6.3函数y=Asin(ωx φ)的图像与性质(1)
(解析版)函数y=Asin(ωx+φ)的图像与性质PPT课件

∴π4+φ=kπ+π2(k∈Z).
∵-π<φ<0,
∴φ=-34π.
32
【变式训练】
设函数 f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图像的一条对称轴是直线 x=π8. (1)求 φ; (2)求函数 y=f(x)的单调递增区间; (3)画出函数 y=f(x)在[0,π]上的图像.
(2)由(1)知,φ=-34π,因此 y=sin2x-34π.由题意得 2kπ-π2≤2x-34π≤2kπ +π2(k∈Z),∴kπ+π8≤x≤kπ+58π(k∈Z),
-
3π 4
≤
3π 2
+
2kπ(k∈Z)
,
得
原
函
数
的
单
调
增
区
间
为
58π+kπ,98π+kπ(k∈Z).
即函数 y=sin34π-2x的单调减区间是π8+kπ,58π+kπ(k∈Z),
单调增区间是58π+kπ,98π+kπ(k∈Z).
22
规律方法
1. 关于函数 y=Asin(ωx+φ)的对称性与奇偶性 (1)将 ωx+φ 看作整体,代入到 y=sin x 的对称中心、对称轴的表 达式可以求出函数 y=Asin(ωx+φ)的对称中心、对称轴或求 φ 值. (2)若函数 y=Asin(ωx+φ)为奇函数,则 φ=π+kπ,k∈Z,若函数 y=Asin(ωx+φ)为偶函数,则 φ=π2+kπ,k∈Z,函数 y=Asin(ωx+φ) 的奇偶性实质是函数的对称中心、对称轴的特殊情况.
37
又∵函数图像过点(0, 2),0<φ<π2, ∴2sin φ= 2,∴φ=π4, ∴函数解析式为 y=2sin13x+π4. 由-π2+2kπ≤13x+π4≤π2+2kπ, 得-94π+6kπ≤x≤34π+6kπ(k∈Z),
中职数学课件6.3正弦型函数的图像和性质

就得到函数y=Asin(ωx+φ)的图像,
这里 A>0, ω>0.
6.3 正弦型函数的图像和性质 情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
正弦型函数 y=Asin(ωx+φ)的图 像可用五点法作出,也可由函数 y=sinx的图像经过平移、伸缩得到.
利用正弦函数的性质及正弦型 函数的图像,可以得到关于正弦型 函数y=Asin(ωx+φ)(其中A>0, ω>0)的 一些结论.
例1 用“五点法”作出下列各函数在一个周期内的简图.
(1)y=sinx;(2)
y=sin2x
;(3)
y=sin(2x+
π 4
)
;(4)
y=2sin(2x+
π 4
)
.
解
(2)因为T=2ωπ=
2π 2
=π,所以函数y=sin2x的周期为π.作函数y=sin2x在
[0,π]上的简图.
描点作图,得到函数y=sin2x,x∈[0,π]的简图.
(2) y=sin
x+
π 3
;
(3)y=2sin
2x+
π 6
;
(4)y=2sin
1 2
x−
π 4
.
6.3 正弦型函数的图像和性质 情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
练习
2.说明怎样由函数y=sinx的图像得到下列函数的图像.
(1)y=13 sinx ;
(2) y=sin
x−
(2x+
π 4
)的周期为π.作函数
令2x+ π4= 0,π2,π, 32π, 2 π,并列表.
函数y=Asin(ωx+φ)的图象与性质(一)

你认为应该按怎样的思路进行研究?
答案
能.可以先研究 φ 对函数 y=sin(x+φ)图象的影响,再依次研究 ω,A 对函数
y=Asin(ωx+φ)图象的影响.
问题 2:函数 y=sin x 的图象与 y=sin(x+φ)的图象有什么关系?
π
π
3
3
(2)将函数 y=sin x 的图象上所有的点向右平移 个单位长度得到函数 y=sin 的图象,再把函数 y=sin y=sin
3
-
π
3
的图象.
π
3
的图象上各点的横坐标扩大到原来的 3 倍,就得到函数
课前预学
方法总结
课堂导学
伸缩变换的解题关键及方法
关键:确定伸缩量.
1
解决方法:已知函数 y=f(x)的图象,作函数 y=f(ωx)(ω>0)的图象, 为伸缩量.
π
6
图象上的一点,则点 G'
1
2
, 与 G″(2x,y)分别
在哪个函数图象上?
答案
G'
1
2
, 是 y=sin 2 +
问题 3:(1)函数 y=sin 2 +
π
6
图象上一点;G″(2x,y)是 y=sin
π
1
2
+
π
6
图象上的一点.
π
,x∈R 的图象,可看作是把 y=sin + ,x∈R 图象上
30
+
π
6
π
函数y=Asin(ωx+φ)的性质与图象及其简单应用课件-2025届高三数学一轮复习

3.(2024 · 舒城模拟)将函数的图象向左平移 个单位长度,得到函数的图象,若在,上为增函数,则 的最大值为( ) .
A
A.2 B.3 C.4 D.
解析 依题意,,由, ,得,即的一个单调递增区间是,,因为在 ,上为增函数,所以,,,故,即 的最大值为2.故选A.
三角函数的实际应用
典例4 (双空题)如图,这是矩形与半圆 的组合图形,其中,为半圆弧上一点,,垂足为 ,点在线段上,且,设 ,则的面积与 的关系式为 _______________________________, 的最大值为_ _____.
1.(多选题)(2024 · 沧州模拟)已知函数为常数, 的图象关于直线对称,函数 ,则下列说法正确的是( ) .
ABC
A.将的图象向左平移个单位长度可以得到 的图象B.的图象关于点, 对称C.在, 上单调递减D. 的最大值为1
解析 由题意, ,, , 将的图象向左平移 个单位长度,所得图象的解析式为 ,A正确; ,B正确; 当,时,,,,此时 是减函数,C正确;的最大值为,D错误.故选 .
D
A.向左平移个单位长度 B.向右平移 个单位长度C.向左平移个单位长度 D.向右平移 个单位长度
解析 因为,所以把函数 图象上的所有点向右平移个单位长度可得到函数 的图象.故选D.
2.(2024 · 梅州模拟)为了得到函数 的图象,只需将函数 的图象( ) .
A
A.向左平移个单位长度 B.向左平移 个单位长度C.向右平移个单位长度 D.向右平移 个单位长度
题组3 走向高考
5.(2023 · 新高考Ⅰ卷)已知函数在 上有且仅有3个零点,则 的取值范围是______.
考点18 函数y=Asin(ωx φ)的图象与性质

考点十八 函数y =A sin(ωx +φ)的图象和性质知识梳理1.五点法作y =A sin(ωx +φ)一个周期内的简图用“五点法”作图,就是令ωx +φ取下列5个特殊值:0, π2, π, 3π2, 2π,通过列表,计算五点的坐标,描点得到图象 2.三角函数图象变换3.函数y =A sin(ωx +φ)的几个概念若函数y =A sin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.典例剖析题型一 三角函数的图象变换例1 (2015山东文)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象________.(填序号)① 向左平移π12个单位 ②向右平移π12个单位 ③向左平移π3个单位 ④向右平移π3个单位答案 ②解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位.变式训练 把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为________.答案 x =-π2解析 将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x+π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x =-π2是其图象的一条对称轴方程.解题要点 图象平移时要注意平移量的求解,由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换区别在于:先相位变换再周期变换(伸缩变换),平移量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 题型二 三角函数的五点法作图 例2 设函数y =2sin ⎝⎛⎭⎫2x +π3 (1)用五点法作出它在长度为一个周期的闭区间上的图象;(2)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 解析 (1) 列表,描点画出图象:(2) 方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象,再把y =sin ⎝⎛⎭⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 解题要点 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”. 题型三 由图象求y =A sin(ωx +φ)的解析式例3 函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,-π2<φ<π2,x ∈R 的部分图象如图所示. (1)求函数y =f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-π,-π6时,求f (x )的取值范围.解析 (1)由题中图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将点⎝⎛⎭⎫π6,1代入得sin ⎝⎛⎭⎫π6+φ=1,又-π2<φ<π2,所以φ=π3,因此函数f (x )=sin ⎝⎛⎭⎫x +π3. (2)由于-π≤x ≤-π6,-2π3≤x +π3≤π6,所以-1≤sin ⎝⎛⎭⎫x +π3≤12, 所以f (x )的取值范围是⎣⎡⎦⎤-1,12. 解题要点 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.题型四 函数y =A sin(ωx +φ)的对称性、周期性、奇偶性 例4 函数f (x )=cos(2x -π6)的最小正周期是________.答案 π解析 最小正周期为T =2πω=2π2=π.变式训练 已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),下面结论错误的是________.(填序号) ① 函数f (x )的最小正周期为π ② 函数f (x )是偶函数③ 函数f (x )的图象关于直线x =π4对称④ 函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 答案 ③解析 f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,故其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由函数f (x )的图象易知,函数f (x )在⎣⎡⎦⎤0,π2上是增函数,④正确,故选③. 解题要点 1.三角函数的奇偶性的判断技巧:首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③利用图象. 3.三角函数的对称性:正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.另外函数y =A sin(ωx +φ)、余弦函数y =A cos(ωx +φ)在对称轴处必取极值±A ,在对称轴处必取0,借助这一性质可快速解题.当堂练习1.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由图象可得,3T 4=5π12-⎝⎛⎭⎫-π3=3π4, ∴T =π,则ω=2ππ=2,再将点⎝⎛⎭⎫5π12,2代入f (x )=2sin(2x +φ)中得,sin ⎝⎛⎭⎫5π6+φ=1, 令5π6+φ=2k π+π2,k ∈Z , 解得,φ=2k π-π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫-π2,π2,则取k =0,∴φ=-π3. 2.(2014·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数________.(填序号)①在区间⎣⎡⎦⎤π12,7π12上单调递减 ②在区间⎣⎡⎦⎤π12,7π12上单调递增③在区间⎣⎡⎦⎤-π6,π3上单调递减 ④在区间⎣⎡⎦⎤-π6,π3上单调递增 答案 ②解析 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度得到函数y =3sin ⎝⎛⎭⎫2x -23π的图象,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增.3. (2014·四川卷)为了得到函数y =sin (2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________.(填序号)①向左平行移动12个单位长度 ②向右平行移动12个单位长度③向左平行移动1个单位长度 ④向右平行移动1个单位长度 答案 ①解析 因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图象,只需要将y =sin 2x 的图象向左平行移动12个单位长度.4.(2014·安徽卷)若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,得到y =sin ⎝⎛⎭⎫2x +π4-2φ的图象,由该函数的图象关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,所以当φ>0时,φmin =3π8.5.(2015新课标Ⅰ文)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为________.答案 ⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由已知图象可求得ω与φ的值,然后利用余弦函数的单调区间求解. 由图象知,周期T =2⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 课后作业一、 填空题1.将函数f (x )=sin 2x 的图象向左平移π12个单位,得到函数g (x )=sin(2x +φ)0<φ<π2的图象,则φ等于________. 答案 π6解析 由题意g (x )=sin 2(x +π12)=sin(2x +π6),又g (x )=sin(2x +φ),0<φ<π2,∴φ=π6.2.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为________. 答案 π4解析 由函数横向平移规律“左加右减”则y =sin(2x +φ)向左平移π8个单位得y =sin(2x +π4+φ).由y =sin(2x +π4+φ)为偶函数得π4+φ=π2+k π,k ∈Z ,则φ=π4+k π,k ∈Z ,则φ的一个可能值为π4.3.下列函数中,周期为π,且在[π4,π2]上为减函数的是________.①y =sin(2x +π2) ②y =cos(2x +π2) ③y =sin(x +π2) ④y =cos(x +π2)答案 ①解析 对于选项①,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选①.4.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为________. 答案 -sin x解析 由图象的平移得g (x )=cos ⎝⎛⎭⎫x +π2=-sin x . 5.已知函数y =cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则________.① ω=1,φ=2π3② ω=1,φ=-2π3③ ω=2,φ=2π3④ ω=2,φ=-2π3答案 ④解析 由题图可知14T =7π12-π3=π4,∴T =π,又T =2πω,∴ω=2,又f (x )的图象过点⎝⎛⎭⎫π3,1,∴cos ⎝⎛⎭⎫2×π3+φ=1,∴2π3+φ=2k π,令k =0,得φ=-23π. 6.要得到函数y =sin(x -π6)的图象可将函数y =sin(x +π6)的图象上的所有点________.答案 向右平移π3个长度单位解析 由y =sin[(x -π3)+π6]=sin(x -π6)知应向右平移π3个长度单位.7.(2015陕西理)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.答案 8解析 由图易得y min =k -3=2,则k =5. ∴y max =k +3=8.8.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是________. 答案 2解析 ∵y =sin ω(x -π4)过点(34π,0),∴sin π2ω=0,∴π2ω=k π,ω=2k ,当k =1时,ω最小值为2.9.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f (x )=________.答案 2sin(π8x +π4)解析 依题意得,A =2,2πω=2×(6+2)=16,ω=π8, sin(π8×2+φ)=1,又|φ|<π2,因此φ=π4,f (x )=2sin(π8x +π4). 10.设y =sin(ωx +φ)(ω>0,φ<(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点(π4,0)对称; ②图象关于点(π3,0)对称;③在[0,π6]上是增函数; ④在[-π6,0]上是增函数.正确结论的编号为________. 答案 ②④解析 ∵T =π,∴ω=2,∴y =sin(2x +φ),∵图象关于直线x =π12对称,∴π6+φ=π2+k π,(k ∈Z ),∴φ=π3+k π(k ∈Z ),又∵φ∈(-π2,π2),∴φ=π3. ∴y =sin(2x +π3).当x =π4时,y =sin(π2+π3)=12,故①不正确.当x =π3时,y =0,故②正确;当x ∈[0,π6]时,2x +π3∈[π3,2π3],y =sin(2x +π3)不是增函数,即③不正确;当x ∈[-π6,0]时,2x +π3∈[0,π3]⊆[0,π2],故④正确.11. (2015湖南文)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 答案 π2解析 由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4 (k ∈Z ).∵ω>0,∴x =k πω+π4ω(k ∈Z ).设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪5π4ω-π4ω=πω.又结合图形知|y 2-y 1|=⎪⎪⎪⎪2×⎝⎛⎭⎫-22-2×22=22, 且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝⎛⎭⎫πω2+(22)2=12,∴ω=π2. 二、解答题12. 已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相; (2)画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.解析 (1)振幅为2,最小正周期T =π,初相为-π4.(2)图象如图所示.13.(2015湖北文)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) f (x )的解析式; (2) 将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0.。
2018版高中数学北师大版必修四学案第一章 8 函数y=Asin(ωx+φ)的图像与性质(一)

学习目标.理解=(ω+φ)中ω、φ、对图像的影响.掌握=与=(ω+φ)图像间的变换关系,并能正确地指出其变换步骤.
知识点一φ(φ≠)对函数=(+φ),∈的图像的影响
思考如何由=()的图像变换得到=(+)的图像?
思考如何由=的图像变换得到=(+)的图像?
梳理如图所示,对于函数=(+φ)(φ≠)的图像,可以看作是把=的图像上所有的点向(当φ>时)或向(当φ<时)平行移动个单位长度而得到的.
知识点二ω(ω>)对函数=(ω+φ)的图像的影响
思考函数=,=和=的周期分别是什么?
思考当三个函数的函数值相同时,它们的取值有什么关系?
思考函数=ω的图像是否可以通过=的图像得到?
梳理如图所示,函数=(ω+φ)的图像,可以看作是把=(+φ)的图像上所有点的横坐标(当ω>时)或(当<ω<时)到原来的倍(纵坐标)而得到.
知识点三(>)对=(ω+φ)的图像的影响
思考对于同一个,函数=,=和=的函数值有何关系?
梳理如图所示,函数=(ω+φ)的图像,可以看作是把=(ω+φ)图像上所有点的纵坐标(当>时)或(当<<时)到原来的倍(横坐标不变)而得到.
知识点四函数=的图像与=(ω+φ)(>,ω>)的图像关系
正弦曲线=到函数=(ω+φ)的图像的变换过程:。
y=asin(ωxφ)的图象变换PPT课件
则
由
韦
达
定
理:xx11
x2
x2
4k 4(ak
b),
又 过S、R点的切线方程分别为:
4 y 2 x1 x x12 ,4 y 2 x2 x x22 ,
联立
并
解 之 得
x y
x1 x2 k
22
1 4
x1 x2
ak
(k为 常 数) b
消 去k, 得 : ax 2 y 2b 0,
c)2
a 2b2 .
即(b2
a4 b2
)x2
2
a4 b2
cx
(
a4c b2
2
a2b2 )
0,
x1
x2
(
a4c b2
2
a2b2 )
b2
a4 b2
0,
b4 a4.
即b2 a2 , c2 a2 a2 .
e2 2. 即e 2.
[例3] 已 知 点H (0,3),点P在x轴 上,点Q
在y轴 正 半 轴 上,点M在 直 线PQ上, 且 满 足
进y=而A得sin到0(五ω个x关+φ键)2点大作致出图函像数的方法,32
2
是作此类函数图像的主要方法.
78《圆锥曲线背景下的 最值与定值问题》
【考点搜索】
1. 圆锥曲线中取值范围问题通常从 两个途径思考,一是建立函数,用求值 域的方法求范围;二是建立不等式,通 过解不等式求范围.
2. 注意利用某些代数式故B点 在 直 线2ax y b 0上.
[例4] 设 双 曲 线x2 y2 1上 两 点A、B, AB
2 中点M (1,2).
(1) 求直线AB的方程; (2) 如果线段AB的垂直平分线与双曲 线 交 于C、D两 点, 那 么A、B、C、D是 否 共 圆, 为 什 么 ?
函数y=Asin(ωx φ)的图像(第二课时)课件-2022-2023学年高一上学期数学必修第一册
“第五点”为ωx+φ=2π.
函数y Asin(x )图像与性质的应用
4.对称性:利用函数y=sinx的对称中心为(k,0), k Z,函数y=sinx的对称轴为x= k(k Z),
2 (1)令x =k,k Z,解得x的解为函数
y A sin(x )对称中心的横坐标; (2)令x = k(k Z)解得x的解为函数
y
1 2
sin
x
图象上各点横坐标 伸长为原来的2倍
y 1 sin 1 x 22
1 y 1 sin x 2
2
3
4
O
x
y 1 sin 1 x
1
y sin x
22
法二:
图象上各点横坐标
y sin x 伸长为原来的2倍
y sin 1 x 图象上各点纵坐标 2 缩短为原来的一半
y 1 sin 1 x 22
2
“第五点”为ωx+φ=2π.
函数y A sin(x )图像与性质的应用
2.周期:正弦曲线、余弦曲线相邻两对称中心、相邻
两对称轴之间的距离是半个周期,相邻的对称中心与 对称轴之间的距离是 1 个周期.
4 3.奇偶性:若f(x)=Asin(ωx+φ)(A,ω≠0),则
(1)当=k(k Z)时, 函数y A sin(x )= A sin x为奇函数;
A 如图所示,则( )
A.y=2sin 2x-π6
B.y=2sin 2x-π3
x+π C.y=2sin 6
x+π D.y=2sin 3
以寻找“五点法”中的特殊点作为突破口:
“第一点”(即图象上升时与x轴的交点)为ωx+φ=0; “第二点”(即图象的最高点)为ωx+φ= ;
2
函数y=Asin(ωx φ)的图象
列表
x 0
π
2
π
3π 2
2π
sinx 0 1 0 -1 0
y
1
y=sinx (x∈[0,2π])
O -1 π/2 π 3π/2 2π
例1 作函数y = sin( x + )及y = sin( x − ) 在一个周期 4 3 内的图象。
π
π
x
x+
−
π
3
π
6
π 2
1 y
π
6
π
3 π
3
0
2π 3
π
0
分析:画函数的图像,经常采用“五点 法”。并且这两个函数都是周期函数,且 周期均为2π。所以我们先画出它们在[0,2π] 上的简图。 即列表、描点、连线。
1 例2、作函数 作函数y=sin2x及y=sin x 作函数 及 2
(x∈R)的简图 ∈ 的简图 的简图.
2π 分析:函数y=sin2x的周期T= =π, 2 故作x∈[0, π]时的简图. 1 函数y=sin x的周期T=4 π,故 2 作x ∈[0, 4π]时的简图.
π
7π 6
3π 2
-1
5π 3
2π
0
sin( x +
)
0 1
π O
y = sin( x + ) 3 5π 7π
π 2π
2 3
π6
−
−1
3
3π 2
3
2π x
例1 作函数y = sin( x + )及y = sin( x − ) 在一个周期 4 3 内的图象。
π
π
x
x−
π
0
π
6.3(1)(2)(3)函数y=Asin(ωx+φ)的图像与性质
y
x
o
为了便于讨论,把摩天轮画成一个圆,摩天轮的 轴心O作为圆心.如图建立直角坐标系.
y
P x
考察摩天轮上吊篮与轮 环的某一个连接点 P 0. 设摩天轮半径为R,起 始时BOP 0 . 向匀速旋转运动,其角 速度为ω.经过t分钟 后达到 OP.则点P的纵 坐标为:
t o
B
OP0 绕O点按逆时针方
函数y sin( x )( 0)的图像可由函数y sin x的 图像向左( 0)或向右( 0)平移 个单位得到.
y sin x的图像
向左平移 个单位( 0) 向右平移 个单位( 0)
y sin(x )( 0)的图像
的物理意义:相位移叫做初相
把y sin x的图像向左或向右平移 个单位.
横坐标伸长到原来的2倍 y sin x的图像 (沿x轴向原点两侧拉长)
y sin x的图像
?
y sin 1 x的图像 2
y sinx( 0)的图像
函数y sinx( 0且 1)的图像可看作由函数 y sin x的图像上所有的点纵坐标不变,横坐标 1 缩短( 1)或伸长(0 1)到原来的 倍得到.
2
纵坐标伸长到原来的2倍
函数y Asin x( A0且A1)的图像可看作由函数 y sin x的图像上所有的点横坐标不变,纵坐标 伸长( A1)或缩短(0 A1)到原来的A倍得到.
y Asin x的图像 y sin x的图像 纵坐标缩短到原来的 A倍(0 A1)
纵坐标伸长到原来的 A倍( A 1)
4、得y A sin( x )( A 0, 0)的图像.
(一)、y Asin x( A0,A1)的图像
y 2 sin x 例1、在同一平面直角坐标系中,作函数 1 和 y sin x 的大致图像,通过图像说明它 2 y sin x的关系. 们与 y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《北京青年报》
2002年2月24 日报道:中国第一 座高108m的摩天轮 在锦江乐园起吊了 第一根钢质主支架。 上海这座摩天轮的 诞生将以此高度跻 身世界三大摩天轮 之列。
讨论
y
x o
考察摩天轮上吊篮与轮环的某一个连接点
y p
OP绕0 O点按逆时针方 向,匀速运动,经过
3x 0 2 3sin 3 x 0
2
x
0
3 2
2
2
3 0 3 0
2
4
33
3
y 3sin 3 x 2
4
3
2
0
巩固练习: 作出下列函数在长度为一个周期的闭区
间上的大致图像。 1) y 3 sin x
5
2) y sin 3 x
5
3) y 2sin 3 x
4
课堂小结:
1)本堂课主要讨论A,ω(A>0,ω>0) 在函数y=Asin(ωx+φ)的图像中所起的
t分钟后达到 OP
t
x 角速度ω半径R
o y R sin(t )
p 0
y Asin(x )
例1:在同一平面直角坐标系中,作
函数 y 2s和in x
y的大1 s致in 图x
2
像,通过图像说明它们与y si的n 关x 系.
x
0
3 2
2
2
sin x 0
1 0 1 0
2sin x 0
2 0 2 0
T1n 2x 0
1 0 1 0
x
0
3
4
24
y
sin
1 2
x,
x
[0,T2
]
T2 4
1x 0 2 sin 1 x 0 2
x
0
3 2
2
2
1 0 1 0
2 3 4
y sin 2x, x [0,T1]
y
sin
1 2
x,
x
[0,T2
]
T1 T2 4
2
4
例的3:闭作区出间函上数的大y 致3s图i在n像32长x,度并为说一明个周期 此图像是由 y si的n x图像怎样变换得到的。
作用。A所起的作用是将y=sinx的振 幅由1变为A。ω所起的作用是把函数 y=sinx的图像的周期由2 变为 2.
课堂小结:
2)令ωx+φ分别取值
0
3 2
2
2
进而得到五个关键点作出函数
y=Asin(ωx+φ)大致图像的方法, 是作此类函数图像的主要方法.
1 sin x 0 2
1 2
0 1
0
2
y 2sin x
y sin x
y 1 sin x 2
2
例2:分别求 y sin和2x y 的si周n 1期x ,在
同一T1平T面2 直角坐标系中,作
与 y sin 2x, x [0,T1] y sin 的大致图像.
2
1 2
x,
x
[0,
T2
]
y sin 2x, x [0,T1]