雷达接收机技术(第二章 基本理论)
雷达基本理论与基本原理

描。
325承受机的灵敏度指雷达承受微弱信号的能力,用承受机载一定的噪声电平时所能感知的输入 功率的大小来表示。
326终端装置和雷达输出数据的形式 327电源供给飞机和船舶上的雷达,为减轻重量,常常采用高频的交流电源 4、雷达方程与目标检测4.2.1提高雷达作用距离的途径:(1) 尽可能选用大孔径天线,即加大天线的有效面积或增益,但因此会影响雷达的抗风能力设计,机动能力设计和构造设计等;(2) 提高发射功率,但因此可能会出现高压打火以及增加设备的重量和 体积等问题;(3) 尽可能提高接收机的灵敏度,但也可能出现抗噪声性能下降等问题; (4) 尽可能降低系统的传输损耗L 。
4.2.2其他因素(1) 最小可检测信号的统计特性; (2) 目标雷达反射面积的统计特性; (3) 地球外表或大气传播的准确特性; (4) 雷达本身可能存在的各种损耗。
4.3对雷达方程的进一步讨论4.3.1检测因子:检测目标信号所需的最小输出信噪比,用D o 表示,其中:4.3.2用检测因子和能量表示雷达方程5、4.1根本雷达方程: 4.2雷达方程的讨论:[7PA/ 2S •Li min ■D oE L N o)omin(SNR)ominE r 为信 号冃匕量。
上图是主振放大式发射机组成框图,主振放大式发射机具有很高的频率稳定度,可以发射相位相参信号,能产生复杂的调制波形,并且适用于频率捷变雷达。
2.3雷达发射机的主要技术指标 2.3.1工作频率和射频带宽工作频率和雷达的工作能力和抗干扰性能有关,射频带宽和雷达的距离 分辨率有关。
2.3.2输出功率影响雷达的威力和抗干扰能力。
2.3.3总效率发射机的输出功率与输入总功率之比。
对于减轻整机的体积与重量很有意 义。
2.3.4调制形式根据雷达体制的不同选择不同的调制方式。
2.3.5信号稳定度与谱纯度信号的稳定度指信号的各项参数是否随时间做不应有的起伏变化,可分为 规律不稳定和随机不稳定两类。
3第二章 侦察接收机原理(第三次课)

抗 与对
北京理工 (一大)学 数五字雷 接、收达 数机与 的字基接对 本收结抗 构机技术研究所
北京理工•大 3精频.频确 谱学 谱频分估估谱析计雷 计估,器器计以可达 达 器便以用是与 于专对用对 输于入F抗 F信T的号技 F频P谱术 G进A或行研究所 工大 DS学 P芯片雷 ,或一个专门的程序包。
北京理工输出大 信数1号字)学 将信信会道道雷 通化化过可接某以收达 达 个看机输成根与 出一据端个各对 输数个出字信,滤号抗 通波的过器频技 测组率量,分术 滤根离波据各器频输研 组率入的不信究 输同号,。所
出,大 可以学 确定雷 输入信号的频率。
工 理
目前主要采用短时快速傅里叶变换(STFT)或者多速率信
工大 即信号载频及其特征信息、脉宽及其特征
京理 北
信息、重复频率及其特征信息。
抗
对
与
北京理(工 1二.实)大 现数数学 字字五接接雷 收收、机机达 数涉的及与 字关很键多接对 技方收面术抗 的机技技 术:术研究所
北京理工 1)大学高 量宽 收雷 速 存带 天大 储接 线容 器达 达与 宽高带转对 速射滤换数频波系据放统抗 率大 技 处高理速高变术 器数速等换(字A器DD信CS研 号P) 究所
工大 京理 北
抗
对
与
上次课回顾 北 北京 京理 理工 工 三测、大 大 频测技学 学 学 术频接频雷 雷 雷 变收率换取机法达 达 达 样原相毗搜与 与 理关邻索/卷频频对 对 积率率器窗窗抗 抗 压信多搜 射 比 声缩波道索 光频相接技 技 段化超 卷调法收晶接外 积谐瞬机体收差 测晶时术 术 视机接 频体测频收 收视频研 研 接机 机频接收接收机收机究 究 机 所 所
2第二章 侦察接收机原理(第二次课)

学 大 工 理 1.综述
达 一、信号环境与信号截获 信号环境与信号截获 雷
对 与
抗 所 究 研 术 技 抗
所 雷 究 学 通信,雷达,敌我识别,导航,干扰机。 研 大 术 2)单就雷达方面就又可以分为: 工 技 理 远程警戒雷达集中在长波波段; 抗 京 对 北 跟踪和火控雷达集中在微波波段; 与 达 制导雷达集中在毫米波波段。 雷 学 大 3)因此,电子侦察系统面临的是一个非常宽的电磁频谱, 是多体制、高密度的辐射源信号聚集的电磁信号环境。 工 理 京 北
对 与
抗
达 所 雷 本次课问题 究 学 研 大 术 工 技 理 抗 京 对 北 1.现代电子对抗侦察面临的电磁信号环境 与 达 所 的特点都有什么? 的特点都有什么 雷 究 学 研 大 术 工 技 理 抗 京 对 北 与 2 接收机信号处理能力包含了哪三方面的 2. 达 雷 意义? 学 大 工 理 京 北
对 与
抗
达 所 一、信号环境与信号截获 、信号环境与信号截获 雷 究 学 研 大 工 1.雷达侦察系统大致的工作流程: 技术 理 抗 京 对 4)生成脉冲描述字(Pulse Description Word,PDW) 北 与 达 信号处理器完成脉冲信号的 所 雷 ¾到达时间(Direction of ArrivalDOA) 究 学 研 大 ¾脉冲宽度(Pulse Width,PW) 术 工 1 雷达侦察系统大致的工作流程: 1. ¾脉冲幅度(Pulse Amplitude,PA) 技 理脉冲描述字 抗 等时域参数的测量 京 对 (Pulse 北 与 D Descriptio i ti 达 组合在一起称 n Word, 雷 为脉冲描述字 PDW) 学 大 工 理 之前测量的 京 ¾脉冲载频(RF) 北
雷达基础理论试题及答案

雷达基础理论试题及答案一、单选题(每题2分,共20分)1. 雷达系统的基本组成部分不包括以下哪一项?A. 发射机B. 天线C. 接收机D. 显示器答案:D2. 雷达的工作原理是基于以下哪种物理现象?A. 电磁波的反射B. 电磁波的折射C. 电磁波的衍射D. 电磁波的干涉答案:A3. 下列哪种波不能用于雷达?A. 微波B. 无线电波C. 声波D. 光波答案:C4. 雷达的探测距离主要取决于以下哪个因素?A. 目标的大小B. 雷达发射的功率C. 天气条件D. 以上都是答案:D5. 雷达天线的主要功能是什么?A. 发射电磁波B. 接收电磁波C. 转换电能为电磁能D. 以上都是答案:D6. 雷达的分辨率主要取决于以下哪个参数?A. 波长B. 带宽C. 脉冲宽度D. 以上都是答案:D7. 雷达的多普勒效应可以用于测量目标的什么?A. 速度B. 方向C. 距离D. 以上都不是答案:A8. 雷达的脉冲压缩技术可以提高哪种性能?A. 分辨率B. 探测距离C. 抗干扰能力D. 以上都是答案:A9. 雷达的隐身技术主要是通过以下哪种方式实现的?A. 吸收电磁波B. 反射电磁波C. 散射电磁波D. 以上都是答案:A10. 雷达的干扰技术中,哪种方式是通过发射虚假信号来欺骗雷达?A. 噪声干扰B. 欺骗干扰C. 脉冲干扰D. 以上都不是答案:B二、多选题(每题3分,共15分)1. 雷达的基本工作模式包括以下哪些?A. 搜索模式B. 跟踪模式C. 引导模式D. 干扰模式答案:ABC2. 雷达的天线类型主要有以下哪些?A. 抛物面天线B. 阵列天线C. 相控阵天线D. 螺旋天线答案:ABC3. 雷达的信号处理技术包括以下哪些?A. 脉冲压缩B. 频率捷变C. 多普勒滤波D. 目标识别答案:ABCD4. 雷达的抗干扰措施包括以下哪些?A. 频率捷变B. 功率控制C. 信号编码D. 空间滤波答案:ABCD5. 雷达的目标识别技术包括以下哪些?A. 形状识别B. 速度识别C. 频率识别D. 模式识别答案:ABD三、判断题(每题1分,共10分)1. 雷达的发射功率越大,其探测距离就越远。
雷达基本工作原理ppt课件

工作波长越短,天线水平波束宽度越窄,方位分辨率和测方位进 度越高
4 抗杂波干扰能力的关系
工作波长越短,雨雪海浪等对雷达波德反射越强,干扰越大
29
5.2 脉冲宽度对使用性能影响
1 对最大作用距离的影响
脉冲宽度越大,能量越大,作用距离越大
2 对最小作用距离的关系
固定距标圈 荧光屏边缘
10
1.4 雷达的测距与测向原理
1. 雷达测距原理 Δ t: 往返于天线与目标的时间, C: 电磁波在空间传播速度3×108m/s。
R
=
1 C
×Δ
t
2
2. 雷达测向原理 借助于定向天线 - 扫描.
11
2 雷达基本组成
微波传输线 发射脉冲
发射机
天线
回波 T/R
触发器
接收机
电源
测 (2)
无视线限制
测量目标参数 距离,方位,速度,航向...
导航 (1) 避碰
(2) 定位
7
雷达/ARPA, ECDIS, GPS/DGPS和自动舵构成的自动 船桥系统是未来主要的导航系统
8
1.3雷达考核内容
雷达结构及其工作原理 雷达影像失真的特点及其产生原因 影响雷达正常观测的诸要素 雷达测距/测方位 雷达定位与导航 雷达航标
28
5.1 工作波长对使用性能影响
1 对最大作用距离的影响
正常天气观测较小的物标时,3cm雷达的rmax要比10cm的大 雨雪天,则10cm雷达的rmax要比3cm雷达的大得多
2 对距离分辨率和测距精度的关系
工作波长越短,脉冲前沿越短,测距精度高;脉冲前沿越短,有 利于缩短脉冲宽度,提高距离分辨率
教学课件第2章雷达信号频率的测量

2) 实用的微波鉴相器原理图
U I KA2 cos
UQ KA2 sin
功率 延迟 分配 线
90o电桥
检波 器
差分 放大
鉴相输出信号
,
UI kA2 cosT UQ kA2 sinT
特点: l 在[0,2]无模糊 l 没有与频率无关的直流分量 输出可用于模拟测频:
tg 1U QU I /T
T是延迟线的延迟时间。
微波鉴相器用于实现信号的自相关运算,因此需要考虑 以下条件:
•相干的基本条件:
T
否则不能进行相关运算。
• 单值测量条件:
f2f11T
这是由最大相移为2决定的,相移与频率的关系为
2 f T
• 简单微波鉴相器的输出信号幅度与输入信号功率成正 比
• 简单微波鉴相器的输出信号中有与频率无关的直流分 量
2. 存在问题
❖信号谱旁瓣引起相邻多信道同时检测,可利 用相邻比较解决; ❖ 信号频率本身处于相邻信道边沿处,可利用 相邻信道处理解决。
动态范围是指保证测频接收机精确测频条件下 信号功率的变化范围,它包括: • 工作动态范围:
保证测频精度条件下的强信号与弱信号的功率 之比,也称为噪声限制动态范围。
• 瞬时动态范围: 保证测频精度条件下的强信号与寄生信号的
功率之比。
3.现代测频技术分类
测频技术
频率取样 变换法
搜索频率窗 搜索超外差接收机 射频调谐晶体视频接收机
2.1 概述
要点: l 重要性 l 主要技术指标 l 技术分类 1.重要性 载波频率是雷达的基本、重要特征,具有相对稳 定性,使信号分选、识别、干扰的基本依据。
2.主要技术指标
1) 测频时间 定义:从信号到达至测频输出所需时间,是确定 或随机的。 要求:瞬时测频,即在雷达脉冲持续时间内完成 载波频率测量。 重要性:直接影响侦察系统的截获概率和截获时 间。
雷达原理与对抗技术习题答案

第一章1、雷达的基本概念:雷达概念(Radar),雷达的任务是什么,从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息答:雷达是一种通过发射电磁波和接收回波,对目标进行探测和测定目标信息的设备。
任务:早期任务为测距和探测,现代任务为获取距离、角度、速度、形状、表面信息特性等。
回波的有用信息:距离、空间角度、目标位置变化、目标尺寸形状、目标形状对称性、表面粗糙度及介电特性。
获取方式:由雷达发射机发射电磁波,再通过接收机接收回波,提取有用信息。
2、目标距离的测量:测量原理、距离测量分辨率、最大不模糊距离 答:原理:R=Ctr/2距离分辨力:指同一方向上两个目标间最小可区别的距离 Rmax=…3、目标角度的测量:方位分辨率取决于哪些因素答:雷达性能和调整情况的好坏、目标的性质、传播条件、数据录取的性能 4、雷达的基本组成:哪几个主要部分,各部分的功能是什么 答:天线:辐射能量和接收回波发射机:产生辐射所需强度的脉冲功率 接收机:把微弱的回波信号放大回收信号处理机:消除不需要的信号及干扰,而通过加强由目标产生的回波信号 终端设备:显示雷达接收机输出的原始视频,以及处理过的信息 习题:1-1. 已知脉冲雷达中心频率f0=3000MHz ,回波信号相对发射信号的延迟时间为1000μs ,回波信号的频率为3000.01 MHz ,目标运动方向与目标所在方向的夹角60°,求目标距离、径向速度与线速度。
685100010310 1.510()15022cR m kmτ-⨯⨯⨯===⨯=m 1.010310398=⨯⨯=λKHzMHz f d 10300001.3000=-=s m f V d r /5001021.024=⨯==λsm V /100060cos 500=︒=波长:目标距离:1-2.已知某雷达对σ=5m2 的大型歼击机最大探测距离为100Km,1-3.a)如果该机采用隐身技术,使σ减小到0.1m2,此时的最大探测距离为多少?1-4.b)在a)条件下,如果雷达仍然要保持100Km 最大探测距离,并将发射功率提高到10 倍,则接收机灵敏度还将提高到多少?1-5.KmKmR6.3751.010041max=⎪⎭⎫⎝⎛⨯=dBkSkSii72.051,511.010minmin-===∴⨯=⨯b)a)第二章:1、雷达发射机的任务答:产生大功率特定调制的射频信号2、雷达发射机的主要质量指标答:工作频率和瞬时带宽、输出功率、信号形式和脉冲波形、信号的稳定度和频谱纯度、发射机的效率3、雷达发射机的分类单级震荡式、主振放大式4、单级震荡式和主振放大式发射机产生信号的原理,以及各自的优缺点答:单级震荡式原理:大功率电磁震荡产生与调制同时完成,以大功率射频振荡器做末级优点:结构简单、经济、轻便、高效缺点:频率稳定性差,难以形成复杂波形,相继射频脉冲不相参主振放大式原理:先产生小功率震荡,再分多级进行调制放大,大功率射频功率放大器做末级优点:频率稳定度高,产生相参信号,适用于频率捷变雷达,可形成复杂调制波形缺点:结构复杂,价格昂贵、笨重是非题:1、雷达发射机产生的射频脉冲功率大,频率非常高。
雷达-第二节--最大作用距离及其影响因素

第二节 最大作用距离及其影响 因素
• 定义:一台雷达在一定的电波传播条件 下,对某一特定的物标,雷达能满足一 定发现概率时所能观测的物标最大距离 即为该雷达的最大作用距离,用符号 rmax表示,它表示雷达探测远距离目标 的能力。
• 2.海浪回波强度与风向有关,风向和海浪波 形关系如图1—3—14所示。海浪反射上风侧强, 显示距离远,下风侧弱,显示距离近。
2021/3/11
17
2021/3/11
18
• 3.大风浪时,海浪回波密集而变成分布在扫描中心
周围的辉亮实体。如果是幅度较大的长涌,可在屏 上见到一条条浪涌回波。
• 4.海浪回波的强弱还和雷达的下述技术参数有关:
2021/3/11
8
(2)球形物体
• 球体反射性能很差,只有正对圆心的才 返回;
(3)圆柱形物体
• 像烟囱、煤气罐、系船浮筒这类圆柱形 物标,则其水平方向的影响与球体相似, 垂直方向的影响则和平板一样;
(4)锥体
• 像灯塔、教堂尖顶及锥形浮标这类锥形 物标的反射性能很差,只有当射束于母 线垂直时,效果与圆柱相同。
则海浪同时反射面积大,因而海浪回波也强。
2021/3/11
19
四、大气衰减的影响
• 大气衰减是指雷达波在大气层传播过程中受 到大气吸收或散射导致雷达波能量的衰减。这 在大气中有雾、云、雨和雪等含水量增大时更 为严重。
• 其特点是:
• 1.水蒸汽对3 cm雷达波的衰减比lO cm雷 达波大10倍多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中 tc为混频器的噪声比, 本振噪声的影响一般也计入在内。
若接收机的噪声性能用等效噪声温度Te表示, 则它与各级噪 声温度之间的关系为
Te
T1
T2 G1
T3 G1G2
Tn
G1G2
Gn1
(3.2.31)
2.采样定理
连续时间信号的处理往往是通过对其采样得到的离散 时间序列的处理来完成的。
1、信号被抽样后频谱如何变换? 2、什么情况下,可以从抽样信号中不失真地恢 复出原来信号?
10 0
10
1 10 0
= 0°
5°
90 °
10 00
10 000
f / MHz
0° 5° 90 °
100 000
图3.6 天线噪声温度与频率‘波瓣仰角的关系
1.雷达接收机的噪声特性
2) 接收机的噪声和噪声系数
(3)
(4)噪声系数和噪声温度 1.
噪声系数的定义是: 接收机输入端信号噪声比与输出端信号 噪声比的比值。
Te
理想
RA
接收机
RL
Ga
TA
图3.10 接收机内部噪声的换算
将式(3.2.19)代入式(3.2.12), 可得
F 1 kTeBnGa 1 Te
k T0 BnGa
T0
(3.2.20)
Te=(F-1)T0=(F-1)×290 (K)
(3.2.21)
此式即为噪声温度Te的定义表示式, 它的物理意义是把接收机内 部噪声看成是“理想接收机”的天线电阻RA在温度Te时所产生 的, 此时实际接收机变成如图3.10所示的“理想接收机”。
No kT0Bn
(3.2.16)
根据式(3.2.10)可得 F No 1 NiGa Ga
(3.2.17)
由于无源四端网络额定功率传输系数Ga≤1, 因此其噪声系数F≥1。
2.
前面已经提到, 接收机外部噪声可用天线噪声温度TA来表 示, 如果用额定功率来计量, 接收机外部噪声的额定功率为
NA=kTABn
F3 1 G1G2
Fn 1 G1G2 Gn1
(3.2.27)
上式给出了重要结论: 为了使接收机的总噪声系数小, 要求各级
的噪声系数小、额定功率增益高。而各级内部噪声的影响并不
相同, 级数越靠前, 对总噪声系数的影响越大。所以总噪声系数
主要取决于最前面几级, 这就是接收机要采用高增益低噪声高
后, 输出的功率谱pno(f)就不再是均匀的了, 如图3.7的实曲线所示。 为了分析和计算方便, 通常把这个不均匀的噪声功率谱等效为
在一定频带Bn内是均匀的功率谱。这个频带Bn称为“等效噪声
功率谱宽度”, 一般简称“噪声带宽”。 因此, 噪声带宽可由下
式求得:
0 pno ( f )df pno ( f0 )Bn
图中TA为天线噪声温度。系统噪声温度Ts由内、外两部分 噪声温度所组成, 即
Ts TA Te
(3.2.22)
表3.2给出Te与F的对应值。从表中可以看出,若用噪声系数 F来表示两部低噪声接收机的噪声性能时, 例如它们分别为1.05 和1.1, 有可能误认为两者噪声性能差不多。但若用噪声温度Te 来表示其噪声性能时, 将会发现两者的噪声性能实际上已相差一 倍(分别为14.5 K和29 .K)。此外, 只要直接比较Te和TA, 就能直 观地比较接收机内部噪声与外部噪声的相对大小。因此, 对于低 噪声接收机和低噪声器件, 常用噪声温度来表示其噪声性能。
X a ( j)
xa (t)e jt dt
S( j) s(t)e jtdt
xˆa (t) xa (t) s(t)
F0
Gf
1 GgG1
FR
Fc 1 GR
F1 1 用高增益(GR≥20dB)低噪声高频放大器, 因此式(3.2.28)
可简化为
F0
FR G f GgG1
(3.2.29)
若不采用高放, 直接用混频器作为接收机第一级, 则可得
F0
tc F1 1 G f GgG1Gc
(3.2.30)
表3.2 Te与F的对照表
3. 级联电路的噪声系数
为了简便, 先考虑两个单元电路级联的情况, 如图3.11所示。
图中F1、F2和G1、G2分别表示第一、二级电路的噪声系数和额 定功率增益。为了计算总噪声系数F0, 先求实际输出的额定噪声 功率No。 由式(3.2.10)可得
No=kT0BnG1G2F0
p(f)=4kTR
(3.2.2)
显然, 电阻热噪声的功率谱密度是与频率无关的常数。 通常 把功率谱密度为常数的噪声称为“白噪声”, 电阻热噪声在无线 电频率范围内就是白噪声的一个典型例子。
Pno ( f )
Pno (f0)
o
Bn
f
图3.7 噪声带宽的示意图
功率谱均匀的白噪声, 通过具有频率选择性的接收线性系统
接收机的馈线、放电器、移相器等属于无源四端网络, 其示 意图见图3.9, 图中G a为额定功率传输系数。由于具有损耗电 阻, 因此也会产生噪声, 下面求其噪声系数。
从网络的输入端向左看, 是一个电阻为RA的无源二端网络, 它输出的额定噪声功率为
Ni kT0Bn
(3.2.14)
无源四端
网络
RA
Ga
(3.2.1)
式中,k为玻尔兹曼常数, k=1.38×10-23J/K; T为电阻温度, 以绝 对温度(K)计量, 对于室温17℃, T=T0=290K; R为电阻的阻值; Bn 为测试设备的通带。
式(3.2.1)表明电阻热噪声的大小与电阻的阻值R、温度T和 测试设备的通带Bn成正比。
电阻热噪声的功率谱密度p(f)是表示噪声频谱分布的重要统 计特性, 其表示式可直接由式(3.2.1)求得
1.实际抽样与理想抽样
xa(t)
(a)
xa(t)
xˆa (t)
(b)
o
t
T
p(t)
s(t)
1
(c)
o
T
t
(e)
o
T
t
xp(t)
xˆa (t)
(d)
o
t
(f)
o
t
xˆa (t) xa (t) s(t)
xˆa (t) xa (nT ) (t nT ) n
2. 理想采样信号的频谱
我们首先看看通过理想采样后信号频谱发生了 什么变化。
放的主要原因。
馈线 自天线
Gf 1/Gf
接收机 放电器
限幅器
低噪声 高放
混频器
中频 放大器 至检波器
Gg
Gl
GR
Gc
GI
1/Gg
1/Gl
FR
Fc
FI
图3.12 典型雷达接收机的高、中频部分
将 图 3.12 中 所 列 各 级 的 额 定 功 率 增 益 和 噪 声 系 数 代 入 式 (3.2.27), 即可求得接收机的总噪声系数:
RL
图3.9 无源四端网络
经过网络传输, 加于负载RL上的外部噪声额定功率为
NiGa kT0BnGa
(3.2.15)
从负载电阻RL向左看, 也是一个无源二端网络, 它是由信号 源电阻RA和无源四端网络组合而成的, 同理, 这个二端网络输出 的额定噪声功率仍为kT0Bn, 它也就是无源四端网络输出的总额 定噪声功率, 即
噪声系数的说明见图3.8。 根据定义, 噪声系数可用下式表
示:
F Si / Ni So / No
(3.2.9)
式 中 , Si 为 输 入 额 定 信 号 功 率 ; Ni 为 输 入 额 定 噪 声 功 率 (Ni =kT0Bn); So为输出额定信号功率; No为输出额定噪声功率。
EsA ~ Esi ~
ΔN2=(F2-1)kT0BnG2
于是式(3.2.24)可进一步写成
(3.2.25)
No=kT0BnG1G2F0=kT0BnG1G2F1+(F2-1)kT0BnG2
化简后可得两级级联电路的总噪声系数
F0
F1
F2 1 G1
(3.2.26)
同理可证, n级电路级联时接收机总噪声系数为
F0
F1
F2 1 G1
(3.2.24a)
而
No N012 N2
(3.2.24b)
Ni=kT0Bn
F1,G1,Bn
F2,G2,Bn
No=No1 2+N2
图3.11 两级电路的级联
No由两部分组成: 一部分是由第一级的噪声在第二级输出端呈现 的额定噪声功率No12,其数值为kT0BnF1G1G2, 第二部分是由第二 级所产生的噪声功率ΔN2, 由式(3.2.12)可得
因此噪声系数的另一定义为: 实际接收机输出的额定噪声功 率No与“理想接收机”输出的额定噪声功率NiGa之比。
实际接收机的输出额定噪声功率No由两部分组成, 其中一部 分是NiGa(NiGa=kT0BnGa), 另一部分是接收机内部噪声在输出端 所呈现的额定噪声功率ΔN, 即
No=NiGa+ΔN=kT0BnGa+ΔN
② 为使噪声系数具有单值确定性, 规定输入噪声以天线等 效电阻RA在室温T0=290K时产生的热噪声为标准, 所以由式 (3.2.12)可以看出, 噪声系数只由接收机本身参数确定。
③ 噪声系数F是没有单位的数值, 通常用分贝表示
F=10 lg F(dB)
(3.2.13)
④ 噪声系数的概念与定义, 可推广到任何无源或有源的四端网络。
(3.2.7)
即
Bn
0 pno ( f )df pno ( f )
| H ( f ) |2 df
0
H 2( f0)
式中, H2(f0)为线性电路在谐振频率f0处的功率传输系数。