(完整word版)高中数学集合知识点

合集下载

高中数学集合知识总结

高中数学集合知识总结

高中数学集合知识总结 高中数学集合知识总结 集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的一些相关内容.以下是小编搜集整合了高中数学集合知识,希望可以帮助大家更好的学习这些知识。 高中数学知识总结 篇1 一、集合间的关系 1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。 2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。 3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。 子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系 二、集合的运算 1.并集 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 2.交集 交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B} 3.补集 三、高中数学集合知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B} 4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 注意:①?A,若A≠?,则?A; ②若,,则; ③若且,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 四、数学集合例题讲解: 【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系 A)M=NPB)MN=PC)MNPD)NPM 分析一:从判断元素的'共性与区别入手。 解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z} 对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。 分析二:简单列举集合中的元素。 解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。 =∈N,∈N,∴MN,又=M,∴MN, =P,∴NP又∈N,∴PN,故P=N,所以选B。 点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。 变式:设集合,,则(B) A.M=NB.MNC.NMD. 解: 当时,2k+1是奇数,k+2是整数,选B 【例2】定义集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为 A)1B)2C)3D)4 分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。 解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。 变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为 A)5个B)6个C)7个D)8个 变式2:已知{a,b}A{a,b,c,d,e},求集合A. 解:由已知,集合中必须含有元素a,b. 集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}. 评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个. 【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。 解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3. ∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A ∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1, ∴∴ 变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值. 解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5 ∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴ 又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4 ∴b=-4,c=4,m=-5 【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1 分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。 解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。 综合以上各式有B={x|-1≤x≤5} 变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0) 点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。 变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。 解答:M={-1,3},∵M∩N=N,∴NM ①当时,ax-1=0无解,∴a=0② 综①②得:所求集合为{-1,0,} 【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。 分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。 解答:(1)若,在内有有解 令当时, 所以a>-4,所以a的取值范围是 变式:若关于x的方程有实根,求实数a的取值范围。 解答: 点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。 高中数学知识总结 篇2 复习的重点一是要掌握所有的知识点,二就是要大量的做题,编辑为各位考生带来了高中数学知识点复习:集合与映射专题复习指导 一、集合与简易逻辑 复习导引:这部分高考题一般以选择题与填空题出现。多数题并不是以集合内容为载体,只是用了集合的表示方法和简单的交、并、补运算。这部分题其内容的载体涉及到函数、三角函数、不等式、排列组合等知识。复习这一部分特别请读者注意第1题,阐述了如何审题,第3、5题的思考方法。简易逻辑部分应把目光集中到充要条件上。 1.设集合M={1,2,3,4,5,6},S1、S2、Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj},(ij,i、j{1,2,3,k})都有min{-,-}min{-,-}(min{x,y}表示两个数x、y中的较小者)。则k的最大值是() A.10B.11 C.12D.13 分析:审题是解题的源头,数学审题训练是对数学语言不断加深理解的过程。以本题为例min{-,-}{-,-}如何解决?我们不妨把抽象问题具体化! 如Si={1,2},Sj={2,3}那么min{-,2}为-,min{-,-}为-,Si是Sj符合题目要求的两个集合。若Sj={2,4}则与Si={2,4}按题目要求应是同一个集合。 题意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按题目要求是4个集合。M是6个元素构成的集合,含有2个元素组成的集合是C62=15个,去掉4个,满足条件的集合有11个,故选B。 注:把抽象问题具体化是理解数学语言,准确抓住题意的捷径。 2.设I为全集,S1、S2、S3是I的三个非空子集,且S1S3=I,则下面论断正确的是() (A)CIS1(S2S3)= (B)S1(CIS2CIS3) (C)CIS1CIS2CIS3= (D)S1(CIS2CIS3) 分析:这个问题涉及到集合的交、并、补运算。我们在复习集合部分时,应让同学掌握如下的定律: 摩根公式 CIACIB=CI(AB) CIACIB=CI(AB) 这样,选项C中: CIS1CIS2CIS3 =CI(S1S3) 由已知 S1S3=I 即CI(S1S3)=CI= 而上面的定律并不是复习中硬加上的,这个定律是教材练习一道习

(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语知识点总结全面整理

(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语知识点总结全面整理

(每日一练)(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语知识点总结全面整理单选题1、集合A={−1,0,1,2,3},B={0,2,4},则图中阴影部分所表示的集合为()A.{0,2}B.{−1,1,3,4}C.{−1,0,2,4}D.{−1,0,1,2,3,4}答案:B分析:求∁(A∪B)(A∩B)得解.解:图中阴影部分所表示的集合为∁(A∪B)(A∩B)={−1,1,3,4}.故选:B2、已知集合A={x|1x>1},则∁R A=()A.{x|x<1}B.{x|x≤0或x≥1}C.{x|x<0}∪{x|x>1}D.{x|1≤x}答案:B分析:先解不等式,求出集合A,再求出集合A的补集由1x >1,得1−xx>0,x(1−x)>0,解得0<x<1,所以A={x|0<x<1},所以∁R A={x|x≤0或x≥1}故选:B3、设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案:B分析:根据交集、补集的定义可求A∩(∁U B).由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6},故选:B.4、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.5、若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}答案:D分析:由题中条件可得m2=2或m2=4,解方程即可.因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、设集合M={x|0<x<4},N={x|13≤x≤5},则M∩N=()A.{x|0<x≤13}B.{x|13≤x<4}C.{x|4≤x<5}D.{x|0<x≤5}答案:B分析:根据交集定义运算即可因为M={x|0<x<4},N={x|13≤x≤5},所以M∩N={x|13≤x<4},故选:B.小提示:本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.8、集合A={0,1,2}的非空真子集的个数为()A.5B.6C.7D.8答案:B分析:根据真子集的定义即可求解.由题意可知,集合A的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个.故选:B.9、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.10、设集合A={−1,0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.5B.6C.7D.8答案:B分析:分别在集合A,B中取a,b,由此可求得x所有可能的取值,进而得到结果.当a=−1,b=1时,ab=−1;当a=−1,b=2时,ab=−2;当a=0,b=1或2时,ab=0;当a=1,b=1时,ab=1;当a=1,b=2或a=2,b=1时,ab=2;当a=2,b=2时,ab=4;∴C={−2,−1,0,1,2,4},故C中元素的个数为6个.故选:B.多选题11、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.12、(多选)下列命题的否定中,是全称量词命题且为真命题的是()<0B.所有的正方形都是矩形A.∃x∈R,x2−x+14C.∃x∈R,x2+2x+2=0D.至少有一个实数x,使x3+1=0答案:AC分析:AC.原命题的否定是全称量词命题,原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;D. 原命题的否定不是真命题,所以该选项不符合题意.A.原命题的否定为:∀x∈R,x2−x+14≥0,是全称量词命题;因为x2−x+14=(x−12)2≥0,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程x2+2x+2=0,Δ=22−8=−4<0,所以x2+2x+2>0,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x,都有x3+1≠0,如x=−1时,x3+1=0,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC13、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.14、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.15、设A={a1,a2,a3},B={x|x⊆A},则()A.A=B B.A∈B C.∅∈B D.A⊆B答案:BC分析:根据题意先用列举法表示出集合B,然后直接判断即可.依题意集合B的元素为集合A的子集,所以B={∅,{a1},{a2},{a3},{a1,a2},{a1,a3},{a2,a3},{a1,a2,a3}}所以A∈B,∅∈B,所以AD错误,BC正确.故选:BC16、(多选)下列命题中为真命题的是().A.“x>4”是“x<5”的既不充分又不必要条件B.“三角形为正三角形”是“三角形为等腰三角形”的必要而不充分条件C.“关于x的方程ax2+bx+c=0(a≠0)有实数根”的充要条件是“Δ=b2−4ac≥0”D.若集合A⊆B,则“x∈A”是“x∈B”的充分而不必要条件答案:AC分析:从“x>4”与“x<5”互相不能推出,得到A正确;正三角形一定是等腰三角形,等腰三角形不一定是正三角形,故B错误;由一元二次方程根的判别式可知,C正确;D选项可举出反例.故选:AC17、设集合M={x|a<x<3+a},N={x|x<2或x>4},则下列结论中正确的是()A.若a<−1,则M⊆N B.若a>4,则M⊆NC.若M∪N=R,则1<a<2D.若M∩N≠∅,则1<a<2答案:ABC解析:根据集合包含的定义即可判断AB;根据交集并集结果求出参数范围可判断CD.对于A,若a<−1,则3+a<2,则M⊆N,故A正确;对于B,若a>4,则显然任意x∈M,则x>4,则x∈N,故M⊆N,故B正确;对于C,若M∪N=R,则{a<23+a>4,解得1<a<2,故C正确;对于D,若M∩N=∅,则{a≥23+a≤4,不等式无解,则若M∩N≠∅,a∈R,故D错误.故选:ABC.18、下列四个命题中正确的是()A.∅={0}B.由实数x,-x,|x|,√x2,−√x33所组成的集合最多含2个元素C.集合{x|x2−2x+1=0}中只有一个元素D.集合{x∈N|5x∈N}是有限集答案:BCD分析:根据集合的定义和性质逐项判断可得答案.对于A,空集不含任何元素,集合{0}有一个元素0,所以∅={0}不正确;对于B,由于√x2=|x|,−√x33=−x,且在x,-x,|x|中,当x>0时,|x|=x,当x<0时,|x|=−x,当x=0时,|x|=x=−x=0,三者中至少有两个相等,所以由集合中元素的互异性可知,该集合中最多含2个元素,故B正确;对于C,{x|x2−2x+1=0}={1},故该集合中只有一个元素,故C正确;∈N}={1,5}是有限集,故D正确.对于D,集合{x∈N|5x故选:BCD.19、(多选题)已知集合A={x|x2−2x=0},则有()A.∅⊆A B.−2∈A C.{0,2}⊆A D.A⊆{y|y<3}答案:ACD分析:先化简集合A={0,2},再对每一个选项分析判断得解.由题得集合A={0,2},由于空集是任何集合的子集,故A正确:因为A={0,2},所以CD正确,B错误.故选ACD.小提示:本题主要考查集合的化简,考查集合的元素与集合的关系,意在考查学生对这些知识的理解掌握水平.20、已知集合M={2,4},集合M⊆N{1,2,3,4,5},则集合N可以是()A.{2,4}B.{2,3,4}C.{1,2,3,4}D.{1,2,3,4,5}答案:ABC分析:根据集合的包含关系,逐一检验四个选项的正误即可得正确选项.因为集合M={2,4},对于A:N={2,4}满足M⊆N{1,2,3,4,5},所以选项A符合题意;对于B:N={2,3,4}满足M⊆N{1,2,3,4,5},所以选项B符合题意;对于C:N={1,2,3,4}满足M⊆N{1,2,3,4,5},所以选项C符合题意;对于D:N={1,2,3,4,5}不是{1,2,3,4,5}的真子集,故选项D不符合题意,故选:ABC.填空题21、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:0∈Z},用列举法表示集合A,则A=__________.22、已知集合A={x∈Z∣32−x答案:{−1,1,3,5}分析:根据集合的描述法即可求解.∵A={x∈Z∣3∈Z},2−x∴A={−1,1,3,5}所以答案是:{−1,1,3,5}23、已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是______. 答案:(−∞,2]分析:根据充分性和必要性,求得参数a的取值范围,即可求得结果.因为p:x>a是q:2<x<3的必要不充分条件,故集合(2,3)为集合(a,+∞)的真子集,故只需a≤2.所以答案是:(−∞,2].。

高中数学集合知识点总结

高中数学集合知识点总结

高中数学必修1知识点总结第一章集合与函数概念【1.1.1]集合的含义与表示(1)集合的概念集合中的元素具有确定性.互界性和无序性.(2)常用数集及其记法N表示自然数集,N*或N+表示正整数集,Z表示整数集,0表示有理数集,R表示实数集.(3)集合与元素间的关系对歛d与集合M的关系是aeM .或者.两者必居其一.(4)集合的表示法①列举法:把集合中的元素一一列举出來.写在大括号内表示集合.②描述法:{x x具有的性质},其中x为集合的代表元素.③图示法:用数轴或韦恩图來表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集(0)・[1.1.2}集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A有//(/? > 1)个元素.则它有2“个子集.它有2“一1个真子集,它有2〃一1个非空子集, 它有2"-2非空真子集.[1.1.3]集合的基本运算<8)交集、并集.补集例1、判I折下列关系是否正确(1){«} c{a}: (2) {1,2,3} ={3,2,1}:(3) 0<z{O}:(4) 0e{0}:(5) 0e{O}:(6)0 = {0}:(7)0 a{0,1,2}:(8){l}a{x|x<5}例2、已知集合M满足{1,2}匚必匚{1,2,3,4,5},则这样的集合M有多少个?例3、设A = |x|.v2 -2x-3 = o|.B = {x|av-l =0),若Bo A ,求实数a。

例4、已知财={2“方}," = {2。

2,}・且M =N ,求a#的值。

例5、已知全集卩={2,0,3-/},子集卩={2,/一°一2},且C u P = {-\},求—A级训练1、列举集合{1,2,3}的所有子集:2、集合{0}与空集0的关系为:3、若{“,0,1} = {c,土,一1 ■,则a = ________ . b = __________ . c = _________ 。

集合高中数学知识点

集合高中数学知识点

集合高中数学知识点
集合高中数学知识点
一、集合间的关系
1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。

2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A 是集合B的真子集。

3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。

子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB (或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的.基本关系
二、集合的运算
1.并集
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x ∈B}
2.交集
交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x ∈B}
3.补集
1/ 1。

高三集 合知识点

高三集 合知识点

高三集合知识点关键信息1、集合的定义和表示方法定义:____________________________表示方法:____________________________2、集合的基本关系包含:____________________________相等:____________________________3、集合的运算交集:____________________________并集:____________________________补集:____________________________11 集合的定义集合是具有某种特定性质的事物的总体。

集合中的元素具有确定性、互异性和无序性。

111 确定性给定一个集合,任何一个对象是不是这个集合的元素是确定的。

112 互异性集合中的元素不能重复。

113 无序性集合中的元素没有顺序之分。

12 集合的表示方法121 列举法将集合中的元素一一列举出来,用大括号括起来。

122 描述法用确定的条件表示某些对象是否属于这个集合。

123 图示法包括韦恩图等,直观地表示集合之间的关系。

21 集合的基本关系211 包含关系如果集合 A 中的所有元素都是集合 B 的元素,就说集合 A 包含于集合 B,记作 A⊆B。

212 相等关系如果集合 A 包含于集合 B,且集合 B 也包含于集合 A,就说集合 A 与集合 B 相等,记作 A=B。

31 集合的运算311 交集由属于集合 A 且属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A∩B。

312 并集由所有属于集合 A 或属于集合 B 的元素组成的集合,称为集合 A 与集合 B 的并集,记作 A∪B。

313 补集设 U 是一个全集,A 是 U 的一个子集,由 U 中所有不属于 A 的元素组成的集合,称为集合 A 在全集 U 中的补集,记作∁UA。

32 集合运算的性质321 交集的性质A∩A = A,A∩∅=∅,A∩B =B∩A。

高中数学集合知识点

高中数学集合知识点

高中数学集合知识点高中数学中的集合是一个非常重要且基础的概念,它在整个数学学科中都起着至关重要的作用。

集合论是数学中的一个重要分支,它研究的是数学中的集合、元素和其关系等概念。

在高中数学中,集合知识点主要包括集合的概念、基本运算、特殊集合、集合表示方法等内容。

下面将逐一介绍高中数学中的集合知识点。

一、集合的概念集合是由若干个元素组成的整体。

集合的概念是数学中最基本的概念之一,它用来表示相同或相似性质的对象的总体。

在数学中,集合通常用大写字母表示,其中的元素用小写字母表示。

例如,集合A={1,2,3,4,5}表示由数字1、2、3、4、5组成的一个集合。

集合中的元素可以是数字、字母、符号等。

二、基本运算在集合中,有几种基本的运算,包括并集、交集、补集和差集等。

1. 并集:集合A和集合B的并集是指包含了A和B中所有元素的集合,表示为A∪B。

例如,集合A={1,2,3},集合B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集:集合A和集合B的交集是指同时包含在A和B中的元素的集合,表示为A∩B。

例如,集合A={1,2,3},集合B={3,4,5},则A∩B={3}。

3. 补集:集合A对于某个全集U,A相对于U的补集是指在U中而不在A中的元素组成的集合,表示为A的补集。

例如,集合A={1,2,3},全集U={1,2,3,4,5},则A的补集为U\A={4,5}。

4. 差集:集合A和集合B的差集是指除去A和B的交集外的元素组成的集合,表示为A-B。

例如,集合A={1,2,3},集合B={3,4,5},则A-B={1,2}。

三、特殊集合高中数学中还涉及到一些特殊的集合,如空集、全集、自然数集、整数集、有理数集、实数集等。

1. 空集:空集是不包含任何元素的集合,通常用符号∅或{}表示。

2. 全集:全集是指研究问题时所涉及的全部元素构成的集合。

3. 自然数集:自然数集是指正整数构成的集合,通常用符号N表示。

(完整word版)人教版高一数学必修一知识点总结大全

(完整word版)人教版高一数学必修一知识点总结大全亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

下面是本文详细内容。

最后最您生活愉快 ~O(∩_∩)O ~一 集合与函数1 集合的含义及表示*⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪∈∉⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R2,,A B B A A B A B A A A A B A B A B οοφ≠⊆⊆=⎧⊆⊆⊆⎪⎪⎨⎪⎪⊆≠⊂⎩1定义:A=B2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n -3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ⎧⋃=∈∈⎪⋂=∈∈⎨⎪=∈∉⎩并集:或 交集:且 补集:且在集合运算中常借助于数轴和文氏图(*注意端点值的取舍)*结论 (1)A A A ⋃= A A A ⋂=, A A φ⋃= A φφ⋂=(2)A B B A B ⋃=⊆若则 A B A A B ⋂=⊆若则 (3)()U A C A φ⋂= ()U A C A U ⋃=(4)若A B φ⋂= 则A φ=或A φ≠4函数及其表示⎧⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩函数的定义 定义域函数的三要素对应法则值域区间的表示 解析式法函数的表示法列表法图像法5 函数的单调性及应用(1) 定义: 设[]2121,,x x b a x x ≠∈⋅那么:1212,()()x x f x f x <<⇔[]1212()()()0x x f x f x -->⇔0)()(2121>--x x x f x f []b a x f ,)(在⇔上是增函数;1212,()()x x f x f x <>⇔[]1212()()()0x x f x f x --<⇔0)()(2121<--x x x f x f []b a x f ,)(在⇔上是减函数.(2) 判定方法:1ο定义法(证明题) 2ο图像法 3ο复合法 (3) 定义法:证明函数单调性用利用定义来证明函数单调性的一般性步骤:1ο 设值:任取12,x x 为该区间内的任意两个值,且12x x <2ο 做差,变形,比较大小:做差12()()f x f x -,并利用通分,因式分解,配方,有理化等方法变形比较12(),()f x f x 大小3ο下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增: 增—减=增:减+减=减:减—增=增若函数)(x f 在区间[]b a ,为增函数,则—)(x f ,)(1xf 在[]b a ,为减函数 (7)单调性的应用:1ο:利用函数单调性比较大小2ο利用函数单调性求函数最值(值域)重点题型:求二次函数在闭区间上的最值问题6 函数的奇偶性及应用f x定义域关于原点对称(1)定义:若()1ο若对于任取x的,均有()()f x为偶函数-=则()f x f x2ο若对于任取x的,均有()()f x为奇函数-=-则()f x f x(2)奇偶函数的图像和性质(3)判定方法:1ο定义法(证明题)2ο图像法3ο口诀法(4)定义法: 证明函数奇偶性步骤:1ο求出函数的定义域观察其是否关于原点对称(前提性必备条件)2ο由出发()-,寻找其与()f x之间的关系f x3ο下结论(若()()-=-则()f xf x f xf x为偶函数,若()()f x f x-=则()为奇函数函数)(4)口诀法:奇函数+奇函数=奇函数:偶函数+偶函数=偶函数奇函数⨯奇函数=偶函数:奇函数⨯偶函数=奇函数:偶函数⨯偶函数=偶函数二 指数函数与对数函数 1 指数运算公式1οm n m n a a a +⋅= 2οm n m n a a a -÷= 3ο ()m m m ab a b = 4ο()m n mn a a =5ο()m m m a a b b= 6οmn a =7οm na-=8ο,,a a ⎧=⎨⎩当n 为偶数时当n 为奇数时2 对数运算公式(1)对数恒等式0,1a a >≠当时 ,log x a N x N =⇔=a log 10a = log 1a a = log a N a N = (2)对数的运算法则(01,0,0)a a M N >≠>>且1ο log ()log log a a a M N M N ⋅=+ 2ο log ()log log a a a MM N N=- 3ο log ()log n a a M n M =(3)换底公式及推论 log log log c a c bb a=(01,01,0)a a c c b >≠>≠>且且推论 1ο log log m n a a nb b m= 2ο 1log log a N N a=3ο log log log a b a b c c =3 指数函数与对数函数图像定义域值域定点单调性4 指数与对数中的比较大小问题(1)指数式比较大小1οm a,n a2οm a,n b(2)对数式比较大小1οlogam,logan2οlogam,logbn5指数与对数图像6幂函数:一般地,函数y xα=叫做幂函数,其x中为自变量,α是常数几种幂函数的图象:函数零点及二分法 一 函数零点的判定(一) 函数有实数根⇔函数的图像与轴有交点⇔函数有零点(二) 函数的零点的判定定理如果函数()y f x =在区间[],a b 上的图像时连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程的根 二 函数二分法的应用(一)函数二分法:对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法。

高中数学集合知识点归纳

高中数学集合知识点归纳一、集合的概念1. 集合:某些指定的对象集在一起就成为一个集合。

集合中的每个对象叫做这个集合的元素。

2. 元素的特性确定性:给定的集合,它的元素必须是确定的。

互异性:一个给定集合中的元素是互不相同的。

无序性:集合中的元素没有先后顺序之分。

二、集合的表示方法1. 列举法:把集合中的元素一一列举出来,写在大括号内。

2. 描述法:用确定的条件表示某些对象是否属于这个集合的方法。

3. 图示法:包括韦恩图(Venn 图)、数轴等。

三、集合的分类1. 有限集:含有有限个元素的集合。

2. 无限集:含有无限个元素的集合。

3. 空集:不含任何元素的集合,记为∅。

四、集合间的关系1. 子集:如果集合 A 的任意一个元素都是集合 B 的元素,那么集合 A 称为集合 B 的子集,记为 A⊆B。

2. 真子集:如果 A⊆B,且存在元素x∈B 但 x∉A,那么集合 A 称为集合 B 的真子集,记为 A⊂B。

3. 集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等,记为 A = B。

五、集合的运算1. 交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记为A∩B。

A∩B = {x | x∈A 且x∈B}2. 并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记为A∪B。

A∪B = {x | x∈A 或x∈B}3. 补集:设 U 为全集,集合 A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为集合 A 在 U 中的补集,记为∁UA。

∁UA = {x | x∈U 但 x∉A}六、常用数集及其符号1. 自然数集:N2. 正整数集:N+ 或 N3. 整数集:Z4. 有理数集:Q5. 实数集:R。

高中数学《集合》知识点归纳及题型练习

高中数学《集合》知识点归纳及题型练习【知识点】1.集合的三个特性:确定性,互异性,无序性2.自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。

3.集合的三种表示方法:列举法,描述法,文氏图。

4.集合的分类:有限集,无限集,空集5.子集:若a A ∈,则a B ∈,称为A 是B 的子集,记作:A B ⊆或B A ⊇, 读作:“集合A 包含于集合B ”或“集合B 包含集合A ”。

6.真子集:若A B ⊆且B A ⊆,则称集合A 与集合B 相等,记作:A B =; 若A B ⊆且A B ≠,则称集合A 是集合B 的真子集,记作:【注意】空集φ是任何集合的真子集。

一个集合的子集个数为2n ,真子集个数为21n -,非空真子集个数为22n -。

7.补集:已知A U ⊆,由所有属于U 但不属于A 中的元素组成的集合称为A 的补集,记作:U A , 读作:A 在U 中的补集。

即:{|,}U A x x U x A =∈∉且8.交集:由两个集合中的公共元素组成的集合,即:{|}A B x x A x B =∈∈,且9.并集:由两个集合中的所有元素组成的集合,即:{|}A B x x A x B =∈∈,或10.集合的包含关系:A B ⊆⇔A B A A B B =⇔=题型1.集合性质的应用1.判断能否构成集合:【根据集合的确定性】(1)我国的所有直辖市; (2)我校的所有大树;(3)深圳机场学校的所有优秀学生; (4)深圳市的全体中学生;(5)不等式220x x ->的所有实数解; (6)所有的正三角形。

2.用,∈∉填空:2 N , , -3 Z , , 2- R ; 已知2{|20}A x x x =--=,则1 A ,2 A ,-1 A ,-2 A 。

3.集合{(0,1),(1,2)}A =中有 个元素;{,{0},{1,2}}B φ=中有 个元素。

3.已知集合{0,1,2}M x =+,则x 不能取哪些值?4.(1)2{1,0,}x x ∈,则x = ; (2)若2{,1}{1,}x x =,则x = 。

最新高中数学必修一知识点总结(精编word版)

高中数学必修一知识点总结(精编版)一、集合有关概念1.集合的含义2.集合的中元素的三个特性:①元素的确定性如:世界上最高的山②元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}③元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{太平洋,大西洋,印度洋,北冰洋}⑴用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}⑵集合的表示方法:列举法与描述法。

★注意:常用数集及其记法:常用数集:非负整数集(即自然数集):N 正整数集:N*或N+整数集:Z 有理数集Q实数集:R常用数集的记法:①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}④Venn图4、集合的分类:⑴有限集含有有限个元素的集合⑵无限集含有无限个元素的集合⑶空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

注意:B⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或BA)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

★有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算性 质A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A)(C u B)= C u (A B) (C u A)(C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.典型例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页
高中知识点之集合
一、集合的有关概念
⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,

而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.元素与集合的关系:(元素与集合的关系有“属于”及“不属于两种)
⑴若a是集合A中的元素,则称a属于集合A,记作aA;

⑵若a不是集合A的元素,则称a不属于集合A,记作aA。

5.常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;N内排除0的集.
整数集,记作Z; 有理数集,记作Q; 实数集,记作R;
6.关于集合的元素的特征
⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明”
(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大
的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.
⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。.

如:方程(x-2)(x-1)2=0的解集表示为1,-2,而不是1,1,-2
⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
7.元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)
⑴若a是集合A中的元素,则称a属于集合A,记作aA;

⑵若a不是集合A的元素,则称a不属于集合A,记作aA。

二、集合的表示方法
⒈列举法:把集合中的元素一一列举出来, 并用花括号“”括起来表示集合的方法叫
列举法。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
说明:⑴书写时,元素与元素之间用逗号分开;
⑵一般不必考虑元素之间的顺序;
⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;


集合中的元素可以为数,点,代数式等;
第2页

⑸列举法可表示有限集,也可以表示无限集。当元素个数比较少时用列举法比较简单;
若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可
以用列举法表示。
⑹对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能

用省略号,象自然数集N用列举法表示为1,2,3,4,5,......

⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。。
方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画
一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:()xApx
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
用符号描述法表示集合时应注意:
1、弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?
2、元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,
而不能被表面的字母形式所迷惑。
三、集合的分类

集合的分类:::()emptyset有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含有任何元素的集合

四、集合的基本关系
⒈子集:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这 两个
集合有包含关系,称集合A是集合B的子集(subset)。
记作:()ABBA或 读作:A包含于B,或B包含A
当集合A不包含于集合B时,记作A⊈B(或B⊉A)
用Venn图表示两个集合间的“包含”关系:

⒉集合相等定义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B
中的元素是一样的,因此集合A与集合B相等,即若ABBA且,则AB。
如:A={x|x=2m+1,mZ},B={x|x=2n-1,nZ},此时有A=B。
⒊真子集定义:若集合AB,但存在元素,xBxA且,则称集合A是集合B的真子集。
记作:A B(或B A) 读作:A真包含于B(或B真包含A)
4.空集定义:不含有任何元素的集合称为空集。记作:
5.几个重要的结论:
⑴空集是任何集合的子集;对于任意一个集合A都有A。
⑵空集是任何非空集合的真子集;
⑶任何一个集合是它本身的子集;
⑷对于集合A,B,C,如果AB,且BC,那么AC。
五、集合间的基本运算;

B
A
表示:AB
第3页

1.并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B
的并集,即A与B的所有部分,
记作A∪B, 读作:A并B 即A∪B={x|x∈A或x∈B}。

Venn图表示:

2.
3.交集定义:一般地,由属于集合A且属于集合B的所有元素组成的集合,叫作集合A、B的
交集(intersection set),
记作:A∩B 读作:A交B 即:A∩B={x|x∈A,且x∈B}

Venn图表示:

常见的五种交集的情况:

4.全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么
就称这个集合为全集,记作U,是相对于所研究问题而言的一个相对概念。
5.补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集
合A相对于全集U的补集,
记作:UCA,读作:A在U中的补集,即,UCAxxUxA且
Venn图表示:(阴影部分即为A在全集U中的补集)

A
U

CUA
补充:集合中元素的个数
在研究集合时,经常遇到有关集合中元素的个数问题。我们把含有有限个元素的集合A叫
做有限集,用card(A)表示集合A中元素的个数。例如:集合A={a,b,c}中有三个元素,我们记
作card(A)=3.
结论:已知两个有限集合A,B,有:card(A∪B)=card(A)+card(B)-card(A∩B).
一个集合当中有N个元素,那么该集合的子集有2N个
真子集有2N-1个
非空真子集有2N-2个

A B
A(B)
A

B
B
A

B A

(阴影部分即为A与B的交集)

相关文档
最新文档