高考数学 题型全归纳 正余弦定理常见解题类型典型例题

合集下载

正余弦定理题型总结(全)汇总

正余弦定理题型总结(全)汇总

平面向量题型归纳(全)题型一:共线定理应用例一:平面向量→→b a ,共线的充要条件是( )A.→→b a ,方向相 同 B. →→b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→→b a λλλλ变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→→b a //”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件变式二:设→→b a ,是两个非零向量( )A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→→→→=+b a b a _ C. 若→→→→=+ba b a _,则存在实数λ,使得→→=a b λ D 若存在实数λ,使得→→=a b λ,则→→→→=+ba b a _例二:设两个非零向量→→21e e 与,不共线,(1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e e e e e ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→→21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。

变式二:已知向量→→b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D题型二:线段定比分点的向量形式在向量线性表示中的应用例一:设P 是三角形ABC 所在平面内的一点,,2+=则( )A. +=B. +=C. +=D. ++=变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且OC OB OA ++=20,那么( )A. OD A =0B. OD A 20=C. OD A 30=D. OD A =02变式二:在平行四边形ABCD 中a AB =,b AD =,NC AN 3=,M 为BC 的中点,则=MN ( 用b a ,表示)例二:在三角形ABC 中,=,=,若点D 满足2=,则=( )A. ,3132+B. ,3235-C. ,3132-D. ,3231+变式一:(高考题) 在三角形ABC 中,点D 在边AB 上,CD 平分角ACB,a CB =,b CA =21==,则=( )A. ,3231+B. ,3132+C. ,5453+ D. ,5354+变式二:设D,E,F 分别是三角形ABC 的边BC,CA,AB 上的点,且,2=,2=,2=则++,与( )A.反向平行B. 同向平行C.互相垂直D.既不平行也不垂直变式三:在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若μλ+=,其,,R ∈μλ则μλ+=变式四:在平行四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,a AC =,b BD =则=( )A.,2141+ B. ,3132+ C. ,4121+ D. ,3231+题型三:三点共线定理及其应用例一:点P 在AB 上,求证:μλ+=且μλ+=1(,,R ∈μλ)变式:在三角形ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 和N,若,m =,n =则m+n=例二:在平行四边形ABCD 中,E,F 分别是BC,CD 的中点,DE 与AF 交于点H,设,=,=则= A.,5452- B. ,5452+ C. ,5452+- D. ,5452--变式:在三角形ABC 中,点M 是BC 的中点,点N 是边AC 上一点且AN=2NC,AM 与BN 相交于点P,若,λ=求λ的值。

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题 正弦定理和余弦定理的应用一、题型全归纳题型一 利用正弦、余弦定理解三角形【题型要点】(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;①利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【例1】 (2020·广西五市联考)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ①B ①C 为( ) A .1①1①3 B .1①2①3 C .1①3①2D .1①4①1【解析】:法一:由正弦定理a sin A =b sin B ,得sin B =b sin A a =32.因为B 为锐角,所以B =60°,则C =90°,故A ①B ①C =1①2①3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,①ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.【例2】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【解析】选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. 【例3】(2020·济南市学习质量评估)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A . ①求角B 的大小;①若a =5,c =3,边AC 的中点为D ,求BD 的长.【解析】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc=-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理,得2sin C +sin A =2sin B cos A , 又sin C =sin(A +B )=sin A cos B +cos A sin B ,所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.①由余弦定理得b 2=a 2+c 2-2a ·c cos①ABC =52+32+5×3=49,所以b =7,所以AD =72.因为cos①BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos①BAC =9+494-2×3×72×1114=194,所以BD =192.题型二 判断三角形的形状【题型要点】判定三角形形状的两种常用途径【易错提醒】“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.【例1】(2020·蓉城名校第一次联考)设①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B=a sin A ,则①ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .不确定【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此①ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A ,所以sin B cos C +sin C cos B =sin 2 A ,即sin(B +C )=sin 2 A ,所以sin A =sin 2 A ,故sin A =1,即A =π2,因此①ABC 是直角三角形.【例2】在①ABC 中,若c -a cos B =(2a -b )cos A ,则①ABC 的形状为 .【解析】因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A ,故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B ,A =π2或A =B ,故①ABC 为等腰或直角三角形.题型三 与三角形面积有关的问题命题角度一 计算三角形的面积【题型要点】1.①ABC 的面积公式(1)S ①ABC =12a ·h (h 表示边a 上的高).(2)S ①ABC =12ab sin C =12ac sin B =12bc sin A .(3)S ①ABC =12r (a +b +c )(r 为内切圆半径).2.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【例1】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =6,a =2c ,B =π3,则①ABC的面积为 .【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以①ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以①ABC 的面积S =12×23×6=6 3.【例2】(2020·福建五校第二次联考)在①ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则①ABC 的面积为 .【解析】因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S ①ABC =12ab sin C=12×23sin π6=32. 命题角度二 已知三角形的面积解三角形【题型要点】已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.【提示】正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用. 【例3】(2020·湖南五市十校共同体联考改编)已知a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且①ABC 的面积为32,则ab = ,a +b = . 【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cos C =13,则C 为锐角,所以sin C =223.由①ABC 的面积为32,可得12ab sin C =32,所以ab =9.由c 是a ,b 的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【例4】(2020·长沙市统一模拟考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若①ABC 的面积为3,周长为8,求a .【解析】:(1)由题设得a sin C =c cos A 2,由正弦定理得sin A sin C =sin C cos A 2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.题型四 三角形面积或周长的最值(范围)问题【题型要点】求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.【例1】(2020·福州市质量检测)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求①ABC 外接圆的直径;(2)求a +c 的取值范围.【解析】:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3.根据正弦定理得,①ABC 的外接圆直径2R =bsin B =32sin π3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知①ABC 的外接圆直径为1,根据正弦定理得,a sin A =b sin B =c sin C=1, 所以a +c =sin A +sin C =sin A +sin ⎪⎭⎫⎝⎛A -32π=3⎪⎪⎭⎫ ⎝⎛+A A cos 21sin 23=3sin ⎪⎭⎫ ⎝⎛+6πA . 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,从而32<3sin ⎪⎭⎫ ⎝⎛+6πA ≤3,所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ≥(a +c )2-322⎪⎭⎫ ⎝⎛+c a =14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 题型五 解三角形与三角函数的综合应用【题型要点】标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.【例1】 (2020·湖南省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ①R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,①ABC 的面积为12,求a 的值.【解析】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎪⎭⎫ ⎝⎛+62πx +1.令2x +π6①⎥⎦⎤⎢⎣⎡++ππππk k 22,22-,k ①Z ,解得x ①⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z ,所以函数f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z .(2)因为f (A )=sin ⎪⎭⎫⎝⎛+62πA +1=2,所以sin ⎪⎭⎫ ⎝⎛+62πA =1. 因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由①ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),解得a =3-1. 【例2】①ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B . (1)求角C 的大小;(2)求3cos A +sin ⎪⎭⎫⎝⎛+3πB 的最大值,并求出取得最大值时角A ,B 的值. 【解析】:(1)法一:在①ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B ,又A +B +C =π,则sin A =sin(π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0,则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac ,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,3cos A +sin ⎪⎭⎫⎝⎛+3πB =3cos A +sin(π-A )=3cos A +sin A =2sin ⎪⎭⎫⎝⎛+3πA , 因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎪⎭⎫ ⎝⎛+3πA 的最大值为2,此时B =π2.二、高效训练突破 一、选择题1.(2020·广西桂林阳朔三校调研)在①ABC 中,a ①b ①c =3①5①7,那么①ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形【解析】:因为a ①b ①c =3①5①7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,①ABC 是钝角三角形,故选B. 2.(2020·河北衡水中学三调)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B sin C =sin 2A ,则①ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形【解析】:在①ABC 中,因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A ①(0,π),所以A =π3,因为sin B sin C =sin 2A ,所以bc =a 2,代入b 2+c 2=a 2+bc ,得(b -c )2=0,解得b =c ,所以①ABC 的形状是等边三角形,故选C.3.(2020·河南南阳四校联考)在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =8,c =3,A =60°,则此三角形外接圆的半径R =( ) A.823 B.1433 C.73D .733【解析】:因为b =8,c =3,A =60°,所以a 2=b 2+c 2-2bc cos A =64+9-2×8×3×12=49,所以a =7,所以此三角形外接圆的直径2R =a sin A =732=1433,所以R =733,故选D. 4.(2020·湖南省湘东六校联考)在①ABC 中,A ,B ,C 的对边分别为a ,b ,c ,其中b 2=ac ,且sin C =2sinB ,则其最小内角的余弦值为( )A .-24 B.24 C.528D .34【解析】:由sin C =2sin B 及正弦定理,得c =2b .又b 2=ac ,所以b =2a ,所以c =2a ,所以A 为①ABC 的最小内角.由余弦定理,知cos A =b 2+c 2-a 22bc =(2a )2+(2a )2-a 22·2a ·2a=528,故选C.5.(2020·长春市质量监测(一))在①ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( ) A .60°B .120°C .45°D .135°【解析】:法一:由b =a cos C +12c 及正弦定理,可得sin B =sin A cos C +12sin C ,即sin(A +C )=sin A cos C+12sin C ,即sin A cos C +cos A sin C =sin A cos C +12sin C ,所以cos A sin C =12sin C ,又在①ABC 中,sin C ≠0,所以cos A =12,所以A =60°,故选A.法二:由b =a cos C +12c 及余弦定理,可得b =a ·b 2+a 2-c 22ab +12c ,即2b 2=b 2+a 2-c 2+bc ,整理得b 2+c 2-a 2=bc ,于是cos A =b 2+c 2-a 22bc =12,所以A =60°,故选A.6.(2020·河南三市联考)已知a ,b ,c 分别为①ABC 三个内角A ,B ,C 的对边,sin A ①sin B =1①3,c =2cos C =3,则①ABC 的周长为( ) A .3+3 3 B .23 C .3+2 3D .3+3【解析】:因为sin A ①sin B =1①3,所以b =3a , 由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以①ABC 的周长为3+23,故选C.7.(2020·湖南师大附中4月模拟)若①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,①ABC的面积S =52cos A ,则a =( ) A .1 B.5 C.13D .17【解析】:因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A . 所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.易得cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a =1.故选A. 8.(2020·开封市定位考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,①ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( ) A .10 B .12 C .8+ 3D .8+23【解析】:因为①ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cosA +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以①ABC 为正三角形,所以①ABC 的周长为3×4=12.故选B.9.(2020·昆明市诊断测试)在平面四边形ABCD 中,①D =90°,①BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B.6C.7D .22【解析】:如图,在①ACD 中,①D =90°,AD =1,AC =2,所以①CAD =60°.又①BAD =120°,所以①BAC =①BAD -①CAD =60°.在①ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos①BAC =7,所以BC =7.故选C.10.(2020·广州市调研测试)已知①ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2Cc =sin A sin Ba cos B +b cos A ,若a +b =4,则c 的取值范围为( )A .(0,4)B .[2,4)C .[1,4)D .(2,4]【解析】:根据正弦定理可得sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin A cos B +cos A sin B ,即sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin (A +B ),由三角形内角和定理可得sin(A +B )=sin C ,所以sin 2A +sin 2B -sin 2C =sin A sin B ,再根据正弦定理可得a 2+b 2-c 2=ab .因为a +b =4,a +b ≥2ab ,所以ab ≤4,(a +b )2=16,得a 2+b 2=16-2ab ,所以16-2ab -c 2=ab ,所以16-c 2=3ab ,故16-c 2≤12,c 2≥4,c ≥2,故2≤c <4,故选B.二、填空题1.在①ABC 中,角A ,B ,C 满足sin A cos C -sin B cos C =0,则三角形的形状为 . 【解析】:由已知得cos C (sin A -sin B )=0,所以有cos C =0或sin A =sin B ,解得C =90°或A =B . 2.(2020·天津模拟)在①ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C ,则cos B = .【解析】:在①ABC 中,由正弦定理b sin B =c sin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sinC ,即3b =4a .因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.3.(2020·河南期末改编)在①ABC 中,B =π3,AC =3,且cos 2C -cos 2A -sin 2B =-2sin B sin C ,则C = ,BC = .【解析】:由cos 2C -cos 2A -sin 2B =-2sin B sin C ,可得1-sin 2C -(1-sin 2A )-sin 2B =-2sin B sin C ,即sin 2A -sin 2C -sin 2B =-2sin B sin C .结合正弦定理得BC 2-AB 2-AC 2=-2·AC ·AB ,所以cos A =22,A =π4,则C =π-A -B =5π12.由AC sin B =BC sin A,解得BC = 2.4.在①ABC 中,A =π4,b 2sin C =42sin B ,则①ABC 的面积为 .【解析】:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S ①ABC =12bc sin A =12×42×22=2.5.(2020·江西赣州五校协作体期中改编)在①ABC 中,A =π3,b =4,a =23,则B = ,①ABC 的面积等于 .【解析】:①ABC 中,由正弦定理得sin B =b sin A a =4×sinπ323=1.又B 为三角形的内角,所以B =π2,所以c =b 2-a 2=42-(23)2=2,所以S ①ABC =12×2×23=2 3.6.在①ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S ①ABC =574,则b 的值为 .【解析】:由sin A sin B =5c 2b ①a b =5c 2b ①a =52c ,①由S ①ABC =12ac sin B =574且sin B =74得12ac =5,①联立①,①得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.三 解答题1.(2020·兰州模拟)已知在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0. (1)求角A 的大小;(2)若a =25,b =2,求边c 的长.【解析】:(1)因为a sin B +b cos A =0,所以sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,所以sin A +cos A =0,所以2sin ⎪⎭⎫⎝⎛+4πA =0,而A 为三角形的内角,所以A =3π4. (2)在①ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎪⎪⎭⎫⎝⎛22-,解得c =-42(舍去)或c =2 2. 2.在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求cos B 的值.【解析】:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33.(2)因为sin A a =cos B 2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255.3.(2020·福建五校第二次联考)在①ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A . (1)求角A 的大小;(2)若a =2,求①ABC 面积的最大值.【解析】:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S ①ABC =12bc sin A ≤2+3,故①ABC 面积的最大值为2+ 3.4.(2020·广东佛山顺德第二次质检)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:①ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且①ADB =2①ACD ,a =3,求b 的值.【解析】:(1)证明:因为2b sin C cos A +a sin A =2c sin B ,所以由正弦定理得2bc cos A +a 2=2cb ,由余弦定理得2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c .故①ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1,因为①ADB =2①ACD =①ACD +①DAC , 所以①ACD =①DAC ,所以AD =CD =1.又因为cos①ADB =-cos①ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9,由(1)可知b =c ,得b = 3.法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以①B =①C ,又因为①DAC =①ADB -①C =2①C -①C =①C =①B , 所以①CAB ①①CDA ,所以CB CA =CA CD ,即3b =b1,所以b = 3.5.(2020·重庆市学业质量调研)①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知①ABC 的面积为32ac cos B ,且sin A =3sin C .(1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长.【解析】:(1)因为S ①ABC =12ac sin B =32ac cos B ,所以tan B = 3.又0<B <π,所以B =π3.(2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6.由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎪⎪⎭⎫⎝⎛147-=13.所以BD =13.。

正余弦定理知识点总结及全国高考考试题型

正余弦定理知识点总结及全国高考考试题型

A. 15 4
B. 3 4
C. 3 15 16
D. 11 16
11、在 ABC 中,角 A, B, C 所对的边分 a, b, c .若 a cos A b sin B ,则 sin A cos A cos2 B
A.- 1 B. 1 22
C. -1
12、已知在△ABC中, a 10,b 5 6, A 45°,则 B 。
(A) 4 3
(B)8 4 3
(C) 1
2
(D)
3
9、在△ABC中, A 60°, C 45°, b 2 ,则此三角形的最小边长为。
10、在△ABC中, a 1,b 1 , C 120°则 c 。
11、在 ABC 中.若 b=5, B ,sinA= 1 ,则 a
.
4
3
12、若△ABC 的面积为 3,BC=2,C=60°,则边 AB 的长度等于
A、 1
B、 1
C、 1
D、 1
64
32
16
8
4、在△ABC中, a 2 , A 30°, C 45°,则△ABC的面积 SABC 等于( )
A、 2 B、2 2
C、 3 1
D 、1 ( 3 1) 2
5、 ABC 中, B 120, AC 7, AB 5 ,则 ABC 的面积为

6、已知ABC
A、等边三角形 B、直角三角形 C、等腰三角形 D、等腰三角形或直角三角形
8、△ABC中, sin2 A sin2 B sin2 C ,则△ABC为( )
A、直角三角形
B、等腰直角三角形 C、等边三角形 D、等腰三角形
9、已知关于 x 的方程 x2 x cos A cos B 2 sin2 C 0 的两根之和等于两根之积的一半, 2

高考数学复习好题精选 正弦定理和余弦定理应用举例

高考数学复习好题精选 正弦定理和余弦定理应用举例

正弦定理和余弦定理应用举例题组一距 离 问 题1.一船自西向东航行,上午10时到达灯塔P 的南偏西75°、距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为( )A.海里/时 B .34海里/时17626C.海里/时 D .34海里/时17222解析:如图.由题意知∠MPN =75°+45°=120°,∠PNM =45°.在△PMN 中,由正弦定理,得sin120sin 45MN PM = ,∴MN.又由M 到N 所用时间为14-10=4小时,∴船的航行速度v== (海里/时).答案:A2.一船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得=,解得BM=30 km.60sin45°BMsin30°2答案:3.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.解:在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .①在△BCD 中,由正弦定理可得BC ==a . ②a sin105°sin45°3+12在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A 、B 两点之间的距离为AB ==a .AC 2+BC 2-2AC ·BC ·cos30°22题组二高 度 问 题4.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是 ( )A.米 B .10米 C.米 D .20米2063610632解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,20sin 45sin 60AO ,∴AO= (米).答案:A5.在一个塔底的水平面上某点测得该塔顶的仰角为θ,由此点向塔底沿直线行走了30 m ,测得塔顶的仰角为2θ,再向塔底前进103m ,又测得塔顶的仰角为4θ,则塔的高度为________.解析:如图,依题意有PB=BA=30,PC=BC=.在三角形BPC 中,由余弦定理可得cos2θ,所以2θ=30°,4θ=60°,在三角形PCD 中,可得PD =PC ·sin4θ=15(m).答案:15 m6.某人在山顶观察地面上相距2 500m 的A 、B 两个目标,测得目标A 在南偏西57°,俯角为30°,同时测得B 在南偏东78°,俯角是45°,求山高(设A 、B 与山底在同一平面上,计算结果精确到0.1 m).解:画出示意图(如图所示)设山高PQ =h ,则△APQ 、△BPQ 均为直角三角形,在图(1)中,∠PAQ =30°,∠PBQ =45°.∴AQ =tan 30PQ = ,BQ =tan 45PQ =h .在图(2)中,∠AQB =57°+78°=135°,AB =2 500,所以由余弦定理得:AB 2=AQ 2+BQ 2-2AQ ·BQ cos ∠AQB ,即2 5002h )2+h 2h ·h )h 2,∴h984.4(m).答:山高约984.4 m.题组三角 度 问 题7.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,如果c =a ,B =30°,那么3角C 等于 ( )A .120°B .105°C .90°D .75°解析:∵c =a ,∴sin C =sin A =sin(180°-30°-C )=sin(30°+C )3333=(sin C +cos C ),33212即sin C =-cos C .∴tan C =-.又C ∈(0,180°),33∴C =120°.答案:A8.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b >c 新的三角形的三边长为a +x 、b +x 、c +x ,知c +x 为最大边,其对应角最大.而(a +x )2+(b +x )2-(c +x )2=x 2+2(a +b -c )x >0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.答案:A题组四正、余弦定理的综合应用9.有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为 ( )A .300 mB .400 mC .200 mD .200 m3解析:如图,AD 为山坡底线,AB 为行走路线,BC 垂直水平面.则BC=100,∠BDC=30°,∠BAD=30°,∴BD=200,AB=2BD=400 米.答案:B10.线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80km/h 的速度由A 向B 行驶,同时摩托车以50km/h 的速度由B 向C 行驶,则运动开始________h 后,两车的距离最小.解析:如图所示:设th 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理:DE 2=BD 2+BE 2-2BD ·BE cos60°=(200-80t )2+2500t 2-(200-80t )·50t=12900t 2-42000t+40000.当t =7043时DE 最小.答案:704311.如图,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.解:因为CP ∥OB ,所以∠CPO =∠POB =60°-θ,∴∠OCP =120°.在△POC 中,由正弦定理得=,∴=,所以CP =sinθ.OP sin ∠PCO CP sin θ2sin120°CP sin θ43又Error!=,∴OC =sin(60°-θ).2sin120°43因此△POC 的面积为S (θ)=CP ·OC sin120°=·sin θ·sin(60°-θ)×1212434332=sin θsin(60°-θ)=sin θ(cos θ-sin θ)43433212=,θ∈(0°,60°).23所以当θ=30°时,S (θ)取得最大值为.3312.(2010·宁波模拟)某建筑的金属支架如图所示,根据要求AB 至少长2.8 m ,C 为AB 的中点,B 到D 的距离比CD 的长小0.5 m ,∠BCD =60°,已知建造支架的材料每米的价格一定,问怎样设计AB ,CD 的长,可使建造这个支架的成本最低?解:设BC =am (a ≥1.4),CD =bm ,连接BD .则在△CDB 中,(b -)2=b 2+a 2-2ab cos60°.12∴b =.a 2-14a -1∴b +2a =+2a .a 2-14a -1设t =a -1,t ≥-1=0.4,2.82则b +2a =Error!+2(t +1)=3t ++4≥7,34t 等号成立时t =0.5>0.4,a =1.5,b =4.答:当AB =3 m ,CD =4 m 时,建造这个支架的成本最低.。

正余弦定理常见解题类型

正余弦定理常见解题类型

正余弦定理常见解题类型1. 解三角形正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角.余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角.例1 已知在ABC △中,452A a c ∠== ,,解:由余弦定理得22cos454b +-= ,从而有1b =.又222222cos b b C =+-⨯, 得1cos 2C =±,60C ∠= 或120C ∠= . 75B ∴∠= 或15B ∠= .因此,1b =,60C ∠= ,75B ∠=或1b =,120C ∠= ,15B ∠= .注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做.2. 判断三角形的形状利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或 边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理:A B C ++=π;利用余弦定理公式222222cos cos 22b c a a c b A B bc ac+-+-==,, 222cos 2a b c C ab++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题.例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状.解:由正弦定理2sin sin sin a b c R A B C===,R 为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =,sin sin 0B C ≠∵,sin sin cos cos B C B C ∴=,即cos()0B C +=.90B C ∴+= ,即90A = ,故ABC △为直角三角形.3. 求三角形中边或角的范围例3 在ABC △中,若3C B ∠=∠,求c b的取值范围. 解:∵A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2B <<. 又2sin sin334sin sin sin cC B B b B B===-∵, 2134sin 3B ∴<-<.故13c b<<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件.4. 三角形中的恒等式证明根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =.证明:2222cos 2222a c b bc c b c a B ac ac a b+-++====∵, 22222222222cos22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=⨯-===. 又222222()cos 222b c a b c bc b c b A bc bc b+-+-+-===∵, cos cos 2A B ∴=,而A B ,是三角形内角,2A B ∴=.一般的,能用正弦定理解的三角形问题,也可用余弦定理去解.在具体的解题过程中,同学们可根据题意及自己对知识的掌握情况灵活选择运用公式.。

2023届高考数学二轮复习微专题:正、余弦定理在解三角形中的应用 含答案解析

2023届高考数学二轮复习微专题:正、余弦定理在解三角形中的应用 含答案解析

3 正、余弦定理在解三角形中的应用1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =6,c =3,则A =________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为a 2+b 2-c 24,则C=________.4.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.5.在△ABC 中,B =120°,AB =2,A 的平分线AD =3,则AC =________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.设向量m =(a ,c ),n =(cos C ,cos A ). (1)若m ∥n ,c =3a ,求角A ;(2)若m ·n =3b sin B ,cos A =45,求cos C 的值.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos A =35,tan (B -A)=13.(1)求tan B 的值;答案及解析1.答案:75°.解析:由正弦定理b sin B =c sin C ,可得sin B =b sin C c =22,结合b <c ,可得B =45°,则A=180°-B -C =75°.2.答案:π3.解析:由正弦定理可得2sin B cos B =sin A cos C +sin C cos A =sin B ,在△ABC 中,sin B ≠0,可得cos B =12,在△ABC 中,可得B =π3.3.答案:π4.解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .△ABC 的面积为a 2+b 2-c 24,∴S △ABC =12ab sin C =a 2+b 2-c 24,∴sin C =a 2+b 2-c 22ab =cos C ,∵0<C <π,∴C =π4.4.答案:8.解析:因为0<A <π,所以sin A =1-cos 2A =154,又S △ABC =12bc sin A =158bc =315,所以bc =24,解方程组⎩⎪⎨⎪⎧b -c =2,bc =24得b =6,c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =62+42-2×6×4×⎝⎛⎭⎫-14=64,所以a =8.5.答案: 6.解析:如图所示,由正弦定理易得AB sin ∠ADB =AD sin B ,即2sin ∠ADB =3sin B ,故sin ∠ADB =22,即∠ADB =π4,在△ABC ,知∠B =120°,∠ADB =π4,即∠BAD =π12.由于AD 是∠BAC 的平分线,故∠BAC=2∠BAD =π6.在△ABC 中,∠B =120°,∠BAC =30°,易得∠ACB =30°.在△ABC 中,由正弦定理得AC sin ∠ABC =AB sin ∠ACB ,即AC sin60°=2sin30°,所以AC = 6.6.答案:9.解析:由题意得12ac sin120°=12a sin60°+12c sin60°,即ac =a +c ,得1a +1c =1,得4a+c =(4a +c )⎝⎛⎭⎫1a +1c =c a +4ac +5≥2c a ·4a c +5=4+5=9,当且仅当c a =4ac,即c =2a 时,取等号.7.答案:(1)π6;(2)3-8215.解析:(1)∵m ∥n ,∴a cos A =c cos C .由正弦定理,得sin A cos A =sin C cos C .化简得sin2A =sin2C .∵A ,C ∈(0,π),∴2A =2C 或2A +2C =π,从而A =C (舍去)或A +C =π2,∴B =π2.在Rt △ABC 中,tan A =a c =33,A =π6.(2)∵m ·n =3b sin B ,∴a cos C +c cos A =3b sin B .由正弦定理,得sin A cos C +sin C cos A =3sin 2B ,从而sin(A +C )=3sin 2B .∵A +B +C =π,∴sin(A +C )=sin B .从而sin B =13.∵cos A =45>0,A ∈(0,π),∴A ∈⎝⎛⎭⎫0,π2,sin A =35.∵sin A >sin B ,∴a >b ,从而A >B ,B 为锐角,cos B =223. ∴cos C =-cos(A +B )=-cos A cos B +sin A sin B =-45×223+35×13=3-8215.8.答案:(1)3;(2)78.解析:(1)在△ABC 中,由cos A =35,得A 为锐角,所以sin A =1-cos 2A =45,所以tan A=sin A cos A =43,所以tan B =tan[(B -A )+A ]=tan (B -A )+tan A 1-tan (B -A )·tan A=13+431-13×43=3. (2)在三角形ABC 中,由tan B =3,所以sin B =31010,cos B =1010, 由sin C =sin(A +B )=sin A cos B +cos A sin B =131050,由正弦定理b sin B =c sin C ,得b =c sin Bsin C =13×31010131050=15.所以△ABC 的面积S =12bc sin A =12×15×13×45=78.。

高考数学题型全归纳:正、余弦定理在实际生活中的应用典型例题(含答案)

高考数学题型全归纳:正、余弦定理在实际生活中的应用典型例题(含答案)

正、余弦定理在实际生活中的应用正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛、解这类应用题需要我们吃透题意、对专业名词、术语要能正确理解、能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意、分清已知与所求、准确理解应用题中的有关名称、术语、如仰角、俯角、视角、象限角、方位角等;(2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中、通过合理运用正弦定理、余弦定理等有关知识建立数学模型、然后正确求解、演算过程要简练、计算要准确、最后作答.1.测量中正、余弦定理的应用例1 某观测站C 在目标南偏西25︒方向、从出发有一条南偏东35︒走向的公路、在C 处测得公路上与C 相距31千米的处有一人正沿此公路向走去、走20千米到达、此时测得CD 距离为21千米、求此人所在处距还有多少千米?分析:根据已知作出示意图、分析已知及所求、解CBD ∆、求角.再解ABC ∆、求出AC 、再求出AB 、从而求出AD (即为所求).解:由图知、60CAD ∠=︒. 22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯、sin B =. 在ABC ∆中、sin 24sin BC B AC A ⋅==. 由余弦定理、得2222cos BC AC AB AC AB A =+-⋅⋅.即2223124224cos 60AB AB =+-⋅⋅⋅︒.整理、得2243850AB AB --=、解得35AB =或11AB =-(舍).故15AD AB BD =-=(千米).答:此人所在处距还有15千米.评注:正、余弦定理的应用中、示意图起着关键的作用、“形”可为“数”指引方向、因此、只有正确作出示意图、方能合理应用正、余弦定理.2.航海中正、余弦定理的应用A C D 31 21B 20 20 35︒25︒ 东 北例2 在海岸处、发现北偏东45︒1海里的处有一艘走私船、在处北偏西75︒方向、距为2海里的C处的缉私船奉命以海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从处向北偏东30︒方向逃窜、问缉私船沿什么方向能最快追上走私船、并求出所需要的时间?分析:注意到最快追上走私船、且两船所用时间相等、可画出示意图、需求CD 的方位角及由C 到所需的航行时间.解:设缉私船追上走私船所需时间为小时、则有CD =、10BD t =.在ABC △中、∵1AB =-、2AC =、4575120BAC ∠=︒+︒=︒、根据余弦定理可得BC ==根据正弦定理可得sin120sin AC ABC BC︒∠===∴45ABC ∠=︒、易知CB 方向与正北方向垂直、从而9030120CBD ∠=︒+︒=︒. 在BCD △中、根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===、 ∴30BCD =︒△、30BDC ∠=︒、∴BD BC ==、则有10t =、0.245t ==小时14.7=分钟. 所以缉私船沿北偏东060方向、需14.7分钟才能追上走私船.评注:认真分析问题的构成、三角形中边角关系的分析、可为解题的方向提供依据.明确方位角是应用的前提、此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余弦定理的应用例3 飞机的航线和山顶在同一个铅直平面内、已知飞机的高度为海拔20250m 、速度为45︒75︒ 30︒A CB180km/h 、飞行员先看到山顶的俯角为'1830︒、经过120秒后又看到山顶的俯角为81︒、求山顶的海拔高度(精确到m ).分析:首先根据题意画出图形、如图、这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离、然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为和、山顶为M 、山顶到直线的距离为MD .如图、在ABM △中、由已知、得 1830'A ∠=︒、99ABM ∠=︒、6230'AMB ∠=︒. 又12018066060AB =⨯=⨯(km ), 根据正弦定理、可得6sin1830'sin 6230'BM ︒=︒、 进而求得6sin1830'sin 81sin 6230'MD ︒︒=︒、∴2120MD ≈(m ), 可得山顶的海拔高度为20250212018130-=(m ).评注:解题中要认真分析与问题有关的三角形、正确运用正、余弦定理有序地解相关的三角形、从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例 4 我炮兵阵地位于地面处、两观察所分别位于地面点C 和处、已知6000CD =米、45ACD ∠=︒、75ADC ∠=︒、目标出现于地面点处时、测得30BCD ∠=︒、15BDC ∠=︒(如图)、求炮兵阵地到目标的距离(结果保留根号).分析:根据题意画出图形、如图、题中的四点、、C 、可构成四个三角形.要求AB 的长、由于751590ADB ∠=︒+︒=︒、只需知道AD 和BD 的长、这样可选择在ACD ∆和BCD ∆中应用定理求解.解:在ACD △中、18060CAD ACD ADC ∠=︒-∠-∠=︒、6000CD =、45ACD ∠=︒、根据正弦定理有sin 45sin 60CD AD ︒==︒、 同理、在BCD △中、A B D M 30︒ 45︒ 75︒ A C D 15︒180135CBD BCD BDC ∠=︒-∠-∠=︒、6000CD =、30BCD ∠=︒、根据正弦定理有sin 30sin135CD BD ︒==︒. 又在ABD ∆中、90ADB ADC BDC ∠=∠+∠=︒、根据勾股定理有:AB ====.所以炮兵阵地到目标的距离为米.评注:应用正、余弦定理求解问题时、要将实际问题转化为数学问题、而此类问题又可归结为解斜三角形问题、因此、解题的关键是正确寻求边、角关系、方能正确求解.5.下料中正余弦定理的应用例5 已知扇形铁板的半径为、圆心角为60︒、要从中截取一个面积最大的矩形、应怎样划线? 分析:要使截取矩形面积最大、必须使矩形的四个顶点都在扇形的边界上、即为扇形的内接矩形、如图所示.解:在图(1)中,在AB 上取一点、过作PN OA ⊥于N 、过作PQ PN ⊥交OB 于Q 、再过Q 作QM OA ⊥于M .设AOP x ∠=、sin PN R x =.在POQ △中、由正弦定理、得A C D 31 21B 20 20 35︒ 25︒ 东 北sin(18060)sin(60)OP PQ x =︒-︒︒-.∴sin(60)PQ R x =︒-.于是[]22sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=⋅︒-=-︒-︒221(1)2R ≤-=.当cos(260)1x -︒=即30x =︒时、S 2. 在图(2)中、取AB 中点C 、连结OC 、在AB 上取一点、过作//PQ OC 交OB 于Q 、过作PN PQ ⊥交AB 于N 、过Q 作QM PQ ⊥交CA 于M 、连结MN 得矩形MNPQ 、设POC x ∠=、则sin PD R x =.在POQ △中、由正弦定理得:sin(18030)sin(30)R R x =︒-︒︒-、 ∴2sin(30)PQ R x =︒-.∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒222(1cos30)(2R R ≤-︒=(当15x =︒时取“”).∴当15x =︒时、S 取得最大值2(2R .∵22(2R >、 ∴作30AOP ∠=︒、按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题、需要我们自己寻求参数、建立目标函数、这需要有扎实的基本功、在平时学习中要有意识训练这方面的能力.综上、通过对以上例题的分析、要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地、灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.。

正余弦定理知识点总结及高考考试题型

正余弦定理知识点总结及高考考试题型

三角函数五——正、余弦定理一、知识点 (一)正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C ===a b c3sin B C4(((解可 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一)三、正、余弦定理的应用射影定理:cos cos ,cos cos ,cos cos .a b C c B b a C c A c a B b A =+=+=+有关三角形内角的几个常用公式 解三角形常见的四种类型(1)已知两角,A B 与一边a :由180A B C ++=︒及正弦定理sin sin sin a b cA B B==,可 求出C ∠,再求,b c 。

(2)已知两边,b c 与其夹角A ,由2222cos a b c bc A =+-,求出a ,再由余弦定理, 求出角,B C 。

(3)已知三边a b c 、、,由余弦定理可求出A B C ∠∠∠、、。

(4讲解 (知∆A ∠,A .由a c ==,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2a b B A =⋅==,故选A(2013·新课标Ⅰ高考文科·T10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,02cos cos 232=+A A ,7=a ,c=6,则=b ( ) A.10B.9C.8D.5【解题指南】由02cos cos 232=+A A ,利用倍角公式求出A cos 的值,然后利用正弦定理或余弦定理求得b 的值.【解析】选D.因为02cos cos 232=+A A ,所以01cos 2cos 2322=-+A A ,解得251cos 2=A , 方法一:因为△ABC 为锐角三角形,所以51cos =A ,562sin =A . 由正弦定理C cA a sin sin =得,C sin 65627=.6sin =C 所以sin =B5.方法二5∴sin 9、()0C =,求边又1+即12cos 0A -=,2,又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B =得sin 2sin 2b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD 752sin(4530)=+在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c ,且 b.(1)求角A 的大小.(2)若a=6,b+c=8,求△ABC 的面积.【解题指南】(1)由正弦定理易求角A 的大小;(2)根据余弦定理,借助三角形的面积公式求解.【解析】(1)由及正弦定理sin sin a bA B=,得, 因为(2)b 2+c 26、(3,则c =.4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=,则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = .【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==1、在△ABC 中,角,,A B C 的对边分别为,,abc ,3A π=,1a b ==,则c =( )A 、1B 、2 C1 D 、32、在△ABC 中,分别为的对边.如果成等差数列,30°,△ABC 的面 A 、3)75213 C D 4B π=,则___________________.3,=60°AB 的长度等于13(20132012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =()A .725B .725-C .725±D .2425【答案】A【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B B C B B ≠∴===-=(2013·湖南高考文科·T5)在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2asinB=3b ,则角A 等于( ) A.3π B.4π C.6π D.12π【解题指南】本题先利用正弦定理B bA a sin sin =化简条件等式,注意条件“锐角三角形” .【解析】选A.由2asinB=3b 得2sinAsinB=3sinB,得sinA=23,所以锐角A=3π. (2013·湖南高考理科·T3)在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .12π(2013 A . 3 5,=在△B 0=. (1)(2)若a 【解题指南】(1)借助三角形内角和为π,结合三角恒等变换将条件中的等式转化为只含B 的方程,求出B 的三角函数值,进而可求出角B.(2)根据(1)求出的B 与a c 1+=,由余弦定理可得b 2关于a 的函数,注意到a c 1+=可知0a 1<<,进而可求出b 的范围.【解析】(1)由已知得cos(A B)cos A cos B A cos B 0-++-=,即sin Asin B A cos B 0=.因为sin A 0≠,所以sin B B 0=,又cosB 0≠,所以tan B =,又0B <<π,所以B 3π=.(2)由余弦定理,有222b a c 2accos B =+-,因为a c 1+=,1cos B 2=,所以2211b 3(a )24=-+,又因为0a 1<<,所以21b 14≤<,即1b 12≤<.1sin BAM ∠=∠(2013·上海高考文科·T5)已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a +ab+b 2-c 2=0,则角C 的大小是 .【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a 【答案】π32设ABC ∆的内角A ,B ,C 的对边分别为c b a ,,,ac c b a c b a =+-++))(((I )求B ; (II )若413sin sin -=C A ,求C . 【解题指南】(I )由条件ac c b a c b a =+-++))((确定求B 应采用余弦定理. (II )应用三角恒等变换求出C A +及C A -的值,列出方程组确定C 的值. 【解析】(I )因为ac c b a c b a -=+-++))((.所以ac b c a -=-+222.222(II 221+=故-C A10、((I c = 所以A (2012(1(2【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3BC B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩ 则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理2222291cos 2123b c a b c A bc +-+-===则2213b c +=②, ①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩ 7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=.(I )求B ; (Ⅱ)若75,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=2222cos b a c ac B =+-cos 2B =45B =(II sin30=故6a +=60645c b ==1、∆C 的对边分别为 )2 A A 、30° B 、30°或150° C 、60° D 、60°或120° 8、已知在△ABC 中,sin :sin :sin 3:2:4A B C =,那么cos C 的值为( )A 、14-B 、14C 、23- D 、2310、若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =A B .34C D .111611、在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=A .-12 B .12C . -1D .112、已知在△ABC 中,10,a b A ===45°,则B = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
正余弦定理常见解题类型
解三角形
正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;
②已知两边和其中一边的对角,求另一边的对角及其他的边和角.
余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它
们的夹角,求第三边和其他两个角.

例1 已知在ABC△中,4526Aaco,,,解此三角形.
解:由余弦定理得22(6)26cos454bbo,
从而有31b.
又222(6)222cosbbC,
得1cos2C,60Co或120Co.
75Bo或15B
o

因此,31b,60Co,75Bo
或31b,120Co,15Bo.
注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做.

判断三角形的形状
利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin2sin2sinaRAbRBcRC,,,可将边转化
为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理:

ABC
;利用余弦定理公式222222coscos22bcaacbABbcac,,

222
cos2abcCab

,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识

来解决问题.
在ABC△中,若2222sinsin2coscosbCcBbcBC,判定三角形的形状.

解:由正弦定理2sinsinsinabcRABC,为ABC△外接圆的半径,
可将原式化为22228sinsin8sinsincoscosRBCRBCBC,
sinsin0BC∵

- 2 -

sinsincoscosBCBC
,即cos()0BC.

90BCo,即90A
o
,故ABC△为直角三角形.

求三角形中边或角的范围
在ABC△中,若3CB,求cb的取值范围.
解: ABC,4AB.
04B.可得210sin2B

又2sinsin334sinsinsincCBBbBB∵,
2
134sin3B

.故13cb.

点评:此题的解答容易忽视隐含条件B的范围,从而导致结果错误.因此,解此类问题应注
意挖掘一切隐含条件.

三角形中的恒等式证明
根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式.

在ABC△中,若2()abbc,求证:2AB.

证明:2222cos2222acbbccbcaBacacab∵,
22222
2

222

22cos22cos1214222aabbbcbcbBBbbbb


又222222()cos222bcabcbcbcbAbcbcb∵,
coscos2AB
,而AB,是三角形内角,2AB.

一般的,能用正弦定理解的三角形问题,也可用余弦定理去解.在具体的解题过程中,同学
们可根据题意及自己对知识的掌握情况灵活选择运用公式.

相关文档
最新文档