2018年高考文科数学分类汇编:专题十三极坐标与参数方程

合集下载

(2021年整理)2018高考数学试题分项版_极坐标参数方程[解析版]

(2021年整理)2018高考数学试题分项版_极坐标参数方程[解析版]

2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)的全部内容。

2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)〉这篇文档的全部内容。

2017年高考数学试题分项版—极坐标参数方程(解析版)一、填空题1.(2017·北京理,11)在极坐标系中,点A在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP|的最小值为________.1.【答案】1【解析】由ρ2-2ρcos θ-4ρsin θ+4=0,得x2+y2-2x-4y+4=0,即(x-1)2+(y-2)2=1,圆心坐标为C(1,2),半径长为1。

2018年高考数学总复习 选考部分 坐标系与参数方程

2018年高考数学总复习 选考部分 坐标系与参数方程

l 的距离为 d=|3cos������+√41s7in������-������-4|. 当 a≥-4 时,d 的最大值为���√���+179.由题设得���√���+179 = √17,所以 a=8;
当 a<-4 时,d 的最大值为-√������1+71.由题设得-√������1+71 = √17,所以 a=-16. 综上,a=8 或 a=-16.
(1)在伸缩变换下,直线仍然变成直线,圆仍然变成圆. ( × )
(2)点 P 在曲线 C 上,则点 P 的极坐标一定满足曲线 C 的极坐标
方程.
(× )
(3)如果点 P 的直角坐标为(-√2, √2),那么它的极坐标可表示为
2,
3π 4
.
(4)参数方程
������ ������
= =
-21+-������,������(t
选修4—4 坐标系与参数方程
-2-
考纲要求
五年考题统计
1.了解坐标系的作用,了
解在平面直角坐标系伸
缩变换作用下平面图形 的变化情况. 2.了解极坐标的基本概 念,会在极坐标系中用极 坐标刻画点的位置,能进 行极坐标和直角坐标的 互化. 3.能在极坐标系中给出简 单图形表示的极坐标方
程. 4.了解参数方程,了解参 数的意义. 5.能选择适当的参数写出
①直线过极点:θ=θ0和 θ=π +θ0 ;
②直线过点M(a,0),且垂直于极轴: ρcos θ=a ;
③直线过 M
������,
π 2
,且平行于极轴:
ρsin θ=b
.
5.圆的极坐标方程
(1)若圆心为M(ρ0,θ0),半径为r,则圆的方程为 ρ2-2ρ0ρcos(θ-θ0)+������0.2-r2=0

2011年—2018年新课标全国卷1文科数学分类汇编—13.坐标系与参数方程

2011年—2018年新课标全国卷1文科数学分类汇编—13.坐标系与参数方程

新课标全国卷Ⅰ文科数学分类汇编13.坐标系与参数方程一、解答题【2018,22】在直角坐标系xOy 中,曲线C 1的方程为y=k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l ,求a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程;(II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。

2018年高考数学真题专题汇编----极坐标与参数方程

2018年高考数学真题专题汇编----极坐标与参数方程

( 1)求 的取值范围; ( 2)求 AB 中点 P 的轨迹的参数方程.
4.【 2018 江苏卷 21C】在极坐标系中,直线 l 的方程为 4cos ,求直线 l 被曲线 C 截得的弦长.
sin( π 6
) 2 ,曲线 C 的方程为
参考答案
一、填空题
1.1 2
1
2.
2
二、解答题
1.解: ( 1)由 x cos , y sin 得 C2 的直角坐标方程为 ( x 1)2 y2 4.
2018 年高考数学真题专题汇编 ----
极坐标与参数方程
一、填空题
1. 【 2018 北京卷 10】在极坐标系中,直线 cos 则 a=_______2cos 相切,
x 2.【2018 天津卷 12】 )已知圆 x2 y2 2 x 0的圆心为 C,直线
2 1 t,
( 2)由( 1)知 C2 是圆心为 A( 1,0) ,半径为 2 的圆.
2 ( t 为参数 )
y 3 2t 2
与该圆相交于 A,B 两点,则 △ ABC 的面积为
.
二、解答题
1.【 2018 全国一卷 22】在直角坐标系 xOy 中,曲线 C1 的方程为 y k|x| 2.以坐标原点为 极点, x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 2 2 cos 3 0 .
( 1)求 C2 的直角坐标方程; ( 2)若 C1 与 C2 有且仅有三个公共点,求 C1 的方程 .
x 2cos θ, 2【. 2018 全国二卷 22】在直角坐标系 xOy 中,曲线 C 的参数方程为 y 4sin θ( θ为参数) , 直线 l 的参数方程为
x 1 t cos α, ( t 为参数).

2018年高考数学分类汇编专题十三极坐标与参数方程

2018年高考数学分类汇编专题十三极坐标与参数方程

《2018年高考数学分类汇编》第十三篇:极坐标与参数方程一、填空题1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.2.【2018天津卷12】)已知圆2220x y x +-=的圆心为C ,直线21,232⎧=-⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 二、解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ过点且倾斜角为的直线与交于两点. (1)求的取值范围;(2)求中点的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长. 参考答案 一、填空题1.21+2.21 二、解答题1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2221k =+,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. (02,αl O ⊙A B ,αAB P当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,221k =+,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.3.解:(1)的直角坐标方程为.当时,与交于两点. cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=2cos sin 0αα+=l tan 2k α==-O 221x y +=2απ=l O当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 2απ≠tan k α=l 2y kx =-l O 22||11k <+1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 222sin 10t t α-+=22sin A B t t α+=2sin P t α=P (,)x y cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩P 2sin 2,22cos 2x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==因此,直线l被曲线C截得的弦长为23。

2014--2018年高考数学极坐标与参数方程及答案解析汇编

2014--2018年高考数学极坐标与参数方程及答案解析汇编

2014--2018年全国高考试题极坐标与参数方程汇总1、(2014年高考数学全国卷I )已知曲线C :x ²4+y ²9=1,直线l :⎩⎪⎨⎪⎧x =2+ty =2-2t (t 为参数)⑴写出曲线C 的参数方程,直线l 的普通方程;⑵过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值。

【解析】:⑴曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的普通方程为:260x y +-=⑵在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为3sin 6d θθ=+-,则()0||6sin 30d PA θα==+-,其中α为锐角.且4tan 3α=.当()sin 1θα+=-时,||PA当()sin 1θα+=时,||PA 2、(2015年高考数学全国卷I )在直角坐标系xOy 中.直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. ⑴求C 1,C 2的极坐标方程; ⑵若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积。

解:⑴因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=。

⑵将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=12ρρ-=MN =由于2C 的半径为1,所以2C MN ∆的面积为12。

3、(2016年高考数学全国卷I )在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =acos t ,y =1+asin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a 。

2018年高考文科数学分类汇编:专题十三极坐标与参数方程

2018年高考文科数学分类汇编:专题十三极坐标与参数方程

《2018年高考文科数学分类汇编》第十三篇: 极坐标与参数方程解答题1.【2018全国一卷22】在直角坐标系中, 曲线的方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系, 曲线的极坐标方程为.(1)求2C 的直角坐标方程;(2)若与有且仅有三个公共点, 求的方程.2.【2018全国二卷22】在直角坐标系/中, 曲线/的参数方程为/(/为参数), 直线/的参数方程为/(/为参数).(1)求和的直角坐标方程;(2)若曲线/截直线/所得线段的中点坐标为/, 求/的斜率.3.【2018全国三卷22】在平面直角坐标系/中, /的参数方程为/(/为参数), 过点/且倾斜角为/的直线/与/交于/两点.(1)求的取值范围;(2)求/中点/的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中, 直线l 的方程为, 曲线C 的方程为, 求直线l 被曲线C 截得的弦长.参考答案解答题1.解: (1)由, 得的直角坐标方程为.(2)由(1)知是圆心为, 半径为的圆.由题设知, 是过点且关于轴对称的两条射线. 记轴右边的射线为, 轴左边的射线为. 由于在圆的外面, 故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点, 或与只有一个公共点且与有两个公共点.C l当与只有一个公共点时, 到所在直线的距离为, 所以, 故或.经检验, 当时, 与没有公共点;当时, 与只有一个公共点, 与有两个公共点. 当与只有一个公共点时, 到所在直线的距离为, 所以, 故或.经检验, 当时, 与没有公共点;当时, 与没有公共点.综上, 所求的方程为.2.解: (1)曲线的直角坐标方程为.当/时, /的直角坐标方程为/,当/时, /的直角坐标方程为/.(2)将/的参数方程代入/的直角坐标方程, 整理得关于/的方程.①因为曲线/截直线/所得线段的中点/在/内, 所以①有两个解, 设为/, /, 则/. 又由①得, 故/,于是直线/的斜率/.3.解: (1)/的直角坐标方程为/.当/时, /与/交于两点.当/时, 记/, 则/的方程为/. /与/交于两点当且仅当/, 解得/或/, 即/或/.综上, /的取值范围是/.(2)/的参数方程为/为参数, //.设/, /, /对应的参数分别为/, /, /, 则/, 且/, /满足/.于是/, /. 又点/的坐标/满足/所以点/的轨迹的参数方程是//为参数, //.4.解: 因为曲线C 的极坐标方程为,所以曲线C 的圆心为(2, 0), 直径为4的圆.因为直线l 的极坐标方程为,则直线l 过A (4, 0), 倾斜角为,所以A 为直线l 与圆C 的一个交点.设另一个交点为B, 则∠OAB=.连结OB, 因为OA 为直径, 从而∠OBA=,22(13cos )4(2cos sin )80t t ααα+++-=所以π4cos 6AB == 因此, 直线l 被曲线C 截得的弦长为.。

2018年高考数学分类汇编:专题十三极坐标与参数方程

2018年高考数学分类汇编:专题十三极坐标与参数方程

《2018年高考数学分类汇编》第十三篇:极坐标与参数方程一、填空题1. 【2018北京卷10】在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________.2.【2018天津卷12】)已知圆2220x y x +-=的圆心为C,直线1,232⎧=-+⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 .二、解答题1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点. (1)求的取值范围;(2)求中点的轨迹的参数方程.4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.参考答案 一、填空题1.21+2.21 二、解答题1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,yxOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 2.解:(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率.3.解:(1)的直角坐标方程为.当时,与交于两点. 当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,2cos sin 0αα+=l tan 2k α==-O 221x y +=2απ=l O 2απ≠tan k α=l y kx =-lO 1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A t Bt 2sin 10t α-+=A B t t α+=P t αP (,)xy cos ,sin .P P x t y t αα=⎧⎪⎨=⎪⎩P sin 2,2cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos6AB ==因此,直线l 被曲线C 截得的弦长为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《2018年高考文科数学分类汇编》
第十三篇:极坐标与参数方程 解答题
1.【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2
2cos 30ρρθ+-=.
(1)求2C 的直角坐标方程;
(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.
2.【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),
直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
3.【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),
过点且倾斜角为的直线与交于两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
4.【2018江苏卷21C 】在极坐标系中,直线l 的方程为π
sin()26
ρθ-=,曲线C 的方程为
4cos ρθ=,求直线l 被曲线C 截得的弦长.
参考答案 解答题
xOy C 2cos 4sin x θy θ=⎧⎨=⎩,
θl 1cos 2sin x t αy t α
=+⎧⎨=+⎩,
t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩

θ(0,αl O ⊙A B ,αAB P
1.解: (1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.
(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.
由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与
2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两
个公共点.
当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2
2=,故
4
3
k =-或0k =.
经检验,当0k =时,1l 与2C 没有公共点;当4
3
k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.
当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,
2=,故0
k =或4
3
k =
. 经检验,当0k =时,1l 与2C 没有公共点;当4
3
k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4
||23
y x =-
+. 2.解:(1)曲线C 的直角坐标方程为
116
42
2=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.
(2)将的参数方程代入的直角坐标方程,整理得关于的方程
.①
因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则

cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=
又由①得α
αα2
21cos 31)
sin cos 2(4++-
=+t t ,故, 于是直线的斜率.
3.解:(1)的直角坐标方程为.
当时,与交于两点. 当时,记,则的方程为.与交于两点当且仅当,解得或,即或.
综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足.
于是,.又点的坐标满足
所以点的轨迹的参数方程是为参数,. 4.解:因为曲线C 的极坐标方程为=4cos ρθ,
所以曲线C 的圆心为(2,0),直径为4
的圆.
因为直线l 的极坐标方程为π
sin()26
ρθ-=,
2cos sin 0αα+=l tan 2k α==-O 221x y +=2
απ
=
l O 2
απ

tan k α=l y kx =l O |1<1k <-1k >(,)42αππ
∈(,)24απ3π∈α(,
)44
π3π
l cos ,
(sin x t t y t αα
=⎧⎪⎨
=⎪⎩44απ3π<<)A B P A t B t P t 2
A B
P t t t +=
A t
B t 2sin 10t α-+=A B t t α+=P t αP (,)x y cos ,
sin .P P
x t y t αα=⎧⎪⎨
=⎪⎩P 2,2222
x y αα
⎧=⎪⎪⎨
⎪=-⎪⎩(α44απ3π<<)
则直线l 过A (4,0),倾斜角为
π6
, 所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =
π6
. 连结OB ,因为OA 为直径,从而∠OBA =π2

所以π
4cos
6
AB ==
因此,直线l 被曲线C 截得的弦长为.。

相关文档
最新文档