风力发电机雷电防护
浅析风力发电机组的雷电防护

浅析风力发电机组的雷电防护摘要随着风电技术的发展,大型风力发电机不断研制成功,随之机组的塔架也越来越高,风力机遭受雷击的几率也比过去增加了很多,在沿海或林区的风电场,防雷是不可忽视的,在这些风电场尽管也采取了一些防雷措施,但雷击还是造成了叶片和电控器件的损坏,借鉴经验及总结教训,我们应该做到防患于未燃,将防雷工作做的更彻底、更全面,以使雷击对风机的损坏降到最小。
关键词:风电;风力发电机;防雷一、引言雷电是自然界中一种常见的放电现象。
关于雷电的产生有多种解释理论,通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。
当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。
具体来说,冰晶的摩擦、雨滴的破碎、水滴的冻结、云体的碰撞等均可使云粒子起电。
一般云的顶部带正电,底部带负电,两种极性不同的电荷会使云的内部或云与地之间形成强电场,瞬间剧烈放电爆发出强大的电火花,也就是我们看到的闪电。
在闪电通道中,电流极强,温度可骤升至2万摄氏度,气压突增,空气剧烈膨胀,人们便会听到爆炸似的声波振荡,这就是雷声。
而对我们生活产生影响的主要是近地的云团对地的放电。
经统计,近地云团大多是负电荷,其场强最大可达20kV/m。
二、雷电的危害自然界每年都有几百万次闪电。
雷电灾害是“联合国国际减灾十年”公布的最严重的十种自然灾害之一。
最新统计资料表明,雷电造成的损失已经上升到自然灾害的第三位。
全球每年因雷击造成人员伤亡、财产损失不计其数。
雷击造成的危害主要有5种:(1)直击雷带电的云层对大地上的某一点发生猛烈的放电现象,称为直击雷。
它的破坏力十分巨大,若不能迅速将其泻放入大地,将导致放电通道内的物体、建筑物、设施、人畜遭受严重的破坏或损害——火灾、建筑物损坏、电子电气系统摧毁,甚至危及人畜的生命安全。
风电雷电防护与检测标准

风电雷电防护与检测标准
风电雷电防护与检测标准是为了确保风力发电机组在雷电环境下能够安全、可靠地运行而制定的一系列标准和规范。
这些标准涉及到风电机组的防雷设计、施工、检测和验收等各个环节,具体包括以下几个方面:
1.接地系统:规定了风电机组接地系统的设计、施工和检测要求,包括接地
电阻的测量和计算、接地线的选择和连接方式等。
2.防雷装置:规定了风电机组防雷装置的设计、施工和检测要求,包括避雷
针、引下线、接地网等的布局、安装和材料选择等。
3.电气系统:规定了风电机组电气系统的防雷要求,包括电源系统、控制系
统、通信系统等的防雷措施和设备选择等。
4.雷电预警与监测:规定了风电机组雷电预警和监测系统的设计、施工和检
测要求,包括雷电预警系统的布局、安装和运行,以及雷电监测数据的处理和分析等。
5.验收与评估:规定了风电机组防雷工程的验收和评估要求,包括验收程序、
评估标准和安全性能测试等。
总之,风电雷电防护与检测标准是为了确保风电机组在雷电环境下能够安全、可靠地运行而制定的一系列标准和规范。
在实际工作中,风电企业应该遵循这些标准,加强风电机组的防雷保护,提高其运行的安全性和可靠性。
风力发电机组雷电防护

为一 个 电气 的整体 , 使之 遭受 雷击 时 , 能 有 一 个 快 速 的通 道沿 塔身 引入 接地 装置 。 由于风力 发 电机 高 度 均 超 过滚 球 半 径 , 侧 击 雷 防 护 必 不 可 少 。风 力 发 电 机 结 构 均 为 金 属 材 料 , 叶 片 内也布 满金 属 网 , 这 样 使 得 风 力 发 电 机 侧 击 雷 防 护 成 为 可 能 。将 各 个 金 属 构 件 相 互 可 靠 搭 接 , 形 成 机 身全 面等 电位 连接 , 连 接 处 过 渡 电 阻 同 样 需 要 符 合 要求 0 . O 3 Q。 3 . 2 . 3 接 地 装 置 。 风 力 发 电 机 组 的 接 地 网 要 进 行 总 体 设 计 。 ① 风 力 发 电 机 与 机 组 变 压 器 要 共 用 同一 接 地装 置 , 防雷接 地 、 放静 电接 地 、 工 作接 地均 共用 ; ② 接 地 网 的 形 式 要 网形 闭 合 , 形 成 闭合环 形接地 网 , 对 于各类 土 壤可 降低 对 接 地 电阻 的要 求 ; ③ 地 网 的 面 积不 应小 于 1 2 0 0 m。 ; ④ 垂 直 接 地 体 围绕 风 机 基 础 布设 不应 少 于 三 层 , 距塔筒 中心 1 0 m、 1 5 m、 2 0 m 布设 , 水平 间距 应每 隔 5 m 布设 一 根 , 采 用辐 散 式设 计 主 要 考 虑 接 地 装 置 在 泄 放 雷 电流 时 , 均匀泄 放 , 降 低 接地 装置 上 的高 电位差 , 防 止地 电位 反击 的形成 ; ⑤ 水平 接地 体要 与 风 机 基 础钢 筋 交 汇 处 可靠 连 接 , 同 塔 筒 内部 等 电 位 均 压 环 可 靠 连 接 , 接 地 线 平 直 设 置 , 铜 质接 地线 截面 积不 应 小 于 1 0 0 am r ; ⑥ 风 机 接 地 引线 不应 少 于三 根 、 机 组 变 压 器 接 地 引 线 不 应 少 于两 根 ; ⑦ 接地 装置 使用 材料 必须符 合 规范要 求 ; ⑧ 般情 况下 , 共 用 接地 电 阻值 不 应 大 于 4 Q, 但 土 壤 电阻率 较高 地 区可 以 适 当放 宽 接 地 阻值 的要 求 ; ⑨ 接 地装 置 的埋深 不应 小 于地平 面 1 . 5 m_ 8 ] 。
风力发电机防雷系统的组成、措施及思路

风力发电机防雷系统的组成、措施及设计思路1.风电防雷的组成风电的防雷主要由雷电电磁脉冲防护系统和直击雷防护系统组成。
雷电电磁脉冲防护系统主要针对风电的掌握系统;直击雷防护系统主要包括风塔、叶片及接地系统的防护。
从构筑物的角度进行考虑,风塔可以进行LPZ进行防雷分区,依据这种分区方式同样可以确定风塔的不同位置需要实行什么样的防护措施。
依据危急成都进行划分:处于LPZO区的部分包括叶片、风速仪,LPZ1区包括:风机(机舱)罩、塔桶内电缆、,LPZ2区包括: 变浆柜、掌握柜、等。
2.掌握系统的防雷设计对于处于野外高雷击风险环境的雷电电磁脉冲防护应重点考虑采纳等电位、屏蔽及在掌握线路上安装SPD。
3. 1机舱内的等电位系统设计风电掌握机舱内主要有变浆掌握柜、制动掌握柜、机械箱(齿轮箱)、液压掌握柜、发电机及传动系统,由于各系统之间的链接主要是靠地板的链接,各金属外壳间存在肯定的接触电阻,所以应重点做好设施之间的等电位链接,可在用紫铜带或者铜编织带进行牢靠的等电位链接。
4.2屏蔽措施屏蔽措施主要针对目前国内一些风机外科采纳高强度玻璃钢材料而言,由于雷电电磁脉冲的冲击是在空间范围内存在的,所以,为了削减机舱内电子设施受雷电电磁脉冲的冲击,应采纳金属的机舱罩, 减弱雷电电磁脉冲对机舱内设施的影响,减小雷电电磁脉冲的强度,同时也可有效的削减雷电电磁脉冲在线路上产生的浪涌脉冲。
2.3在不同位置安装相应的SPD依据国外风场的统计数据表明,风电场因雷击而损坏的主要风电机部件是掌握系统和通讯系统。
雷击事故中的40%〜50%涉及到风电机掌握系统的损坏,15%〜25%涉及到通讯系统,15%〜20%涉及到风机叶片,5%涉及到发电机。
由此可见,雷电对风机系统遭成的影响是不同的,进行具有针对性的防护是避开和削减事故的重要手段。
依据IEC61312-3. 61024和61400及GB500577994中关于雷电流安排的推举计算可计算出风机内部不同系统存在的雷击电流强度。
风力发电站防雷技术要求

风力发电站防雷技术要求
1.现代风力发电站设计应考虑雷电保护。
在选址时应考虑雷电频率和强度等因素,以确保风力发电站的雷电保护效果。
2. 风力发电站应设立接地系统,以确保设备与地面之间的电位差不超过安全范围。
接地系统应满足国家标准和规范要求。
3. 风力发电站应配备适当的避雷设备,如避雷针、避雷带等等,以防止雷电对设备的损坏和火灾等安全事故的发生。
4. 风力发电站应进行雷电防护的设备和线路的隔离和保护。
应采用合适的防雷措施,如采用避雷器、绝缘子等,以提高风力发电站的雷电保护能力。
5. 风力发电站应定期进行雷电保护的检查和维护。
应制定完善的防雷检查制度,定期对设备和线路进行检查和维护,确保设备的正常运行和安全使用。
6. 风力发电站应建立防雷应急预案,以应对雷电对设备和人员造成的安全威胁。
应制定完善的应急预案和演练方案,以确保在雷电事故发生时能够迅速、有效地应对。
7. 风力发电站应加强防雷技术研究和应用。
应不断探索和推进防雷技术的发展和应用,提高风力发电站的抗雷能力和安全性能。
- 1 -。
风力发电机雷电防护 共28页PPT资料

防雷系统的思路
通过外部防雷装置将雷电与雷电电磁脉冲的能量泄放到大 地,并且应符合层次性原则,即尽可能多、尽可能远地将 多余能量在引入通信系统之前泄放入地;层次性就是按照 所设立的防雷保护区分层次对雷电能量进行削弱。
等电位就是保持系统各部分不产生足以致损的电位差。由 可靠的接地系统、等电位连接用的金属导线和等电位连接 器(防雷器)组成一个电位补偿系统,在瞬态现象存在的 极短时间里,这个电位补偿系统可以迅速地在被保护系统 所处区域内将所有导电部件之间建立起一个等电位区域, 使得所有导电部件之间不存在显著的电位差。
外部防雷措施
通过70mm2铜编织带缠绕硅胶条柔性连接的方式将叶片和 轮毂等电位连接。如图(4)所示。 图(4)叶片至轮毂的连接
外部防雷措施
风机的主轴接地利用与锁紧盘连接的两个接地铜刷通过 70mm2铜编织带连接到机架。接地示意图如图(5)。 具体装配方法及要求详见图纸1-MF-660-000-A、图 纸1-MF-670-000-A。机架的接线柱如下图(6)所 示。
图(5)主轴接地示意图
外部防雷措施
图(6)机架接线柱位置示意图
外部防雷措施
机架与塔筒的连接采用碳刷与防雷引弧爪并联方式,连接 点为2处,碳刷数量共4个。碳刷通过偏航制动器防雷支架 固定在偏航制动器的支座上,安装后与偏航制动器的压力 大约150N。安装前需将偏航制动器内圆周面的油漆与污渍 清理干净。装配示意图如图(7):
图(1)气象桅杆法兰跨接示意图
外部防雷措施
图(2)机架气象桅杆接线柱位置示意图
外部防雷措施
2、叶片尖端装有雷电捕捉器,捕捉器截面积大约 200~300mm2。雷电捕捉器通过叶片内部的70mm2接地电缆 连接到叶片根部法兰处,每个叶片接地线底部安装有一个 雷电峰值记录卡。如图(3)所示:
风力发电机的防雷知识

风力发电机的防雷知识
风力发电机为什么要做雷电防护?雷击发生时,闪电电流通过风力发电机组件传导至地面,由于风力发电机位于疾风区,通常选址在空旷开阔的丘陵或山脊上,其高度远高于周围的地形地物,再加上风力发电机安装地点土壤电阻率通常较高,对雷电流的传导性能相对较差,特别容易受到直击雷、侧击雷和感应雷的袭击,因此,对风电机组件采取防雷措施是非常必要的。
那么,风力发电机雷电防护内容是什么呢?目前国际上还没有专门针对风力发电的雷电防护标准,只能参照IEC61024-1、IEC61024-1-2、IEC61312-2、IEC61312-3、IEC61312-4和IEC61312-5等标准的相关内容,通过对风机内机械、传动、电气和电子系统的屏蔽、等电位连接、浪涌保护器(SPD)和氧化锌避雷器,过压保护器,接地装置,人为的把雷击造成的损坏降到可接受的水平。
风力发电机的雷电绕击分析与防护

风力发电机的雷电绕击分析与防护风力发电因其清洁无污染、可永续利用等特点,对于调整我国能源结构、加强资源节约利用、促进生态环境保护、推进经济可持续发展意义重大。
我国幅员辽阔,风能资源丰富,发展风力发电优势得天独厚。
为了能保障风机发电系统在一个可靠的环境下安全运行,对风机采取相应的雷击保护措施是不可避免的。
对此,本文针对风力发电机雷击及其防护进行了研究,以雷击风机桨叶暂态特性仿真分析为案例,提出了防雷整改措施,希望为雷击事故应对和处理提供参考。
标签:风力发电机;雷电绕击;防护风力发电是将风能进行较为直接地开发利用,风电场一般建立在山顶、荒漠、滩涂等自然地理环境复杂且容易受到雷电灾害影响的地方,雷击事故时有发生,风力发电的蓬勃发展正在受到日益严重的雷电灾害的威胁。
国内外相关案例都表明雷击是严重威胁风力发电场安全的主要问题之一。
雷电击中风机后,雷电流将会对风机叶片等结构造成严重破坏,导致高昂的经济损失,如维修费用、人工成本和停运损失等。
为避免雷击事故中雷电流对风机的损害,风电场的雷击防护至关重要。
一、雷电放电概述雷电具有非常强大的爆发力,也具有很大的随机性,雷电的放电主要是雷云和雷云之间或者雷云内部进行的,其中雷云放电是在某些适当的地理和气象条件下,由于比较强烈的潮湿热气流不断上升进入稀薄大气层后冷凝的结果。
雷云对地放电是从下行先导放电阶段开始的。
如今的风电机组容量已经从几百千瓦扩大到兆瓦级的,高度也已经达到了一百多米,属于高体结构,其雷云在下行先导通道中负电荷的感应作用下,风电机组会出现感应正电荷。
当下行先导头部接近机组时,风机的叶片尖端部分会发生畸变作用,伴随着电场强度快速扩大,附近的大部分空气产生游离,就会发生上行先导。
其中上升放电先导是分布正电荷,向上的速度是(0.05~1.2)×106m/s。
接着上升先导和下升先导在空气中会合之处就产生了回击放电,于是风机就遭受了雷击,会合之处就是雷击点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑物电子信息系统
WEC MINGYANG 1.5 MW Lightning Protection(
Aerodyn)
精品课件
防雷设计遵循原则
风机的接地电阻值应不大于4欧姆。 与风机结合在一起的所有的金属件都应等电位连接在一起,
并与防雷装置相连。 接地系统有直通大地的连接,等电位连接网不应设单独的
线盒内部;照明系统;机舱与塔筒的线缆;塔筒内部;箱 式变电站内部; LPZ 2…n 电涌破坏进一步减弱,电磁破坏影响更小
这类区域包括:变桨控制箱内部;塔基控制柜内部;箱 式变电站开关柜内部;
精品课件
防雷系统的思路
通过外部防雷装置将雷电与雷电电磁脉冲的能量泄放到大 地,并且应符合层次性原则,即尽可能多、尽可能远地将 多余能量在引入通信系统之前泄放入地;层次性就是按照 所设立的防雷保护区分层次对雷电能量进行削弱。
E≥99.7%
精品课件
防雷保护级别及其参数
根据IEC61400-24风力发电机系统-防雷保护,结合WEC MINGYANG 1.5 MW Lightning Protection(Aerodyn), 在此我们把明阳风力发电机按照一类防雷进行设计。
参数(防雷保护等级1)
精品课件
风力发电机雷电防护区域 的划 分
等电位就是保持系统各部分不产生足以致损的电位差。由 可靠的接地系统、等电位连接用的金属导线和等电位连接 器(防雷器)组成一个电位补偿系统,在瞬态现象存在的 极短时间里,这个电位补偿系统可以迅速地在被保护系统 所处区域内将所有导电部件之间建立起一个等电位区域, 使得所有导电部件之间不存在显著的电位差。
图(7)偏航轴承刹车制动盘碳刷装配示意图
精品课件
外部防雷措施
从塔内接地环预留端子引出一条240mm2接地电缆,与机架 接线柱可靠相连,使机架可靠接地。接地电缆要求最短。 此电缆通过解缆系统时,在保证安全的情况下保持最短的 线路和最小的感应率。机架接地点如图(8)中红色接线 柱。
图(8)机架接地点示意图
图(5)主轴接地示意图
精品课件
外部防雷措施
图(6)机架接线柱位置示意图
精品课件
外部防雷措施
机架与塔筒的连接采用碳刷与防雷引弧爪并联方式,连接 点为2处,碳刷数量共4个。碳刷通过偏航制动器防雷支架 固定在偏航制动器的支座上,安装后与偏航制动器的压力 大约150N。安装前需将偏航制动器内圆周面的油漆与污渍 清理干净。装配示意图如图(7):
精品课件
等电位连接
机舱柜 门和侧板使用6mm2的电缆进行跨接。 控制柜带有一个可靠的外部接地点,这一点通过35mm2
的电缆与机架接地点进行最短距离连接。控制柜外部接地 点如图(9)所示。
图(9)机舱控制控制柜外部接地点
精品课件
等电位连接
发电机转子接地点与机架接地点相连。选用95mm2电缆进 行连接。发电机转子外部接地点如图(10)所示
Ng=0.1×Td
Td—年平均雷暴日。这里根据湛江气象站资料,为96次/年 。
Ng=0.1×96
=9.6
雷电直接击中平地上风机的年平均频率
Nd=Ng×9πh2×10-6
=9.6×9π×1002×10-6
=2.71
在小山或者丘陵的风力发电机遭受雷击的概率为平地风机的 2倍。
防雷保护系统效率
E ≥(1- 10-3/3.58 )×100%
精品课件
外部防雷措施
1、气象桅杆做成避雷针的形状。在气象桅杆的合叶连接 的上端面通过35 mm2导线以最短连接方式连接到机架接地 点上,接地电缆应保持一定的松紧度,不宜拉的太紧,以 免因为热胀冷缩而损坏。接地电缆安装尽量做到短、直。 气象桅杆避雷针的连接法兰采用35mm2接地电缆跨接,跨 接前应将接线端子与法兰的接触面的油漆去掉。
雷电防护区的提出,是为保护风机系统里的元件。风机系 统可以分为几个不同的区域。雷电防护系统依据标准制定 划分区域,目的是为了减少电磁干扰与可预见的耦合干扰。
LPZ 0A 有直击雷侵袭的危险,完全处在电磁场环境中,完全具
有雷击电涌破坏的可能。 这个区域包括:叶片;机舱罩;气象桅杆避雷针系统;
塔架 LPZ 0B
图(10)发电机转子外部接地点
如图(3)叶片正面形状及防雷电结构示意图
精品课件
外部防雷措施
通过70mm2铜编织带缠绕硅胶条柔性连接的方式将叶片和 轮毂等电位连接。如图(4)所示。 图(4)叶片至轮毂的连接
精品课件
外部防雷措施
风机的主轴接地利用与锁紧盘连接的两个接地铜刷通过 70mm2铜编织带连接到机架。接地示意图如图(5)。具 体装配方法及要求详见图纸1-MF-660-000-A、图纸 1-MF-670-000-A。机架的接线柱如下图(6)所示。
没有直接遭受雷击的危险,但电磁场环境与雷电电涌没 有任何减低。 这类区域包括:风向仪;风速仪;航标灯;机舱内部; 发电机;齿轮箱;液压系统;传动系统;电气控制柜;
精品课件
风力发电机雷电防护区域 的划 分
LPZ 1 可选择SPD保护设备,存在电涌破坏的危险,电磁场由
于屏蔽作用已经减弱。 这类区域包括:轮毂内部;机舱电控柜内部;发电机接
风力发电机防雷保护方案
精品课件
设计依据,标准、规范
IEC61024-1 分 通则
建筑物防雷 第一部
IEC/TR 61400-24 保护
风力发电机系统-防雷
IEC61312-1 第一部分 通则
雷电电磁脉冲的防护
GB 50057-2010 建筑物防雷设计规范Biblioteka B 50343-2004 防雷设计规范
图(1)气象桅杆法兰跨接示意图
精品课件
外部防雷措施
图(2)机架气象桅杆接线柱位置示意图
精品课件
外部防雷措施
2、叶片尖端装有雷电捕捉器,捕捉器截面积大约 200~300mm2。雷电捕捉器通过叶片内部的70mm2接地电缆连 接到叶片根部法兰处,每个叶片接地线底部安装有一个雷 电峰值记录卡。如图(3)所示:
接地装置。 防雷接地、交流工作接地、直流工作接地、安全保护接地、
防静电接地共用一组接地装置。 接地装置应利用风机的自然接地体,当自然接地体的接地
电阻达不到要求时必须增加人工接地体。 接地设计必须遵守国际标准和规范。
精品课件
10 3 3 . 58
风力发电机雷电损坏风险评估
雷击大地的年平均密度