件1.给定元件给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。
自动控制原理及其应用试卷与答案

⾃动控制原理及其应⽤试卷与答案21.⼀线性系统,当输⼊是单位脉冲函数时,其输出象函数与传递函数相同。
22.输⼊信号和反馈信号之间的⽐较结果称为偏差。
23.对于最⼩相位系统⼀般只要知道系统的开环幅频特性就可以判断其稳定性。
24.设⼀阶系统的传递G(s)=7/(s+2),其阶跃响应曲线在t=0处的切线斜率为 2 。
25.当输⼊为正弦函数时,频率特性G(j ω)与传递函数G(s)的关系为 s=jω。
26.机械结构动柔度的倒数称为动刚度。
27.当乃⽒图逆时针从第⼆象限越过负实轴到第三象限去时称为正穿越。
28.⼆阶系统对加速度信号响应的稳态误差为 1/K 。
即不能跟踪加速度信号。
29.根轨迹法是通过开环传递函数直接寻找闭环根轨迹。
30.若要求系统的快速性好,则闭环极点应距虚轴越远越好。
21.对控制系统的⾸要要求是系统具有 .稳定性。
22.在驱动⼒矩⼀定的条件下,机电系统的转动惯量越⼩,其 .加速性能越好。
23.某典型环节的传递函数是21)(+=s s G ,则系统的时间常数是 0.5 。
24.延迟环节不改变系统的幅频特性,仅使相频特性发⽣变化。
25.⼆阶系统当输⼊为单位斜坡函数时,其响应的稳态误差恒为 2ζ/n 。
26.反馈控制原理是检测偏差并纠正偏差的原理。
27.已知超前校正装置的传递函数为132.012)(++=s s s G c ,其最⼤超前⾓所对应的频率=m ω 1.25 。
28.在扰动作⽤点与偏差信号之间加上积分环节能使静态误差降为0。
29.超前校正主要是⽤于改善稳定性和快速性。
30.⼀般讲系统的加速度误差指输⼊是静态位置误差系数所引起的输出位置上的误差。
21.“经典控制理论”的内容是以传递函数为基础的。
22.控制系统线性化过程中,变量的偏移越⼩,则线性化的精度越⾼。
23.某典型环节的传递函数是21)(+=s s G ,则系统的时间常数是 0.5 。
24.延迟环节不改变系统的幅频特性,仅使相频特性发⽣变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统动刚度的概念
一个典型的由质量一弹簧一阻尼构成的机械系统的质量块在输入力f (t )作用下产生的输出位移为y (t ),其传递函数为
()()
()1121
/11
22
2++=++==s s k
k Ds ms s F s Y s G n
n ωςω (4.31) 系统的频率特性为
()()
()n n j k
j F j Y j G ωςωωωωωω21/122+⎪⎪⎭
⎫ ⎝⎛-== (4.32) 该式反映了动态作用力f (t )与系统动态变形y (t )之间的关系,如图4-52所示。
图4-52 系统在力作用下产主变形
实质上()ωj G 表示的是机械结构的动柔度()ωλj ,也就是它的动刚度()ωj K 的倒数,即 ()()()ωωλωj K j j G 1=
= (4.33) 当0=ω时
()()k j G j K ====001ωωωω (4.34)
即该机械结构的静刚度为k 。
当0≠ω时,我们可以写出动刚度()ωj K 的幅值
()k j K n n ⋅⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=2
22221ωςωωωω (4.35) 其动刚度曲线如图4-53所示。
对()ωj K 求偏导等于零,即
()0=∂∂ωω
j K
可求出二阶系统的谐振频率,即
221ςωω-=n r (
4.36)
将其代入幅频特性,可求出谐振峰值
()212/1ςςω-==k j G M r r (4.37)
此时,动柔度最大,而动刚度()ωj K 具有最小值
()k j K ⋅-=2min 12ςςω (4.38)
由式(4.42)和(4.43)可知,当1<<ς时,n r ωω→,系统的最小动刚度幅值近似为
()k j K ⋅≈ςω2min (4.39)
由此可以看出,增加机械结构的阻尼比,能有效提高系统的动刚度。
上述有关频率特性、机械阻尼、动刚度等概念及其分析具有普遍意义,并在工程实践中得到了应用。
图4-53 动刚度曲线机械系统动刚度的概念。