2019版【北师大版】八年级下册数学:1.1《等腰三角形》同步练习(含答案)

合集下载

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)

北师大版2020-2021学年度八年级数学下册1.1等腰三角形自主学习同步练习题2(含答案)1.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?并证明;(2)过点C作AB边上的高CG,试猜想DE,DF,CG的长之间存在怎样的等量关系?(直接写出你的结论)2.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.3.如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.4.请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)5.如图,在长方形ABCD中,AB=12cm,BC=8cm,动点P从点A出发,沿AB以2cm/s 的速度向终点B匀速运动;动点Q从点B出发,沿BC以1cm/s的速度向终点C匀速运动;两点同时出发多少秒时,△PBQ是等腰三角形?6.如图,已知在△ABC中,∠B=20°,∠C=40°,EF是线段AB的垂直平分线交BC于点D,连接AD.求证:△ADC是等腰三角形.7.如图的直角△ABC中,∠BAC=90°,AF⊥BC于点F,BD平分∠ABC交AF于点E,交AC于点D,试判定△ADE的形状并说明理由.8.已知:如图,△ABC中,BC边上有D、E两点,∠BAD=∠CAE,∠ADE=∠AED,求证:△ABC是等腰三角形.9.如图,已知AD是△ABC的角平分线,DE∥AB交AC于点E.那么△ADE是等腰三角形吗?请说明理由.10.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.11.已知一个等腰三角形的两边长分别为2cm和4cm,那么该等腰三角形的周长为()A.8cm B.10cm C.8cm或10cm D.不能确定12.等腰三角形两边长分别为5和8,则这个等腰三角形的周长为()A.18B.21C.20D.18或2113.在所给网格中,以格点(网格线的交叉点)A、B连线为一边构造格点等腰三角形ABC,则符合的点C的个数是()A.6B.7C.8D.914.线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.715.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个16.如图,在△ABC中,∠B=∠C,∠ADE =∠AED,∠EDC=20°,则∠BAD为()度.A.20B.30C.35D.4017.如图,在△ABC中,AB=AD=DC,∠B=64°,则∠C的度数为()A.30°B.32°C.40°D.48°18.如图,已知OC=CD=DE,且∠BDE=72°,则∠CDE的度数是()A.63°B.65°C.75°D.84°19.已知:如图∠BAC=69°,BD=AD=AC,则∠DAC的度数为()A.32°B.40°C.52°D.36°20.如图,∠ACD=120°,AB=BC=CD,则∠A等于()A.10°B.15°C.20°D.30°21.如图,D,E分别是△ABC的边BC,AC上的点,若AB=AC,AD=AE,则()A.当β为定值时,∠CDE为定值B.当α为定值时,∠CDE为定值C.当γ为定值时,∠CDE为定值D.无法确定22.如图,在△ABC中,AB=AC,过点A作AD⊥AB,交BC于点D.设∠ADB=α,∠CAD =β,则下列结论正确的是()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°23.如图,△ABC中,AB=AC,AD⊥BC,∠BAC=80°,AD=AE.则∠CDE=()A.10°B.20°C.30°D.40°24.如图,AB=AC,∠BAD=α,且AE=AD,则∠EDC的度数等于()A.B.αC.90°﹣D.90°﹣α25.如图,直线PQ上有一点O,点A为直线外一点,连接OA,在直线PQ上找一点B,使得△AOB是等腰三角形,这样的点B最多有个.26.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=45°,当∠A=时,△AOP为等腰三角形.27.如图,已知点P是射线BM上一动点(P不与B重合),∠AOB=30°,∠ABM=60°,当∠OAP=时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形.28.如图,AC=BC,∠C=36°,AD平分∠BAC,则图中等腰三角形(不含△ABC)的个数是.29.如图,在△ABC中,∠B=30°,∠C=∠B,AB=2cm,点P从点B开始以1cm/s 的速度向点C移动,当△ABP要以AB为腰的等腰三角形时,则运动的时间为.30.如图所示,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动.当三角形APQ是以PQ为底的等腰三角形时,运动的时间是.31.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A 运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.32.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为.参考答案1.解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,∵S三角形ABC=S三角形ADB+S三角形ADC,∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.2.解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD3.1)解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BEG=∠AGC'=48°,由折叠的性质得:∠CEF=∠C'EF,∴∠CEF=(180°﹣48°)=66°;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠CEF,由折叠的性质得:∠CEF=∠C'EF,∴∠GFE=∠C'EF,即△EFG是等腰三角形.4.解:如图所示:5.解:设两点同时出发x秒时,△PBQ是等腰三角形,∵长方形ABCD,∴∠B=90°,∵△BPQ是等腰三角形,∴BP=BQ,∴12﹣2x=x,解得:x=4,即两点同时出发4秒时,△PBQ是等腰三角形.6.证明:∵EF是线段AB的垂直平分线,∴AD=BD,∴∠B=∠BAD=20°,∴∠ADC=∠B+∠BAD=20°+20°=40°,∵∠C=40°,∴∠ADC=∠C,∴AD=AC,即△ADC是等腰三角形.7.解:△ADE是等腰三角形.理由如下:∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠BAC=90°,AF⊥BC,∴∠ABD+∠BDA=90°,∠CBD+∠BEF=90°,∴∠BDA=∠BEF,∵∠AED=∠BEF(对顶角相等),∴∠BDA=∠AED,∴AD=AE.故△ADE是等腰三角形.8.证明:∵∠ADE=∠AED,∠BAD=∠CAE,∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.9.答:△ADE是等腰三角形,理由如下:∵AD是△ABC的角平分线,∴∠1=∠2,∵DE∥AB,∴∠1=∠3,∴∠2=∠3,∴AE=DE,∴△ADE是等腰三角形.10.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.11.解:当4cm的边长为腰时,三角形的三边长为:4cm、4cm、2cm,满足三角形的三边关系,其周长为4+2+4=10(cm),当2cm的边长为腰时,三角形的三边长为:2cm、2cm、4cm,此时4=2+2,不满足三角形的三边关系,所以此时不存在三角形,故选:B.12.解:当8的边长为腰时,三角形的三边长为:8、8、5,满足三角形的三边关系,其周长为8+8+5=21,当5的边长为腰时,三角形的三边长为:5、8、5,满足三角形的三边关系,其周长为8+5+5=18,故选:D.13.解:如图:故选:C.14.解:如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.15.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故选:A.16.解:∵∠AED=∠C+∠EDC=∠C+20°,∠ADE=∠AED,∴∠ADC=∠ADE+∠EDC=∠AED+∠EDC=∠C+40°.又∵∠ADC=∠B+∠BAD,∠B=∠C,∴∠C+40°=∠BAD+∠C,∴∠BAD=40°.故选:D.17.解:∵△ABD中,AB=AD,∠B=64°,∴∠B=∠ADB=64°,∴∠ADC=180°﹣∠ADB=116°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣116°)÷2=32°,故选:B.18.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°﹣∠BDE=108°,∴∠CDE=108°﹣∠ODC=84°.故选:D.19.解:∵DB=DA,∴∠B=∠BAD,∵DA=CA,∴∠ADC=∠C,而∠ADC=∠B+∠BAD=2∠B,∴∠C=2∠B,∵∠BAC=69°,∴∠C+∠B=3∠B=111°,∴∠B=37°,∴∠DAC=180°﹣2∠ADC=180°﹣37°×4=32°.故选:A.20.解:∵AB=BC,∴∠A=∠ACB,∵∠DBC=∠A+∠ACB,∴∠DBC=2∠A,∵BC=CD,∴∠D=∠DBC=2∠A,∵∠ACD=120°,∴∠A+∠D=∠A+2∠A=180°﹣120°=60°,∴∠A=20°,故选:C.21.解:∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠ADE=∠AED,又∵∠ADC=∠B+∠BAD=∠B+∠α,∠AED=∠C+∠CDE,∴∠ADE+∠CDE=∠B+∠BAD=∠B+∠α,即∠C+∠CDE+∠CDE=∠B+∠α,∴2∠CDE=∠α,∴∠CDE=∠α.即当∠α为定值时,∠CDE为定值,故选:B.22.解:∵AB=AC,∴∠B=∠C,∵AD⊥AB,∴∠DAB=90°,∵∠ADB=α,∴∠B=∠C=90°﹣α,∵∠CAD=β,∴α=β+90°﹣α,∴2α﹣β=90°.故选:D.23.解:∵AB=AC,AD⊥BC,∠BAC=80°,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.故选:B.24.解:设∠EDC=x,∠B=∠C=y,∴∠AED=∠EDC+∠C=x+y,又∵AD=AE,∴∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又∵∠ADC=∠B+∠BAD,∴2x+y=y+α,解得x=.∴∠EDC=.故选:A.25.解:如图所示,分别以A、O为圆心,AO长为半径画弧,与直线PQ的交点B1,B2,B3符合题意;作AO的垂直平分线,与直线PQ的交点B4符合题意,若B2,B3,B4不重合,则最多有4个.故答案为:4.26.解:若△AOP为等腰三角形则有AO=AP、AO=OP和OP=AP三种情况,①当AO=AP时,则有∠O=∠APO=45°,∴∠A=90°;②当AO=OP时,则∠A=∠APO==67.5°;③当OP=AP时,则∠A=∠AON=45°,综上可知∠A为45°或67.5°或90°,故答案为:45°或67.5°或90°.27.解:分为以下5种情况:①OA=OP,∵∠AOB=30°,OA=OP,∴∠OAP=∠OP A=(180°﹣30°)=75°;②OA=AP,∵∠AOB=30°,OA=AP,∴∠APO=∠AOB=30°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣30°=120°;③AB=AP,∵∠AOM=60°,AB=AP,∴∠APO=∠ABM=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;④AB=BP,∵∠ABM=60°,AB=BP,∴∠BAP=∠APO=(180°﹣60°)=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;⑤AP=BP,∵∠ABM=60°,AP=BP,∴∠ABO=∠P AB=60°,∴∠APO=180°﹣60°﹣60°=60°,∴∠OAP=180°﹣∠AOB﹣∠APO=180°﹣30°﹣60°=90°;所以当∠OAP=75°或120°或90°时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形,故答案为:75°或120°或90°.28.解:由图可知,∵AC=BC,∠C=36°,∴∠BAC=∠ABC=72°,∵AD平分∠BAC,∴∠CAD=∠BAD=∠C=36°∴△CAD为等腰三角形,∵∠BDA=∠C+∠CAD=72°=∠B,∴△BAD为等腰三角形,∴则图中等腰三角形(不含△ABC)的个数是2个.故答案为2.29.解:当AB=AP时,点P与点C重合,如图1所示,过点A作AD⊥BC于点D,∵∠B=30°,AB=2cm,∴BD=AB•cos30°=2×=3cm,∴BC=6cm,即运动的时间6s;当AB=BP时,∵AB=2cm,∴BP=2cm,∴运动的时间2s.故答案为:2s或6s.30.解:设运动的时间为x,在△ABC中,AB=18cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=18﹣3x,AQ=2x,即18﹣3x=2x,解得x=3.6.故答案为:3.6s.31.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.32.解:如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°。

第1讲 等腰三角形八年级数学下册同步讲义(北师大版)

第1讲  等腰三角形八年级数学下册同步讲义(北师大版)

第1讲 等腰三角形 1. 掌握等腰三角形,等边三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形,等边三角形的判定定理.3. 熟练运用等腰三角形,等边三角形的判定定理与性质定理进行推理和计算. 知识点01 等腰三角形1.等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC 中,AB =AC ,则它叫等腰三角形,其中AB 、AC 为腰,BC 为底边,∠A 是顶角,∠B 、∠C 是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B ,∠B =∠C =1802A ︒-∠ . 2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据.性质2用来证明线段相等,角相等,垂直关系等.4.等腰三角形是轴对称图形 目标导航知识精讲等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.5.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【知识拓展1】根据等边对等角求角度例1.(2021·贵州·思南县张家寨初级中学八年级阶段练习)如图,在等腰三角形ABC中,AB=AC,点D为AC上一点,且AD=BD=BC,则∠A等于多少?例2.(2021·黑龙江省八五一一农场中学八年级期末)如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中∠CAB 的度数例3.(2021·广东·广州市白云区广大附中实验中学九年级阶段练习)已知:如图所示,在Rt△ABC中,∠C =90°,D是BC上一点,且DA=DB,∠B=15°.求∠CAD的度数.例4.(2021·广西三江·八年级期中)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,求∠C的度数.【即学即练1】如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【即学即练2】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【知识拓展2】利用三线合一求解与证明例1.(2021·湖北武汉·八年级阶段练习)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD =CE.⊥,垂足为D,E是BC延长线上的一点,例2.(2021·重庆·八年级期中)如图:已知等边ABC中,BD AC=,且CE CD(1)求证:BD DE=;(2)若M为BE中点,求证:DM平分BDE∠.例3.(2021·河南镇平·八年级阶段练习)下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB 上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是_______(填序号).①SSS;②SAS;③AAS;④ASA;⑤HL(2)如图2,连接EF.①求证:△CEF ≌△DFE ;②求证:△PEF 是等腰三角形;③小军作图得到的射线OP 是∠AOB 的平分线吗?请判断并说明理由.例4.(2021·广东广州·八年级阶段练习)如图,在ABC 中,AB AC =,AD BC ⊥,垂足为D ,AB :AD :13BD =:12:5,ABC 的周长为36,求ABC 的面积.例5.(2022·黑龙江富裕·八年级期末)已知:在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,点E 为CD 上一点,且DE =AD ,连接BE 并延长交AC 于点F ,连接DF .(1)求证:BE =AC ;(2)若AB =BC ,且BE =2cm ,则CF = cm .例6.(2021·江苏滨海·八年级期中)如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC =16m,上弦长AB=10m,求中柱AD的长.【即学即练1】(2021·福建·福州三牧中学九年级阶段练习)如图,在△ABC中,∠A=40°,∠ABC=80°,BE 平分∠ABC交AC于点E,ED⊥AB于点D,求证:AD=BD.【即学即练2】(2021·黑龙江五常·八年级阶段练习)已知:以线段AB为边在线段的同侧作△ABC与△BAD,BC与AD交于点E,若AC=BD,BC=AD.(1)如图1,求证:CE=DE;AB的线段.(2)如图2,当∠C=90°,∠AEB=2∠AEC时,作EF⊥AB于F,请直接写出所有等于12【即学即练3】(2021·吉林·八年级期末)如图,在ABC 中,AB AC =,AD 为边BC 的中线,E 是边AB 上一点(点E 不与点A 、B 重合),过点E 作EF BC ⊥于点F ,交CA 的延长线于点G .(1)求证:AD //FG ;(2)求证:AG AE =;(3)若3AE BE =,且4AC =,直接写出CG 的长.【即学即练4】(2021·江苏·扬州市梅岭中学八年级阶段练习)在平面直角坐标系中,三角形△ABC 为等腰直角三角形,AC =BC ,BC 交x 轴于点D .(1)若A (﹣8,0),C (0,6),直接写出点B 的坐标 ;(2)如图2,三角形△OAB 与△ACD 均为等腰直角三角形,连OD ,求∠AOD 的度数;(3)如图3,若AD 平分∠BAC ,A (﹣8,0),D (m ,0),B 的纵坐标为n ,求2n +m 的值.【知识拓展3】等腰三角形中的分类讨论例1.在等腰三角形中,有一个角为40°,求其余各角.例2、已知等腰三角形的周长为13,一边长为3,求其余各边.【即学即练】如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,AB=5,AC=7,BC=8,△AEF 的周长为( )A .13B .12C .15D .20【知识拓展4】等腰三角形性质和判定综合应用例1、已知:如图,ABC △中,45ACB ∠=︒,AD⊥BC 于D ,CF 交AD 于点F ,连接BF 并延长交AC 于点E , BAD FCD ∠=∠.求证:(1)△ABD≌△CFD;(2)BE⊥AC.知识点02 等边三角形1.等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.2.等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.3.等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.【知识拓展4】等边三角形例1、如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.【即学即练】等边△ABC,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.如图,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.【知识拓展5】在直角三角形中,30°角所对的直角边等于斜边的一半。

北师大版八年级数学下册 等腰三角形(提高)巩固练习 含答案解析

北师大版八年级数学下册 等腰三角形(提高)巩固练习  含答案解析

【巩固练习】一.选择题1.如图,在△ABC 中,若 AB =AC ,BC =BD ,AD =DE =EB ,则∠A 等于().A .30°B .36°C .45°D .54° 2.用反证法证明:a ,b 至少有一个为 0,应假设( )A. a ,b 没有一个为 0B. a ,b 只有一个为 0C. a ,b 至多有一个为 0D. a ,b 两个都为 03. 如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于 F ,过 F 作 DE∥BC ,交 AB 于 D ,交 AC 于 E ,那么下列结论正确的有( ①△BDF ,△CEF 都是等腰三角形; ②DE =DB +CE ;③AD +DE +AE =AB +AC ; ④BF =CF.A .1 个B .2 个 D .4 个)C .3 个 4. 等腰三角形一腰上的高与底边所成的角等于( )A .顶角的一半B .底角的一半C .90°减去顶角的一半D .90°减去底角的一半5.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,ED⊥AB 于 D .如果∠A=30°,AE=6cm , 那么 CE 等于( )A . cmB .2cmC .3cmD .4cm6. 如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点 P 是 BC 边上的动点,则 AP 长不可能 是( )A .3.5B .4.2C .5.8D .7二.填空题7.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的 度数为 8. 用反证法证明“若|a|≠|b|,则 a≠b .”时,应假设,则其余两边长分别为________... 9. 等腰三角形的周长为 22cm ,其中一边的长是 8cm10.(2015 春•盐城校级月考)如图,在Rt△ABC 中,∠ACB=90°,AB=5cm ,BC=4cm .动点 D 从点 A 出发,以每秒 1cm 的速度沿射线 AC 运动,当 t= 等腰三角形. 时,△ABD 为 11.如图,钝角三角形纸片 ABC 中,∠BAC =110°,D 为 AC 边的中点.现将纸片沿过点 D 的直线折叠,折痕与 BC 交于点 E ,点 C 的落点记为 F .若点 F 恰好在 BA 的延长线上,则∠ ADF =_________°.12. 如图,在ΔABC 中,∠ABC =120°,点 D 、E 分别在 AC 和 AB 上,且 AE =ED =DB =BC ,则∠A 的度数为______°.三.解答题13. 用反证法证明:一条线段只有一个中点.14.(2016 秋•宜昌期中)一个等腰三角形的三边长分别为x ,2x ﹣3,4x ﹣6,求这个三角形 的周长.15.(2015 秋•东台市期中)如图,△ABC 中,∠C=90°,AB=10cm ,BC=6cm ,若动点 P 从点C 开始,按 C→A→B→C 的路径运动,且速度为每秒 1cm ,设出发的时间为 t 秒.(1)出发 2 秒后,求△ABP 的周长.(2)问 t 为何值时,△BCP 为等腰三角形?(3)另有一点 Q ,从点 C 开始,按 C→B→A→C 的路径运动,且速度为每秒 2cm ,若 P 、Q两点同时出发,当 P 、Q 中有一点到达终点时,另一点也停止运动.当 t 为何值时,直 线 PQ 把△ABC 的周长分成相等的两部分?【答案与解析】一.选择题1. 【答案】C ;x 【解析】设∠A = x ,则由题意∠ADE =180°-2 x ,∠EDB = ,∠BDC =∠BCD =90°- 2x ,因为∠ADE +∠EDB +∠BDC =180°,所以 x =45°. 22. 【答案】A ;【解析】由于命题:“a ,b 至少有一个为 0”的反面是:“a ,b 没有一个为 0”,故选 A.3. 【答案】C ;【解析】①②③正确.4. 【答案】A ;【解析】解 : △ ABC 中 , ∵ AB=AC ,BD 是高, 180A∴ ∠ ABC= ∠C= 2 180 A A 在 Rt △ BDC 中 , ∠ CBD=90 °-∠ C=90 °- 故选 A .= . 2 25. 【答案】C ;【解析】解:∵ED⊥AB ,∠A=30°,∴AE=2ED ,∵AE=6cm ,∴ED=3cm ,∵∠ACB=90°,BE 平分∠ABC ,∴ED=CE ,∴CE=3cm ;故选:C .6. 【答案】D;【解析】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选D.二.填空题7.【答案】69°或21°;【解析】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.8.【答案】a=b;【解析】a,b的等价关系有a=b,a≠b两种情况,因而a≠b的反面是a=b.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.9.【答案】7cm ,7cm或8cm,6cm;【解析】边长为8cm的可能是底边,也可能是腰.10.【答案】5,6,;【解析】解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,由运动可知:AD=t,且△ABD时等腰三角形,有三种情况:①若AB=AD,则t=5;②若BA=BD,则AD=2AC,即t=6;③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,即(t﹣3)+4=t,222解得:t=,综合上述:符合要求的t值有3个,分别为5,6,.11.【答案】40;【解析】AD=FD,∠FAD=∠AFD=70°,所以∠ADF=40°.12.【答案】15°;【解析】设∠A=,∠BED=∠EBD=2,∠CBD=120°-2,∠C=∠BDC=30°+,x x x x而∠A+∠C=60°,所以+30°+=60°,解得=15°.x x x三.解答题13.【解析】已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,这与AM<AN矛盾,所以线段AB只有一个中点M.14.【解析】解:①x=2x﹣3,则x=3,∴4x﹣6=6,∵3+3=6,∴3、3、6不能构成三角形;②x=4x﹣6,则x=2,∴2x﹣3=1,∵1、2、2任意两边之和大于第三边,∴这个三角形的周长为1+2+2=5;③2x﹣3=4x﹣6,则x= ,∴2x﹣3=0,∴此三角形不存在.综上可知:这个三角形的周长为5.15.【解析】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P 从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2 秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴有勾股定理得PB=2 cm∴△ABP的周长为:AP+PB+AB=6+10+2 =(16+2 )cm;(2)若P 在边AC 上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P 在AB 边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P 运动的路程为12cm,所以用的时间为12s,故t=12s 时△BCP为等腰三角形;②若CP=BC=6cm,过C 作斜边AB 的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P 运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP 时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s 时,△BCP为等腰三角形.∴t=6s或13s 或12s 或 10.8s 时△BCP为等腰三角形;(3)当P 点在AC 上,Q 在AB 上,则AP=8﹣t,AQ=16﹣2t,∵直线PQ 把△ABC的周长分成相等的两部分,∴8﹣t+16﹣2t=12,∴t=4;当P 点在AB 上,Q 在AC 上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ 把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12,∴当t 为4 或12 秒时,直线PQ 把△ABC的周长分成相等的两部分.。

北师大版八年级下册数学 第一章《三角形的证明》等腰三角形 第二课时 等边三角形的性质同步练习题(无答案)

北师大版八年级下册数学 第一章《三角形的证明》等腰三角形 第二课时 等边三角形的性质同步练习题(无答案)

1.1 等腰三角形第2课时等边三角形的性质同步练习题1.如图,△ABC是等边三角形,则∠1+∠2=()A.60°B.90°C.120°D.180°第1题图第2题图第3题图2.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180° B.220°C.240° D. 300°3.如图,等边△ABC的边长为5个单位长度,△ABC≌△A′B′C′,BC′=9,则线段B′C 的长为()A.1 B.2 C.4 D.54.下列说法:①等腰三角形的高、中线、角平分线互相重合;②等腰三角形的两腰上的中线长相等;③等腰三角形的腰一定大于其腰上的高;④等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确的()A.①③B.①④C.①③④D.①②③④5.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=_________.6.若等边三角形的边长为2,则它的面积是___________7.等腰三角形两腰上的高相交所成的钝角为100°,则顶角的度数为______度,底角的度数为 _______.8.如图,边长为4的等边△AOB在平面直角坐标系中的位置如图所示,则点A的坐标为_______________第5题图第8题图9.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.10.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.11.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:△AEF≌△CDE.第 1 页。

北师大版八年级数学下册 第1章 三角形的证明 单元测试卷(含答案)

北师大版八年级数学下册  第1章 三角形的证明  单元测试卷(含答案)

北师大版八年级数学下册第1章三角形的证明单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=( )A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是( )A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是( )A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为( )A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是( )A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为( )A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中( )A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是( )A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是( )A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =( )A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.19.如图,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,△ABC的面积是.20.如图,在等腰△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF 折叠后与点O重合,则∠OEC的度数是.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt△ABC中,∠BAC=30°,BC=2.5 cm,BD=13 cm,AD=12 cm,求△ABD的面积.22.(本题8分)在加快城镇建设中,有两条公路OA和OB交会于O点,在∠AOB的内部有蔬菜基地C和D,现要修建一个蔬菜转运站P,使转运站P到两条公路OA,OB的距离相等,且到两个蔬菜基地C,D的距离也相等,用尺规作出蔬菜转运站P的位置.(要求:不写作法,保留作图痕迹.)23.(本题10分)如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.24.(本题12分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由;(2)若OC=3,求CD的长.25.(本题12分)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6 cm,AC=10 cm,求AD的长.26.(本题14分)如图,在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10 cm,试求出△PAO的周长;(2)若AB=AC,∠BAC=110°,试求∠PAO的度数;(3)在(2)中,若无AB=AC的条件,你能求出∠PAO的度数吗?若能,请求出来;若不能,请说明理由.27.(本题16分)如图,△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达点B时,M,N同时停止运动.(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形△AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=(D)A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(B)A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(C)A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是(B)A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是(C)A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =(B)A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(D)A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68__°.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1__000km.18.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M19.如图,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,△ABC 的面积是33.20.如图,在等腰△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是108__°.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt △ABC 中,∠BAC =30°,BC =2.5 cm ,BD =13 cm ,AD =12 cm ,求△ABD 的面积.解:∵Rt △ABC 中,∠BAC =30°,BC =2.5 cm , ∴AB =2BC =5 cm.∵52+122=132,即AB 2+AD 2=BD 2, ∴△ABD 是直角三角形.∴S △ABD =12AB·AD =12×5×12=30(cm 2).22.(本题8分)在加快城镇建设中,有两条公路OA 和OB 交会于O 点,在图中∠AOB 的内部有蔬菜基地C 和D ,现要修建一个蔬菜转运站P ,使转运站P 到两条公路OA ,OB 的距离相等,且到两个蔬菜基地C ,D 的距离也相等,用尺规作出蔬菜转运站P 的位置.(要求:不写作法,保留作图痕迹.)解:如图所示.23.(本题10分)如图,点P 为△ABC 的BC 边上一点,且PC =2PB ,∠ABC =45°,∠APC =60°,CD ⊥AP ,连接BD ,求∠ABD 的度数.解:∵∠APC =60 °,CD ⊥AP , ∴∠PCD =90 °-∠APC =90 °-60 °=30 °. ∴PC =2PD.∵PC =2PB ,∴PB =PD. ∴∠PBD =∠PDB.又∵∠APC =∠PBD +∠PDB ,∴∠PBD =12∠APC =12×60 °=30 °.∵∠ABC =45 °,∴∠ABD =∠ABC -∠PBD =45 °-30 °=15 °.24.(本题12分)如图,∠AOB =60°,OC 平分∠AOB ,C 为角平分线上一点,过点C 作CD ⊥OC ,垂足为C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由; (2)若OC =3,求CD 的长.解:(1)△CED 是等边三角形.理由如下: ∵OC 平分∠AOB ,∠AOB =60 °,∴∠AOC =∠COE =30 °. ∵CE ∥OA ,∴∠AOC =∠COE =∠OCE =30 °,∠CED =60 °. ∵CD ⊥OC ,∴∠OCD =90 °. ∴∠EDC =60 °.∴△CED 是等边三角形.(2)∵△CED 是等边三角形,∴CD =CE =ED. 又∵∠COE =∠OCE ,∴OE =EC. ∴CD =ED =OE.设CD =x ,则OD =2x.在Rt △OCD 中,根据勾股定理得:x 2+9=4x 2,解得x = 3. 则CD = 3.25.(本题12分)如图,△ABC 的外角∠DAC 的平分线交BC 边的垂直平分线于点P ,PD ⊥AB 于D ,PE ⊥AC 于E. (1)求证:BD =CE ;(2)若AB =6 cm ,AC =10 cm ,求AD 的长.解:(1)证明:连接BP ,CP.∵点P 在BC 的垂直平分线上,∴BP =CP. ∵AP 是∠DAC 的平分线,∴DP =EP ,在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP ,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE.(2)在Rt △ADP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,DP =EP ,∴Rt △ADP ≌Rt △AEP (HL ),∴AD =AE.∵AB =6 cm ,AC =10 cm ,∴6+AD =10-AE , 即6+AD =10-AD.解得AD =2 cm.26.(本题14分)如图,在△ABC 中,MP ,NO 分别垂直平分AB ,AC.(1)若BC =10 cm ,试求出△PAO 的周长; (2)若AB =AC ,∠BAC =110°,试求∠PAO 的度数;(3)在(2)中,若无AB =AC 的条件,你能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.解:(1)∵MP ,NO 分别垂直平分AB ,AC , ∴AP =BP ,AO =CO.∴△PAO 的周长为AP +PO +AO =BO +PO +OC =BC. ∵BC =10 cm ,∴△PAO 的周长为10 cm.(2)∵AB =AC ,∠BAC =110 °,∴∠B =∠C =12×(180 °-110 °)=35 °.由(1)知AP =BP ,AO =CO. ∴∠BAP =∠B =35 °,∠CAO =∠C =35 °. ∴∠PAO =∠BAC -∠BAP -∠CAO =110 °-35 °-35 °=40 °. (3)能.理由如下: ∵∠BAC =110 °,∴∠B +∠C =180 °-110 °=70 °.由(1)知AP =BP ,AO =CO.∴∠BAP =∠B ,∠CAO =∠C.∴∠PAO =∠BAC -∠BAP -∠CAO =∠BAC -(∠B +∠C )=110 °-70 °=40 °.27.(本题16分)如图,△ABC 中,AB =BC =AC =12 cm ,现有两点M ,N 分别从点A ,B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm /s .当点N 第一次到达点B 时,M ,N 同时停止运动.(1)点M ,N 运动几秒后,M ,N 两点重合?(2)点M ,N 运动几秒后,可得到等边三角形△AMN?(3)当点M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M ,N 运动的时间.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x ×1+12=2x ,解得x =12.(2)设点M ,N 运动t 秒后,可得到等边三角形△AMN ,如图1,AM =t ×1=t ,AN =AB -BN =12-2t.∵三角形△AMN 是等边三角形,∴t =12-2t ,解得t =4.∴点M ,N 运动4秒后,可得到等边三角形△AMN.(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形.由(1)知,12秒时M ,N 两点重合,恰好在C 处.如图2,假设△AMN 是以MN 为底边的等腰三角形,∴AN =AM.∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形.∴∠C =∠B.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB , ∴△ACM ≌△ABN (AAS ).∴CM =BN.设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形.∴CM =y -12,NB =36-2y ,由CM =NB ,得y -12=36-2y ,解得y =16.故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16秒.。

北师大版八年级下册数学 1.1---1.3基础同步练 (含答案)

北师大版八年级下册数学 1.1---1.3基础同步练  (含答案)

1.1等腰三角形一.选择题1.用一条长为36cm的细绳围成一个边长为8cm的等腰三角形,则这个等腰三角形的腰长为()A.8cm B.12cm C.8cm或14cm D.14cm2.如图,在等腰三角形ABC中,∠BAC=120°,DE是AB的垂直平分线,线段DE=1cm,则BC的长度为()A.8cm B.4cm C.6cm D.10cm3.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.84.若等腰三角形的一个内角是40°,则这个等腰三角形的其他内角的度数为()A.40°100°B.70°70°C.40°100°或70°70°D.以上都不对5.如图,E点在等腰△ABC的底边上的高AD上,且BE⊥CE,若∠BAC=70°,则∠ABE 的度数为()A.25°B.20°C.15°D.10°6.满足下列条件的三角形:①内角比为1:2:1;②内角比为2:2:5;③内角比为1:1:1;④内角比为1:2:3,其中,是等腰三角形的有()A.4个B.3个C.2个D.1个7.如图所示,在△ABC中,AB=AC,BE=CD,BD=CF,若∠A=α,则∠EDF等于()A.90°﹣αB.45°+αC.90°﹣αD.45°+α8.如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.89.如图,E为△ABC的边AB上一点,AC=BC=BE,AE=EC,BD⊥AC的延长线于点D,则∠CBD的度数为()A.18°B.28°C.36°D.15°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的是()①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③B.②③④C.①③④D.①②③④二.填空题11.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=4,AC=7,则AE=.12.如图,在△ABC中,∠B=∠C,D,E分别是线段BC、AC上的一点,且AD=AE.用等式表示∠1和∠2之间的数量关系是.13.等腰三角形两边长分别为2cm,5cm,该三角形的周长是.14.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D.若∠A=36°,则∠BDC 的大小为度.15.如图,已知∠AOB=α,在射线OA、OB上分别取点A1、B1,使OA1=OB1,连接A1B1,在A1B1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2,…,按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则θn=.(用含α的式子表示)三.解答题16.如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=28°,且AD=AE,求∠EDC的度数.17.如图,在△ABC中,点D在AC的垂直平分线上.(1)若AB=AD,∠BAD=24°,求∠B和∠C的度数;(2)若AB=AD,AC=BC,求∠C的度数;(3)若AC=8cm,△ABD的周长为15cm,求△ABC的周长.18.已知:如图,在△ABC中,AB>AC,∠B=45°,点D是BC边上一点,且AD=AC,过点C作CF⊥AD于点E,与AB交于点F.(1)若∠CAD=α,求∠ACD的度数.(2)在(1)的条件下,求∠BCF的大小;(用含α的式子表示)(3)判断△ACF的形状,并说明理由.参考答案1.D 2.C 3.C 4.C 5.D6.B 7.A 8.A 9.A 10.A11.312.∠1=2∠2.13.12cm.14.72.15..16.∵AB=AC,AD⊥BC,∴∠DAE=∠BAD=28°,∵AD=AE,∴∠ADE=(180°﹣∠DAE)=×(180°﹣28°)=76°,∴∠EDC=90°﹣∠ADE=90°﹣76°=14°.17.(1)∵点D在AC的垂直平分线上,∴AD=DC,在三角形ABD中,AB=AD,∴∠B=∠ADB=(180°﹣24°)×=78°,在三角形ADC中,AD=DC,∴∠C=78°×=39°;(2)设∠B=x°.∵CA=CB,∴∠A=∠CAB=x°,∵AB=AD=DC,∴∠B=∠ABD=x°,∠C=x°,在△ABC中,x+x+x=180,解得:x=72,∴∠C=×72°=36°.故∠C的度数是36°;(3)如图,∵DE是AC的垂直平分线,AC=8cm,∴DA=DC,CE=AE=4(cm),∵△ABD的周长为15cm∴AB+BD+AD=15(cm),即AB+BD+DC=15(cm),∴AB+BC+AC=15+8=23(cm),∴△ABC的周长为23cm.18.(1)∵AD=AC,∴∠ACD=∠ADC,∵∠CAD=α,∴∠ACD=(180°﹣∠CAD)=90;(2)过点A作AG⊥BC于点G,如图所示:∴∠DAG+∠ADG=90°,∵AD=AC,∴∠CAG=∠DAG=∠CAD=α,∵CF⊥AD于点E,∴∠DCE+∠ADG=90°,∴∠DCE=∠DAG=∠CAD=α,即∠BCF=α;(3)△ACF是等腰三角形.理由:∵∠B=45°,AG⊥BC,∴∠BAG=45°,∵∠BAC=45°+∠CAG,∠AFC=45°+∠DCE,∠DCE=∠DAG,∠CAG=∠DAG,∴∠BAC=∠AFC,∴AC=FC,∴△ACF是等腰三角形.1.2 勾股定理及其逆定理1.在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是( )A.40°B.50°C.60°D.70°2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A 落在边CB上A′处,折痕为CD,则∠A′DB的度数为( )A.40° B.30° C.20° D.10°3. 下列四组线段中,能组成直角三角形的是( )A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 4.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80 5. 下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,6 6. 如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.53 B .52C .4D .5 7. 将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85° 8. 下列命题的逆命题是真命题的有( )①对顶角相等;②在一个三角形中,如果有两条边相等,那么这两条边的对角也相等;③不相交的两条直线叫做平行线;④有三个角对应相等的两个三角形全等A .1个B .2个C .3个D .4个9. 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载,如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积 B.最大正方形的面积C.较小两个正方形重叠部分的面积 D.最大正方形与直角三角形的面积和10. 直角三角形两个锐角 (互余;互补);有两个角互余的三角形是三角形.11. 直角三角形的两直角边的平方和等于斜边的平方;若三角形的两边的平方和等于第三边的平方,那么这个三角形是三角形.12. 下列命题中,其逆命题成立的是 (只填写序号).①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a、b、c(c为最长边)满足a2+b2=c2,那么这个三角形是直角三角形.13.命题“两个全等直角三角形的面积相等”的逆命题是.,这个命题是.14.命题“对顶角相等”的逆命题是,该逆命题是(填“真”或“假”)命题.15.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为或 cm2.16.有一个三角形两边长为4和5,若使三角形为直角三角形,则第三边长为或 .17. 写出下列命题的逆命题,并判断它们是真命题还是假命题. (1)两直线平行,同位角相等;(2)如果a 是偶数,b 是偶数,那么a +b 是偶数.18. 如图所示,在正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC =14BC.求证:∠EFA =90°.19. 如图,∠MAN =60°,若△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,求BC 的取值范围.20. 如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h.问:多长时间后这个人距B送奶站最近?答案:1---9 BCDCA CCCC10. 互余直角11. 斜边平方直角12. ①④13. 如果两个直角三角形的面积相等 那么它们全等 假命题14. 相等的角是对顶角 假15. 126 66 16. 3 4117. 解:(1)逆命题为:同位角相等,两直线平行(真命题);(2)逆命题为:如果a +b 是偶数,那么a 为偶数,b 为偶数(假命题).18. 证明:设正方形边长为4a ,则有AE 2=AB 2+BE 2,EF 2=EC 2+CF 2,AF 2=DF 2+AD 2,即AE 2=(4a)2+(3a)2=25a 2,EF 2=a 2+(2a)2=5a 2,AF 2=(4a)2+(2a)2=20a 2,∴AE 2=AF 2+EF 2,∴∠AFE=90°.19. 解:3<BC <2320. 解:过B 作BD⊥CD 于D ,在△ABC 中,AC =8,BC =15,AB =17, ∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形.∵∠1=30°,∴∠BCD=60°,∴∠CBD=30°,∴CD=12BC =7.5km ,∴时间为7.5÷2.5=3h.1.3《线段的垂直平分线》一.选择题1.到△ABC 三个顶点的距离相等的点是△ABC ( )A .三条中线的交点B .三条角平分线的交点C .三条边的垂直平分线的交点D .三条高的交点2.如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处3.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm4.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=4cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm5.如图,△ABC中,DE垂直平分AC交AB于点E,∠A=30°,∠B=70°,则∠BCE 等于()A.40°B.45°C.50°D.60°6.在△ABC中,∠B=50°,∠C=35°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.60°B.70°C.75°D.85°7.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二.填空题8.已知点P在线段AB的垂直平分线上,PA=4cm,则PB=cm.9.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=20°,则∠C=.10.如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=.11.如图,△ABC中,BC的垂直平分线l与AC相交于点D,AB+AC=20cm,则△ABD的周长为cm.12.如图,在△ABC中,AB=AC,∠A=120°,BC=12cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为.三.解答题13.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.14.如图,在△ABC中,∠1=∠2,添加什么条件可得AD垂直平分BC?证明你的判断.15.已知:如图,在△ABC中,AB,AC的垂直平分线l1、l2相交于点P.求证:点P在BC 的垂直平分线上.16.如图,△ABC中,DE是AC的垂直平分线,△ABC的周长为21cm,△ABD的周长为13cm,求AE的长.17.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.18.在△ABC中,DE,HG分别为AB、AC的垂直平分线,与BC交于E、G两点,D、H 分别为垂足,直线DE、HG交于点F.(1)若BC=12,求△AEG的周长;(2)若∠DFH=80°,求∠EAG的度数.参考答案一.选择题1.解:∵线段垂直平分线上任意一点,到线段两端点的距离相等,∴到△ABC三个顶点的距离相等的点是△ABC三条边的垂直平分线的交点.故选:C.2.解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC 的垂直平分线上,故选:B.3.解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴∠BCE=∠B=15°,BE=CE,∴∠ACE=∠BCA﹣∠BCE=75°﹣15°=60°,∵Rt△AEC中,∠ACE=∠BCA=60°,AC=8cm,∴∠AEC=90°﹣∠ACE=90°﹣60°=30°,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C.4.解:∵DE是AB的垂直平分线,∴DB=DA,AB=2AE=8(cm),∵△ADC的周长为9cm,∴AC+CD+DA=AC+CD+DB=AC+BC=9(cm),∴△ABC的周长=AC+BC+AB=17(cm),故选:D.5.解:∵∠A=30°,∠B=70°,∴∠ACB=180°﹣30°﹣70°=80°,∵DE垂直平分AC,∴EA=EC,∴∠ECA=∠A=30°,∴∠BCE=∠ACB﹣∠ECA=80°﹣30°=50°,故选:C.6.解:∠BAC=180°﹣∠B﹣∠C=95°,由作图可知,MN是线段AC的垂直平分线,∴∠DAC=∠C=35°,∴∠BAD=∠BAC﹣∠DAC=95°﹣35°=60°,故选:A.7.解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.二.填空题8.解:∵点P在线段AB的垂直平分线上,∴PB=PA,∵PA=4cm,∴PB=4cm.故答案为4cm.9.解:∵DE是AC的垂直平分线,∴AE=CE,∴∠C=∠CAE,∵在Rt△ABE中,∠ABC=90°,∠BAE=20°,∴∠AEB=70°,∴∠C+∠CAE=70°,故答案为:35°.10.解:∵DE是AC的垂直平分线,∴AD=DC,∴BC=BD+DC=BD+DA,∵AB=4,△ABD的周长为12,∴BC=12﹣4=8.故答案为:8.11.解:∵l是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=20(cm),故答案为:20cm.12.解:∵AB=AC,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°,连接AM,AN,∵ME是AB的垂直平分线,∴AM=BM,∠BAM=∠B=30°,∴∠CAM=∠BAC﹣∠BAM=120°﹣30°=90°,∴CM=2AM=2BM,∴3BM=BC=12cm,∵BM=4cm,同理可得,CN=4,∴MN=BC﹣CN﹣BM=12﹣4﹣4=4(cm).故答案为:4cm.三.解答题13.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.14.解:添加:AB=AC,理由:∵∠1=∠2,∴BD=CD,∴点D在线段BC的垂直平分线上,∵AB=AC,∴当A在线段垂直平分线上,∴AD垂直平分BC.15.证明:连接PA、PB、PC,∵l1是AB的垂直平分线,∴PA=PB,∵l2是AC的垂直平分线,∴PA=PC,∴PB=PC,∴点P在BC的垂直平分线上.16.解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为21cm,∴AB+BC+AC=21cm,∵△ABD的周长为13cm,∴AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=8cm,∴AE=4cm.17.解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.18.解:(1)∵DE,FG分别是△ABC的边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴△AEG的周长=AE+EG+AG=BE+EG+CG=BC=12,∴△AEG的周长是12.(2)∵DE,FG分别是△ABC的边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴∠DAE=∠B,∠HAG=∠C,∵∠B+∠C+∠BAC=180°,∠DFH=80°,∴∠BAC=100°,∴∠B+∠C=80°,∴∠DAE+∠HAG=80°,∵∠DAE+∠HAG+∠EAG=∠BAC=100°,∴∠EAG=40°.。

北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)

第一章三角形的证明综合测试卷一、选择题。

01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35º B.45º C.55º D.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cm B.4 cm C.6 cm D.8 cm03如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A .3 cmB .2 cm C.3 cm D.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC 的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90º B.95º C 100º D.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD 的面积为 ( )A.8 B 10 C.12 D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100º B.140º C.130º D.115º07如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC 于D,E两点,若BD=2,则AC的长是 ( )A.4 B.43 C.8 D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cm B.2 cm C.2 cm D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD 是∠BAC的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90º B.75º C.70º D.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6 B.8 C.10 D.12二、填空题。

八年级数学北师大版初二下册--第一单元 1.1《等腰三角形》课件(第一课时)

B
∴ △BAD ≌ △CAD (SAS).
DC
∴ ∠ B= ∠C (全等三角形的对应角相等).
方法三:作底边的高线
已知: 如图,在△ABC中,AB=AC.
求证: ∠B= ∠C.
证明:作底边的高线AD,则
A
∠BDA=∠CDA=90°
在Rt△BAD和Rt△CAD中
AB=AC ( 已知 ) AD=AD (公共边)
∴AB=AD.
∴△ABD是等腰三角形.
2、如图,在△ABD中,C是BD上的一点,且AC⊥BD,
AC=BC=CD,
A
(1)求证: △ABD是等腰三角形;
(2)求∠BAD的度数.
B
D
C
(2)解∵AC⊥BD,AC=BC=CD,
∴△ACB、△ACD都是等腰直角三角形.
∴∠B=∠D=45°.
∴∠BAD=90°.
A BC
在△ABC中, ∵ຫໍສະໝຸດ B=AC ∴∠B=∠C等腰三角形顶角的平 分线平分底边并且垂 直于底边(简称三线 合一)
A
12 B
D
在△ABC中, ∵AB=AC,∠1=∠2 C ∴AD⊥BC,BD=CD
知一线得二线 “三线合一”可以帮助我
们解决线段的垂直、相等以 及角的相等问题。
A B DC
2.判断下列语句是否正确。
(1)等腰三角形的角平分线、中线和高互相重合.
( ×)
(2)有一个角是60°的等腰三角形,其它两个内
角也为60°
(√ )
(3)等腰三角形的底角都是锐角.
(√ )
(4)钝角三角形不可能是等腰三角形 .( × )
B
∴△ABC≌△DEF(ASA)
CE
F

北师大版八年级数学下册第一章 三角形的证明(含答案)

北师大版八年级数学下册第一章 三角形的证明(含答案)一、选择题1.由线段a,b,c 组成的三角形,不是直角三角形的是( )A.a=3,b=4,c=5B.a=1,b=43,c=53 C.a=9,b=12,c=15 D.a=√3,b=2,c=√5 答案 D D 中,a 2+b 2=7,c 2=5,a 2+b 2≠c 2,故选D.2.下列条件中,能判定两个直角三角形全等的是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等答案 D 当两直角边对应相等时,再由直角相等,根据SAS 可以判定两直角三角形全等.3.到三角形三个顶点的距离相等的点是三角形的( )A.三个内角平分线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条高的交点答案 B 到三角形三个顶点距离相等的点在三角形三边的垂直平分线上.4.用反证法证明:“三角形中必有一个内角不小于60°”时,应当先假设这个三角形中( )A.有一个内角小于60°B.每一个内角小于60°C.有一个内角大于60°D.每一个内角大于60°答案B反证法第一步是提出与结论相反的假设.5.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()图1-5-1A.√6B.4C.2√3D.5答案B∵AD⊥BC,∠ABC=45°,∴∠BAD=90°-∠ABC=45°=∠ABC,∴BD=AD,又∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=90°,∠BEC=90°.∴∠C+∠CAD=90°,∠C+∠CBE=90°,∴∠CAD=∠CBE,∴△ADC≌△BDH.∴BH=AC=4.6.已知等腰直角三角形ABC,斜边AB的长为2,以AB所在直线为x轴,AB的垂直平分线为y 轴建立直角坐标系,则点C的坐标是()A.(0,1)B.(0,-1)C.(0,1)或(0,-1)D.(1,0)或(-1,0)答案C∵OC⊥AB,∠CAB=45°,∴∠ACO=45°.AB=1,∴C(0,1)或(0,-1).∴CO=AO=127.下列命题中的假命题是()A.等腰三角形的顶角一定是锐角B.等腰三角形的底角一定是锐角C.等腰三角形至少有两个角相等D.等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合答案A等腰三角形的顶角可以是锐角,也可以是直角或钝角.8.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠AB.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点答案D∵A=36°,AB=AC,∴∠C=∠ABC=72°.∴∠C=2×36°=2∠A,A选项正确.∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴∠A=∠ABD=36°,∴△ABD是等腰三角形,C选项正确.又∵∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,B选项正确,只有D选项结论错误.9.如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,过A作DE∥BC交∠ABC的平分线BE于点E、交∠ACB的平分线CD于点D,则DE为()A.18B.16C.14D.8答案C在Rt△ABC中,AC=6,BC=10,由勾股定理得AB=8,∵DE∥BC,∴∠D=∠DCB,∠E=∠EBC,∵CD平分∠ACB,BE平分∠ABC,∴∠ACD=∠DCB,∠ABE=∠EBC,∴∠D=∠ACD,∠E=∠ABE,∴AD=AC=6,AE=AB=8,∴DE=6+ 8=14,故选C.10.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS,下面结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()图1-5-4A.①②B.②③C.①③D.①②③答案A∵PR⊥AB,PS⊥AC,且PR=PS,∴∠BAP=∠CAP.又∵AQ=PQ,∴∠CAP=∠APQ.∴∠BAP=∠APQ.∴QP∥AR.在Rt△APR和Rt△APS中,{AP=AP,PR=PS,∴Rt△APR≌Rt△APS.∴AS=AR.故①②均正确.由已知条件不能得到△BRP≌△CSP.故选A.二、填空题11.等腰三角形两腰上的中线相等,这个命题的逆命题是,这个逆命题是命题.答案两边上的中线相等的三角形是等腰三角形;真12.等腰三角形的两边长分别是7和3,则它的周长是.答案17解析当7为腰长时,周长为7+7+3=17.当3为腰长时,∵3+3=6<7,∴不能构成三角形,故答案为17.13.已知△ABC的三边长分别为a,b,c,且满足(a-b)2+(b-c)2+(c-a)2=0,则△ABC是三角形.答案等边解析∵(a-b)2+(b-c)2+(c-a)2=0,∴a-b=0,b-c=0,c-a=0,∴a=b,b=c,c=a,∴a=b=c.∴△ABC 是等边三角形.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD∶DC=2∶1,BC=7.8cm,则D到AB 的距离为cm.答案 2.6解析∵AD平分∠BAC且∠C=90°,∴点D到AB的距离等于CD的长.∵BD∶DC=2∶1,BC=7.8×7.8=2.6 cm.故答案为2.6.cm,∴CD=1315.如图,在△ABC中,AB的垂直平分线MN交AB于点E,交AC于点D,且AC=16,△BCD的周长等于26,则BC的长为.答案10解析∵MN垂直平分AB,∴AD=BD.∴△BCD的周长=BD+DC+BC=AC+BC.∴16+BC=26.∴BC=10.16.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为.答案1+√3解析∵CD⊥AB,∴∠ADC=∠BDC=90°.又∵∠A=45°,∠B=30°,∴∠ACD=∠A=45°,BC=2CD=2.∴AD=CD=1,BD=√BC2-CD2=√22-12=√3.∴AB=AD+DB=1+√3.17.如图,D是线段AB、BC的垂直平分线的交点,若∠ABC=60°,则∠ADC=.答案120°解析连接BD并延长.∵D是线段AB、BC的垂直平分线的交点,∴AD=BD=CD,∴∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=2∠ABC=120°.又∵∠5=∠1+∠2,∠6=∠3+∠4,∴∠ADC=∠5+∠6=120°.18.如图,在△ABC 中,AB=AC=5,BC=6,若点P 在边AC 上移动,则BP 的最小值是 .答案245解析 过点A 作AE ⊥BC 于点E,因为AB=AC=5,所以BE=CE=12BC=3,所以AE=√AB 2-BE 2=√52-32=4,所以S △ABC =12BC ·AE=12.易知BP 的最小值是S △ABC 12AC =245. 三、解答题19.如图,在Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN,求BN 的长.答案 设BN=x,由题意可得DN=AN=9-x.∵D 是BC 的中点,∴BD=3.在Rt △NBD 中,x 2+32=(9-x)2,解得x=4,即BN=4.20.如图所示,在△ABC 中,∠ACB=90°,CD 、CE 三等分∠ACB,CD ⊥AB.求证:(1)AB=2BC;(2)CE=AE=BE.证明 (1)∵∠ACB=90°,CD 、CE 三等分∠ACB,∴∠1=∠2=∠3=30°,∴∠1+∠2=60°,∴∠A=30°.在Rt△ACB中,∵∠A=30°,∴AB=2BC.(2)由(1)知∠A=∠1=30°,∴CE=AE.又∵∠B=∠BCE=60°,∴△BCE为等边三角形,∴CE=BE.∴CE=AE=BE.21.如图,在△ABC中,AB=8,AC=4,G为BC的中点,DG⊥BC交∠BAC的平分线AD于D,DE⊥AB 于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)求AE的长.答案(1)证明:连接DB、DC,易知△BDE与△CDF均为直角三角形.∵DG垂直平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AF,∴DE=DF(角平分线上的点到这个角的两边的距离相等).∴Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,又∠DAE=∠DAF,AD=AD,∴△ADE≌△ADF.∴AE=AF=AC+CF.由(1)知BE=CF,∴AE=AC+BE=4+BE.∴AE=4+8-AE.∴AE=6.22.如图所示,△ABC是边长为6 cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为v P=2 cm/s,v Q=1 cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?答案由题意可知AP=2t cm,BQ=t cm(0≤t≤3),则BP=AB-AP=(6-2t)cm.(1)若△PBQ为等边三角形,已知∠B=60°,需BP=BQ,即6-2t=t,解得t=2,即当t=2时,△PBQ 为等边三角形.(2)当PQ⊥BQ时,∵∠B=60°,∴∠BPQ=30°,∴BP=2BQ,即6-2t=2t,解得t=1.5;当PQ⊥BP时,同理可得BQ=2BP,即t=2(6-2t),解得t=2.4.综上可知,当t为1.5或2.4时,△PBQ为直角三角形.。

北师大版八年级数学下册第一章复习同步练习题

第一章复习一、填空题(每空3分,共36分)1.在△ABC中,AB=AC,∠A=44°,则∠B=度.2.等腰三角形的一个角为50°,则顶角是度.3.如图,AB=AD,只需添加一个条件,就可以判定△ABC≌△ADE.4.已知等腰三角形两条边的长分别是3和6,则它的周长等于.5.如图,在△ABC中,∠C=90°,D为BC上的一点,且DA=DB,DC=AC.则∠B=度.(第3题图) (第5题图) (第6题图) 6.如图,△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,BD=1.5cm,则AD= cm.7.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC=cm.8.在△ABC中,AB=AC,∠BAC=120°,延长BC到D,使CD=AC,则∠CDA =度.9.等边△ABC的周长为12cm,则它的面积为cm2.10.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC=.(第10题图) (第11题图)11.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E,若DB=10cm,则AC=.12.命题“角平分线上的点到这个角的两边的距离相等”的逆命题是。

二、选择题(每空3分,共24分)13.下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠F C.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF 14.下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等15.对“等角对等边”这句话的理解,正确的是( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的16.以下各组数为三角形的三条边长,其中能作成直角三角形的是( )A.2,3,4 B.4,5,6 C.1,2,3D.2,2,417.如图,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDC绕B点旋转,则在旋转过程中,AE与CD的大小关系为( )A.AE=CD B.AE>CD C AE<CD D.无法确定(第17题图)(第18题图)18.如图,△ABC中,AC=BC,直线l经过点C,则( )A.l垂直AB B.l平分AB C.l垂直平分AB D.不能确定19.三角形中,若一个角等于其他两个角的差,则这个三角形是( )A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形20.已知△ABC中,A B=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰和底边长分别为( )A.24 cm和12 cm B.16 cm和22 cm C.20 cm和16 cm D.22 cm和16 cm三、解答题(6+6+6+6+8+8分,共40分)21.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.22.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.23.已知:如图,△ABC和△CDE都是等边三角形,点D在BC边上.求证:AD=BE.24.求证:等腰三角形两腰上的中线的交点到底边两个端点的距离相等.25.已知:如图,等腰三角形ABC中,AC=BC,∠ACB=90°,直线l经过点C(点A、B都在直线l的同侧),AD⊥l,BE⊥l,垂足分别为D、E.你知道线段AD、DE、BE的关系吗?证明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版数学精品资料(北师大版)
1.1等腰三角形
一、选择题
1.如图1-22所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=
AD,则∠A等于 ( )
A.30° B.40° C.45° D.36°

2.在等腰梯形ABCD中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,如
图1-23所示,则图中的等腰三角形有 ( )
A.1个 B.2个 C.3个 D.4个
3.如图1-24所示,在 □ ABCD中,已知AD=8cm,AB
=6cm,DE平分∠ADC交BC边于点E,则BE等于 ( )
A.2 cm B.4 cm C.6 cm D.8 cm
4.下面几种三角形:
①有两个角为60°的三角形;
②三个外角都相等的三角形;
③一条边上的高也是这条边上的中线的三角形;
④有一个角为60°的等腰三角形.
其中是等边三角形的有 ( )
A.4个 B.3个 C.2个 D.1个
二、填空题
5.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,第一
步应假设 .
6.等腰三角形的顶角α>90°,如果过其顶角的顶点作一条直线将这个等腰
三角形分 成了两个等腰三角形,那么α的度数为 .
三、解答题
7.如图1-25所示,四边形ABCD的对角线AC与BD相交于O点,∠1=
∠2,∠3=∠4.求证:
(1)△ABC≌△ADC;
(2)BO=DO.
8.文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,
画出图形, 如图1-26所示,写出已知、求证,她们对各自所作的辅助线描述
如下:
文文:过点A作BC的中垂线AD,垂足为D.
彬彬:作△ABC的角平分线AD.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而
文文的作法 需要改正.”

(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
9.四边形ABCD是正方形.
(1)如图1-27(1)所示,点G是BC边上任意一点(不与B,C两点重合),
连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证△ABF≌△DAE;
(2)在(1)中,线段EF与AF,BF的等量关系是 ;(不需证明,直接写
出结论即可)
(3)如图1-27(2)所示,若点G是CD边上任意一点(不与C,D两点重合),
作BF⊥AG于点F,DE⊥AG于点E,那么图中的全等三角形是 ,线段EF
与AF,BF的等量关系是 .(不需证明,直接写出结论即可)
10.如图1-28所示,D为△ABC的边AB的延长线上一点,过D作DF
⊥AC,垂足为F,交BC于E,且BD=BE,求证△ABC是等腰三角形.
11.如图1-29所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,点
E在AC上.CE =BC,过点E作AC的垂线,交CD的延长线于点F,求证AB
=FC.

参考答案
1.D[提示:本题综合考查三角形内角和定理、外角的性质及等腰三角形
的性质.由AD=BD,得∠A=∠ABD,∠BDC=2∠A,由BD=BC,得∠C=
∠BDC=2∠A.由AB=AC,得∠ABC=∠C=2∠A,由三角形内角和定理,得
∠A+2∠A+2∠A=180°,即 ∠A=36°.]
2.D[提示:△ABD,△ACD,△AOD,△BOC都是等腰三角形.]
3.A[提示:由DE平分∠ADC,得∠ADE=∠CDE,由AD∥BC,得∠ADE
=∠CED,∴∠CED=∠CDE,∴EC=DC=6 cm,∴BE=BC-EC=8-6=
2(cm).]
4.B[提示:利用等边三角形的判定定理可知①②④为等边三角形,③为
等腰三角形.]
5.三角形中没有大于或等于60°的角(或三角形的所有内角都小于60°)
6.108°[提示:画出图形,利用三角形内角和求解.]
7.证明:(1)在△ABC和△ADC中,∵∠1=∠2,AC=AC,∠3=∠4,
∴△ABC≌△ADC. (2)由(1)知AB=AD,又∵∠1=∠2,AO=AO,∴△ABO
≌△ADO,∴OB=OD.
8.解:(1)过点A作BC的垂线,不一定过BC的中点,如果连接点A和
BC中点D,则AD与BC不一定垂直. (2)证明:作△ABC的角平分线AD,则
∠BAD=∠CAD,又∵∠B=∠C,AD=AD,∴△ABD≌△ACD,∴AB=AC.
9.(1)证明:在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAF+∠
DAE=90°.在Rt△ABF中,∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△
ABF与△DAE中,∠ABF=∠DAE,∠AFB=∠DEA=90°,AB=DA,∴△ABF
≌△DAE(AAS).(2)EF=AF-BF (3)△ABF≌△DAE EF=BF-AF
10.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°,∴∠A+∠D=90°,∠
C+∠1= 90°,∴∠A+∠D=∠C+∠1.又∵BD=BE,∴∠2=∠D(等边
对等角).又∵∠1=∠2,∴∠1=∠D,∴∠A+∠D=∠C+∠D,∴∠A=∠C


AB=BC(等角对等边),∴△ABC是等腰三角形.

11.证明:FE⊥AC于点E,∠ACB=90°,∴∠FEC=∠ACB=90°,∴
∠F+∠ECF=90°.又∵CD⊥AB于点D,∴∠A+∠ECF=90°,∴∠A=∠F.在
△ABC和△FCE中,∠A=∠F,∠ACB=∠FEC,BC=CE,∴△ABC≌△FCE,
∴AB=FC.

相关文档
最新文档