第二章气体放电的物理过程(一)
修改版-气体击穿理论

第二章—气体放电的物理过程
概述
1:电力系统和电气设备中常用气体作为绝缘介质 2:气体绝缘要解决的问题主要是如何选择合适的 绝缘距离以及如何提高气体间隙的击穿电压
3:气体击穿电压与电场分布、电压种类、气体状 态有关
4:理论至今很不完善,工程设计问题常借助于各 种实验规律分析解决或直接由试验决定
HV & EMC Laboratory
North China Electric Power University
5.1电子崩空间电荷对电场的畸变
崩头和崩尾电场被加强 崩中电场减弱:复合发光
HV & EMC Laboratory
North China Electric Power University
放电时间:光子以光速传播,衍生崩跳跃式发 展,因此放电发展时间很短(书上有数值) 阴极材料的影响:维持放电的是光电离而不是 表面电离,因而与阴极材料无关。
HV & EMC Laboratory
North China Electric Power University
常见的电场结构
HV & EMC Laboratory
North China Electric Power University
问题的提出
气体中的电流:在电场作用下,气隙中带电粒子 的形成和运动过程形成电流。 1、气隙中带电粒子是如何形成的?
自持放电:当电压达到U0 后,气体中发生了强烈的 电离,电流剧增,其中的电离只靠电场的作用自行 维持,不再需要外电离因素。
HV & EMC Laboratory
North China Electric Power University
气体放电

气体放电气体在正常状态下是良好的绝缘介质.但在电压的作用下,也会形成微弱的电流;气体在外加电压作用下产生导通电流的现象称为气体放电。
当加于气体上的电压达到一定数值时,通过气体的电流会突然剧增,气体失去绝缘的性能。
气体在外加电压作用下由绝缘状态转变为导电状态的过程称为击穿。
使气体击穿的最低电压称为击穿电压、气体发生击穿时,电导突增,并伴有光、声、热等现象。
通过实验观察,由于电源功率、电极形状、气体压力等的不同,气体放电现象存在以下几种主要形式: 1.辉光放电外加电压增加到一定值时,通过气体的电流明显增加,气体间隙整个空间突然出现发光现象,这种放电形式称为辉光放电。
辉光放电的电流密度较小,放电区域通常占据整个电极同的空间。
辉光放电是低气压下的放电形式,验电笔中的氖管、广告用霓虹灯管发光就是辉光放电的例子。
2.电晕放电对于电极很尖的极不均匀电场气隙,随外加电压的升高,在电极尖端附近会出现暗蓝色的晕光,并伴有咝咝声。
如电压不继续升高,放电就局限在这较小的菹围内,形成局部放电,称为电晕放电。
发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小。
电气设备带电的尖角和输电线路,在运行中时有发生这种电晕放电。
3.火花或电弧放电在气体间隙的两极,电压升高到一定值时,气体中突然产生明亮的树枝状放电火花,当电源功率不大时,这种树枝状火花会瞬时熄灭,接着又突然产生,这种现象称为火花放电;当电源功率足够大时,气体发生火花放电以后,树枝状放电火花立即发展至对面电极,出现非常明亮的连续弧光,形成电弧放电。
二、气体中带电质点的产生和消失我们已经知道,气体间隙在外加电压作用下会产生放电,甚至击穿,这说明气体中有大量带电质点产生;而气体间隙击穿后,若去掉外加电压,气体又能恢复到它原来的耐电强度,这说明气体中的带电质点会消失。
1.带电质点的产生气体原子由带正电荷的原子核和若干带负电荷的电子构成。
正常状态下,这些电子受原子核的吸引在各自的轨道上围绕原子核旋转,这时的气体原子是一个整体,呈中性,称为中性原子。
第二章气体放电和低温等离子体

R
mE eB 2
eB
m
u E
B
漂移速度只与E和B有关,与q、m均无关。不管是正粒子还
是负粒子,漂移方向是一样的;离子和电子的漂移速度相同。
但是正离子的旋轮半径比电子大得多,角速度小得多。
2、带电粒子在径向电场和轴向磁场中的运动
带电粒子在径向电场中运动, 还要受到轴向磁场的影响。径 向力包括径向电场产生的电场 力,轴向磁场产生的洛伦兹力, 还有离心力。 横向力只有轴向磁场产生的洛 伦兹力。电子和粒子的运动轨 迹如图所示。
运动的能量辐射等,电子获得的动能并不是无限的。 利用ECR得到的高能电子,可以获得更充分的气体 放电。
2.2气体原子的电离和激发
本节主要内容:带电质点(粒子)的产生与消失
一、碰撞- 能量传递过程
1、弹性碰撞和非弹性碰撞
弹性碰撞:若电子 或离子的动能较小, 当其与他原子或分 子碰撞时,达不到 使后者激发或电离 的程度,碰撞双方 仅发生动能交换。
转移比率:
Et
1 2
mt
ut2
Ei
1 2
mi
vi2
4mi mt mi mt
2 cos2
二体弹性碰撞能量传 递系数:
4 射粒子与目标粒子质量相同时,能量转移比率最大,说明
同种气体原子间碰撞的能量转移十分有效。
非常重的粒子碰撞非常轻的粒子(θ=0时),轻粒子被 碰撞后的速度为入射重粒子速度的两倍。
当离子与气体原子发生第一类非弹性碰撞时,由于其质量大小 差不多,因此内能传递系数为0.5。即离子最多也是将其能量 的一半传递给中性原子,转换为内能。
当电子与气体原子发生第一类非弹性碰撞时,由于质量 相差悬殊,内能传递系数为1。即电子几乎是将其所有 的动能传递给中性原子,转换为内能
高电压技术复习大纲-2012 (1)

第四章 气体中沿固体绝缘表面的放电
• 第三节 极不均匀电场中的沿面放电 o 弱垂直电场分量情况下,提高沿面闪络电压的途径?具 体措施? o 说明为什么加装均压环后绝缘子柱电压分布可以得到改 善 o 分析线路绝缘子串电压分布的等效电路?均压环如何改 善电压分布?
第四章 气体中沿固体绝缘表面的放电
• 第四节 受潮表面的沿面放电 o 名词解释:
• 第五节 脏污绝缘表面的沿面放电 o 名词解释:
o 污闪电压;污层等值附盐密度;单位爬电距离
o 干燥情况下绝缘子表面污层对闪络电压是否有影响? o 什么情况下绝缘子表面污层对闪络电压有显著影响?为 什么? o 为什么污闪事故对电力系统的危害特别大? o 简单描述污闪的发展过程 o 污闪与其他沿面闪络过程的最大不同之处是? o 污闪发展过程中,局部电弧能否发展成闪络取决于哪些 因素? o 影响污闪电压的因素有哪些? o 实验室进行人工污秽试验时,如何确定污闪电压?具体 步骤?对污闪试验所用电源的内阻抗有何要求?
o 湿闪络电压;
o 介质表面发生凝露时,沿面闪络电压降如何变化?是否 发生凝露与什么因素有关? o 低温下为什么相对湿度增加不会显著降低闪络电压? o 湿闪络电压与干闪络电压的关系? o 提高绝缘子湿闪电压的措施? o 为什么户外绝缘子都有伞裙? o 为什么伞裙宽度进一步增大并不能提高湿闪电压?
第四章 气体中沿固体绝缘表面的放电
o GIS的母线筒和测量电压用的球间隙属于什么类型的电 场?高压输电线路?套管? o 如何描述电场的不均匀性?以稍不均匀场和极不均匀场 为例予以说明 o 极不均匀场区别于均匀场的放电现象是? o 同样间隙距离下,稍不均匀场间隙的击穿电压比均匀场 间隙的要高还是低? o 电晕放电是自持还是非自持放电? o 极不均匀场间隙中自持放电条件是? o 电晕放电的危害、降低电晕放电的措施与电晕放电的有 利之处?
气体放电物理知识要点总结2014-6-6

气体放电物理知识要点总结1.气体放电过程中一般存在六种基本粒子:电子,正离子,负离子,光子,基态原子(或分子),激发态原子(或分子)。
2.光子能量,其中为光的频率,h为普朗克常数。
3.原子能量由原子内部所有粒子共同决定,通常人们感兴趣的是原子最外层电子即价电子,因为气体放电过程主要是由最外层电子参加的。
原子通常处于稳定的能级,成为基态(基态能量E1),当价电子从外界获得额外能量时,它可以跳跃到更高能级,此时原子处于激发态(激发态能量E2),电子处于激发态的时间很短,然后会跃迁到基态或低激发态,并以光子形式释放出能量()。
当电子获得的能量超过电离能时,电子就与原子完全脱离而成为自由电子,原子变为正离子。
4.正离子也可被电离,负离子是电子附着到某些原子或分子上而形成的。
负离子的能量等于原子或分子的基态能量加上电子的亲和能。
气体放电中的带电粒子是电子和各种离子(正离子和负离子)。
每种离子都将影响气体放电的电特性,电子的作用通常占主导地位。
5.波数等于波长的倒数,表示在真空中每厘米的波长个数。
即6. 原子所处的状态取决于其核外电子的运动状态,可用四个量子数来描述。
主量子数n(n=1,2,3…), 它是由电子轨道主轴的尺寸决定;轨道角量子数l,(l=0,1,2,3…n-1),它是由椭圆轨道的短轴和长轴之比决定。
轨道磁量子数m l,其取值范围为,它是由轨道相对于磁场的位置决定的;自旋磁量子数.7.在光谱中,将电子组态用规定的符号来标志,轨道角量子数用字母s,p,d,f等表示,相应的l值分别为0,1,2,3等。
电子组态所形成的原子态符号可以表示为第二章.气体放电的基本物理过程1.带电离子的产生方式:碰撞电离,光电离,热电离,金属表面电离2.电子与原子碰撞时,若碰撞不引起原子内部的变化,这种碰撞称为弹性碰撞,若电子能量足够大,电子与原子碰撞后,可引起原子内部发生变化,即引起原子的激发或电离,这种碰撞称为非弹性碰撞。
气体放电原理

气体放电原理气体放电是指在一定条件下,气体中的自由电子受到电场的作用而加速,与气体原子或分子发生碰撞,使其电离并产生电流的现象。
气体放电是一种重要的物理现象,广泛应用于放电灯、气体放电激光器、等离子体物理研究等领域。
气体放电的原理主要包括电离、电子与离子的碰撞、电子能量的损失和复合等过程。
在电场的作用下,气体分子中的自由电子受到电场力的作用而加速,当电子的动能足够大时,就能够克服原子或分子的束缚能而发生电离。
电离过程是气体放电的起始阶段,也是电流的产生阶段。
在电离过程中,产生了大量的自由电子和离子,它们在电场的作用下加速运动,与气体分子发生碰撞,使得气体分子进一步电离,形成电子级联增殖的现象。
在气体放电过程中,电子与离子的碰撞是不可避免的。
当电子与离子碰撞时,它们会相互传递动量和能量,使得电子的能量逐渐损失,而离子的能量逐渐增加。
这种能量的转移和损失导致了电子的能量分布发生变化,形成了电子能谱。
电子能谱的形状和分布对气体放电过程的性质和特性有着重要的影响。
除了电离和碰撞外,电子的能量损失和复合也是气体放电过程中重要的物理过程。
当电子与气体分子碰撞时,它们会失去能量,并使得气体分子电离或激发。
另一方面,电子还会与正离子复合,释放能量并再次形成原子或分子。
这种能量的损失和复合过程是维持气体放电的能量平衡的重要机制。
综上所述,气体放电是一种复杂的物理现象,其原理涉及到电离、碰撞、能量损失和复合等多个过程。
深入理解气体放电的原理,有助于我们更好地应用气体放电技术,推动相关领域的发展。
同时,气体放电的研究也为我们提供了一个认识自然界和探索未知领域的重要途径。
希望本文能够为读者提供一些有益的信息,促进气体放电领域的进一步研究和应用。
题目气体放电的物理过程
天津理工大学中环信息学院教案首页题目:气体放电的物理过程讲授内容提要:1.气体中带电质点的产生和消失2.气体放电机理教学目的:了解气体中带电质点的产生和消失的过程教学重点:理解汤姆斯放电理论理解流注放电理论教学难点:根据不同电场,理解放电的理论过程采用教具和教学手段:多媒体及板书授课时间:2014年9月1日授课地点:新教学楼1108 教室注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。
第一章气体放电的物理过程本次课主要内容:1. 气体中带电质点的产生和消失2.气体放电机理一、气体放电在电场作用下,气隙中带电粒子的形成和运动过程原子激励和电离原子能级以电子伏为单位1eV=1V×1. 6×10-19C=1.6×10-19J原子激励原子在外界因素作用下,其电子跃迁到能量较高的状态,所需能量称为激励能W e激励状态恢复到正常状态时,辐射出相应能量的光子,光子(光辐射)的频率二、气体中带电质点的产生(一)气体分子的电离可由下列因素引起:(1)电子或正离子与气体分子的碰撞电离(2)各种光辐射(光电离)(3)高温下气体中的热能(热电离)(4)负离子的形成(二)金属(阴极)的表面电离三、气体中带电质点的消失(一)电场作用下气体中带电质点的运动(二)带电质点的扩散(三)带电质点的复合四、气体放电机理汤逊理论汤逊理论认为,当pd较小时,电子的碰撞电离和正离子撞击阴极造成的表面电离起着主要作用,气隙的击穿电压大体上是pd的函数流注理论工程上感兴趣的是压强较高气体的击穿,如大气压强下空气的击穿特点:认为电子碰撞电离及空间光电离是维持自持放电的主要因素,并强调了空间电荷畸变电场的作用通过大量的实验研究(主要在电离室中进行的)说明放电发展的机理。
国家电网高压电培训 第二章 气体放电过程及其击穿特性
(三) 影响空气间隙击穿场强的主要因素?
※影响空气间隙击穿场强的主要因素? 3.气体的状态等因素有关(温度、气压、湿度)
●标准大气条件
大气压力 P0=101.3kpa 温度 湿度
200 C
h0=11g/m3
(三) 影响空气间隙击穿场强的主要因素?
①相对密度的影响
p
相对密度δ
δ=0.289---T
学习内容:
(一) 击穿?击穿电压?击穿场强? (二) 击穿过程?(放电机理) (三) 影响空气间隙击穿场强的主要因素? (四) 提高气体间隙击穿场强的方法?
(五) 沿面放电
(六) SF6气体的特性
(一) 击穿? 击穿电压? 击穿场强?
击穿:当施加于电介质的电压达到某临界值时,通过介质的 电流会急剧增加,电介质完全失去绝缘性能,这种现 象称为电介质的击穿。 击穿电压:导致电介质击穿的最低临界电压称为击穿电压。
①
50%冲击放电电压U50%
反映间隙的耐受冲击电压的特性。
即在多次施加某一冲击电压时, 击穿概率为50%时的电压。 同一波形、不同幅值的冲击电 压下,间隙上出现的电压最大 值和放电时间的关系曲线
②
伏秒特性
比较不同设备绝缘的冲击击穿特性
(三) 影响空气间隙击穿场强的主要因素?
S1被保护设备的伏秒特性曲线,S2保护设备的伏秒特性曲线
δd值较大时则要用流注理论来解释。
(三) 影响空气间隙击穿场强的主要因素?
※影响空气间隙击穿场强的主要因素? 1.电场的均匀程度 2.外加电压的种类
3.气体的状态等因素有关
(三) 影响空气间隙击穿场强的主要因素?
※影响空气间隙击穿场强的主要因素? 1.电场的均匀程度(均匀、稍不均匀、极不均匀) 2.外加电压的种类(交流、直流、冲击电压)
气体放电理论1修正
非自持放电
外施电压小于 U0 时,间隙内 虽有电流,但其数值甚小, 通常远小于微安级,因此气 体本身的绝缘性能尚未被破 坏,即间隙还未被击穿。而 且这时电流要依靠外电离因 素来维持,如果取消外电离 因素,那么电流也将消失。
自持放电
当电压达到 U0后,气体中 发生了强烈的电离,电流 剧增。同时气体中电离过 程只靠电场的作用已可自 行维持,而不再继续需要 外电离因素了。因此 U0以 后的放电形式也称为自持 放电。
电极表面带电质点的产生
电极表面电离: 电极表面电离:气体放电中存在阴极发射电子的过程。 逸出功:使阴极释放电子所需的能量。与金属的微观结 逸出功 构和表面状态有关,与温度基本无关。 电极表面电离条件:光子能量大于金属表面逸出功。 电极表面电离条件
正离子碰撞阴极
正离子碰撞阴极,将能量传递给阴极电子。 当正离子能量大于阴极材料表面逸出功2倍以 上时,才可能撞出自由电子。 实际上,平均每100个正离子才能撞出一个有 效自由电子 金属表面逸出功一般小于气体分子电离能,因 此,电极的表面电离对气体放电很重要。
气体放电理论(一) 气体放电理论(
美国俄克拉荷马州塔尔萨市上空出现的闪电奇观
主要内容
气体中带电质点的产生和消失 气体放电的主要形式 非自持放电与自持放电 汤逊放电理论
纯净的中性状态的气体是不导电的,只有在的 气体中出现带点质点以后,才可能导电,并在 电场的作用下,发展为各种形式的气体放电现 象。 气体中带电质点的来源有二:一是气体分子本 气体中带电质点的来源 身发生电离;二是气体中的固体或液体金属发 生表面电离。 通常大气中约有500-1000对离子/cm3, 带电质 点极少,因而,通常情况下空气是良绝缘体。
热电子发射
高温下金属中电子因获得巨大的动能会 从电极表面逸出,称为热电子发射 热电子发射。 热电子发射 热电子发射仅对电弧放电有意义,并在 电子、离子器件中得到应用。 常温下气隙的放电过程中不存在热电子 发射现象。
气体放电原理
气体放电原理
气体放电是指当气体中的电子和离子获得足够的能量时,发生放电现象的过程。
其原理涉及到气体的电离和电子的碰撞等基本物理过程。
气体电离是指在电场的作用下,气体中的原子或分子失去电子成为正离子和自由电子的过程。
当电场强度足够大时,气体中的原子或分子受到电场的力,电子被加速并获得足够的能量,从而发生电离,形成正离子和自由电子。
电子的碰撞是指在气体中,自由电子与离子或原子之间发生的碰撞过程。
电子在碰撞过程中会失去能量,导致其速度减小。
当碰撞速率和电子再次获得能量的速率达到平衡时,电子的速度将保持稳定。
在气体放电过程中,电子和离子受到电场的作用而产生加速,当它们的能量达到一定程度时,就会引发碰撞电离,进而导致更多的电离。
这种连锁反应会引起电流的流动,形成可见的放电现象,如闪电、辉光灯等。
不同的气体放电现象具有不同的特点和应用。
例如,闪电放电具有极高的能量和电流,可破坏设备和引起火灾。
辉光灯则是通过控制气体放电来产生可见光,用于照明和显示等领域。
总之,气体放电现象是通过电场作用下的电离和碰撞过程实现的。
这一原理在各种领域的应用中发挥着重要的作用,从科学研究到工业应用都有广泛的应用价值。