局部放电检测仪原理和使用说明
CT9209 局部放电检测仪 使用说明书

CT9209局部放电检测仪使用说明书V2.3杭州高电科技有限公司地址:杭州钱江经济开发区永泰路2号-15#邮编:311107电话:*************传真:*************网站:邮箱:*************尊敬的用户:感谢您购买本公司局部放电巡检仪。
在您初次使用该产品前,请详细阅读使用说明书。
该仪器用于探测中/高压(MV/HV)设备中的局部放电源。
如果没有探测到放电,其并不意味着中高压设备中无放电活动。
放电往往具有潜伏期,绝缘性能也可能会由于局部放电以外的其他原因而失效。
如果检测到与中高压电力系统相连的设备中有相当大的放电,应立即通知对设备负责的相关单位。
警告:始终保持高压部分与仪器、探头和操作人员之间的安全距离。
严格遵守当地安全规则。
附近有雷暴天气时,不得进行测量。
不得在爆炸环境中操作仪器或附件。
使用产品时,请按说明书规范操作。
仪器电池报警后请关机充电。
未经允许,请勿开启仪器,这会影响产品的保修。
自行拆卸厂方概不负责。
存放保管本仪器时,应注意环境温度和湿度,放在干燥通风的地方为宜,要防尘、防潮、防震、防酸碱及腐蚀气体。
仪器运输时应避免雨水浸蚀,严防碰撞和坠落。
本手册内容没有我公司的书面许可,任何部分都不许以任何(电子的或纸质的)形式、方法或以任何目的而进行传播。
目录1.产品概述 (1)2.引用标准 (1)3.测量原理 (1)3.1暂态地电压(TEV) (1)3.2超声波(US) (2)3.3特高频(UHF) (3)3.4高频电流互感器(HFCT) (3)4.技术参数 (5)5.仪器基本操作 (7)5.1仪器开启/关闭 (7)5.2概要信息 (7)5.3系统设置 (8)5.4TEV测量 (9)5.5US测量 (11)5.6UHF测量 (13)5.7HFCT测量 (15)5.8历史记录查看 (17)5.9外同步的使用 (18)5.10传感器的使用 (18)5.11仪器充电 (20)6.检测流程 (20)6.1TEV局部放电检测流程 (20)6.2US局部放电检测流程 (21)6.3声电联合检测 (22)6.4HFCT局部放电检测流程 (23)6.5UHF检测流程 (24)6.6生成报告流程 (25)1.产品概述局部放电是一种脉冲放电,它会在电力设备内部和周围空间产生一系列的光、声、电气和机械的振动等物理现象和化学变化。
局放仪使用说明书

(一)
局部放电现象存在多样性特征,发生放电时,不仅辐射出电磁波信号,也会出现声波发射现象,局部放电部分能量会以声波的形式向周围传播。利用超声波传感器即可测试这些声脉冲,从而也可反映局部放电的状况。通过测试局部放电信号中声波特征的方法称为超声波法。
开关柜内部放电过程中会产生声波。放电产生的声波的频谱很宽,可以从几十赫兹到几十兆赫兹,其中频率低于20 kHz 的信号能够被人耳听到,而高于这一频率的超声波信号必须用超声波传感器才能接收到。
不供
2
开关柜
TEV传感器
供电
超声波传感器
供电
非接触式
3
电缆头
声电组合探测器
供电
4
GIS
超声波传感器
供电
接触式
UHF传感器
供电
本仪器采用自动或手动记录保存试验数据和瞬态放电波形,提供后期数据分析参考。
二、
(一)
通道数
2/4个电信号接口,1个外同步接口
采样率
最大200MSa/s
采样精度
12bit
量程范围
100dB
量程切换
0-9共10档
频带范围
1Hz-60MHz
本量程非线性误差
5%
检测灵敏度
≥5pC(实验室条件下);≥10pC(现场条件下)
可以在高压开关柜壁箱外侧安放超声波传感器,来侦听放电产生的超声波声音。
(二)
当开关柜的对地绝缘部分发生局部放电时,高压带电导体对接地金属壳之间就有少量电容性放电电量,这种电容性放电电量的特点是电量很小(几兆分之一库伦),持续时间很短(几纳秒)。由于放电点在开关柜内部,电磁波产生的电压脉冲在金属外壳内表面传播,被金属外壳所屏蔽。如果屏蔽层是连续的,则无法在外部检测到放电信号。实际上,屏蔽层通常在金属箱体的接缝处、气体开关的绝缘衬垫、垫圈的连接处、电缆绝缘终端等部位因破损而导致不连续。当电压脉冲通过这些不连续处时,将通过这些通道传播出去,然后沿着金属壳外表传到大地,同时在开关柜的金属箱体上产生一个暂态对地电压(一般在几十毫伏到几伏,而且时间只能维持几纳秒),可以在运行中的开关柜金属外箱壳上放置电容耦合式传感器来检测这个信号。
电力电缆的局部放电检测与处理

电力电缆的局部放电检测与处理局部放电是电力电缆中常见的故障形式之一,它会导致电缆损坏、短路等严重后果。
因此,对电力电缆进行局部放电的及时检测与处理,具有重要的意义。
本文将介绍电力电缆局部放电的检测原理、方法以及处理措施。
一、电力电缆局部放电的检测原理局部放电是指电缆中的电荷在局部区域释放能量,造成电弧放电或脉冲放电的现象。
电缆在运行或负荷过程中,由于介质老化、控制电极不良、绝缘结构破损等原因,可能引发局部放电。
因此,及时检测局部放电的存在是至关重要的。
电力电缆局部放电的检测可以通过不同的方法实现。
其中主要包括以下几种:1. 电缆局部放电检测仪器:采用高频电流放电法、超声波法、暂态地电压法等原理进行检测,可以对电缆进行全面、精确的监测。
2. 红外热像仪:通过检测电缆表面的热量分布,可以发现局部放电产生的热量异常,提前发现潜在故障。
3. 电缆局部放电监测系统:通过长期、实时监测电缆的电压、电流等参数,及时判断电缆是否存在局部放电,保障电力系统的稳定运行。
二、电力电缆局部放电的检测方法1. 高频电流放电法:通过检测电缆导体内部的高频电流信号,判断是否存在局部放电现象。
2. 超声波法:利用超声波的传导和反射特性,检测电缆绝缘及连接部位是否存在局部放电。
3. 暂态地电压法:通过在电缆两端施加暂态地电压,通过检测地电压的变化情况,判断是否存在局部放电。
三、电力电缆局部放电的处理措施当电力电缆存在局部放电时,需要及时采取相应的处理措施,避免故障扩大,确保电力系统的正常运行。
具体处理措施包括:1. 局部放电源的隔离:通过对电缆的发生放电部位进行隔离,防止放电的继续发展。
2. 放电源的修复:及时修复局部放电源,修复或更换损坏的电缆绝缘部分。
3. 系统的升级改造:通过对电力系统进行升级改造,提高电缆的绝缘性能,减少局部放电的可能性。
4. 定期检测与维护:定期对电力电缆进行检测与维护,及时排除潜在的故障隐患,提高电缆的安全可靠性。
局部放电检测仪

PDV5局部放电检测仪目录PDV 5 (1)1 产品概述 (3)2 检测原理 (4)3 仪器操作 (4)4传感器操作 (5)5仪器的功能 (6)5.1 频谱扫描 (7)5.2 启/停测量 (7)5.3结果显示 (7)5.4放电类型识别 (8)5.5抗干扰 (8)5.5.1 主要干扰类型 (9)5.5.2 仪器对干扰的抑制 (9)5.6 数据回读浏览 (9)5.7 自动更新 (10)5.8 数据导出 (10)5.9 帮助 (10)6使用条件 (10)7性能指标 (10)8现场测量方法与注意事项 (11)附录A GIS 局部放电的典型图谱 (14)附录B 干扰信号的典型图谱 (15)附录C 检测数据的要求 (16)附录D 术语和定义 (16)1 产品概述局部放电测量有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。
在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。
为此,我们精心设计了PDV5局部放电检测仪,专门用于定量检测GIS等电力变电设备内部的局部放电的状况,直观分析局部放电的严重程度,衡量设备内部绝缘的劣化程度,使维护人员在变电设备出现绝缘劣化时能够及时发现,采取相应措施,避免设备出现短路等严重故障。
PDV5局部放电检测仪采用目前流行的超高频和超声波检测局部放电的方法,通过外置的UHF天线接收GIS内部局部放电辐射和产生的超高频和超声波信号,能有效检测到设备内部产生的微弱局部放电信号。
PDV5在使用上以超高频为主要检测方法,超声波为辅助检测手段。
PDV5具有如下特点:①单通道设计,可以选择接入超高频传感器或者超声波传感器。
②便携式设计,维护人员能随身携带,并且一个人就能实施局部放电的检测过程。
③操作过程简单,通过仪器上的快捷按键就能轻松完成整个检测,方便现场人员使用。
局部放电试验方法

局部放电试验方法1. 引言局部放电试验是一种常用的电力设备故障预警和健康评估手段。
本文介绍了局部放电试验的基本原理、试验设备和试验方法。
2. 基本原理局部放电是在电器设备绝缘系统中出现的一种电击穿放电现象。
通过监测和分析局部放电信号,可以判断设备绝缘的健康状况。
局部放电试验基于以下两个基本原理:- 电压波形检测:通过施加一定的电压波形,监测设备绝缘系统中是否发生局部放电。
常用的电压波形包括直流、交流等。
- 放电信号分析:通过分析局部放电信号的特征,判断放电的类型和位置。
常用的分析方法包括时间域分析、频谱分析等。
3. 试验设备进行局部放电试验需要以下基本设备:- 发生器:用于产生所需的电压波形。
- 电流传感器:用于监测局部放电产生的电流信号。
- 放电检测器:用于检测和记录局部放电信号,并对信号进行分析。
- 数据分析软件:用于对局部放电信号的特征进行分析和判别。
4. 试验方法局部放电试验一般按照以下步骤进行:1. 确定试验对象:选择需要进行局部放电试验的电器设备。
2. 准备试验设备:根据试验对象的特点和试验要求,配置相应的发生器、电流传感器、放电检测器和数据分析软件。
3. 设置试验参数:根据试验要求,设置合适的电压波形和试验时长。
4. 进行试验:按照设定的试验参数,施加电压波形,并监测和记录局部放电信号。
5. 数据分析:利用数据分析软件对采集到的局部放电信号进行分析和判别,评估设备绝缘的健康状况。
6. 结果报告:根据分析结果,撰写局部放电试验的结果报告,并提出相应的建议和措施。
5. 结论局部放电试验是一种有效的电力设备故障预警和健康评估手段。
通过合理选择试验方法和设备,并对局部放电信号进行准确的分析,可以提高设备绝缘的检测和评估能力,确保设备运行的安全可靠。
参考文献:- 张三, 李四. 局部放电试验方法及应用研究. 电力设备管理, 2020, 20(3): 12-17.。
局部放电检测仪使用说明

局部放电检测仪一、概述局部放电检测仪是近年来新研制生产的又一新颖局部放电检测仪。
广泛适用于变压器、互感器、高压开关、氧化锌避雷器、电力电缆等各种高电压电工产品的局部放电的测量,产品的型式试验,绝缘的运行监督等。
本仪器检测灵敏度高,试样电容复盖范围大,适用试品范围广,输入单元(检测阻抗)配备齐全,频带组合多(九种)。
仪器经适当定标后能直读放电脉冲的放电量,指针式表头和数字式表头同时显示,指针式表头能按需要方便地选择对数刻度或线性刻度指示。
本仪器是电力部门、制造厂商和科研院所等单位广泛使用的实用的局部放电测试仪器。
二、主要技术指标1.可测试品的电容量范围6PF--250μF2.检测灵敏度(见表一)表一输入单元序号调谐电容单位灵敏度(微微库)(不对称电路)1 6-25-100 微微法0.022 25-100-400 微微法0.043、放大器频带:①低端:10KHZ、20KHZ、40KHZ任选②高端:80KHZ、200KHZ、300KHZ任选4、放大器增益调节:粗调六档,档间增益20±1 db;细调范围>20db。
5、时间窗:①窗宽:可调范围15°~150°;②窗位置:每一窗可旋转0°~170°;③两个时间窗可分别开或同时开。
6、放电量表:①指针式表头:对数刻度1-10-100 误差<±5%(以满刻度计)线性刻度0-1000 误差<±5%(以满刻度计)②数字表头:以3½LED数字表显示0-100.0 误差<±5%(以满刻度计)7、椭圆时基:①频率50HZ、100HZ、150HZ、200HZ、400HZ。
②椭圆旋转:以30°为一档,可作120°旋转。
③显示方式:椭圆——直线。
④高频时基椭圆可按输入电压(13∽275V)调节至正常大小,其摄取功率<1伏安。
8、试验电压表:①量程:100KV(可扩展)②显示:3½数字电压表指示③精度:优于±5%(以满刻度计)9、内、外零标功能10、体积:500*500*210(宽*深*高)mm311、重量:约18kg。
局放检测仪原理及应用

局放检测仪原理及应用一、概述局放检测仪是一种用于检测高压设备中局部放电现象的测试仪器。
它是通过测量设备内发生的不规则放电而检测可能导致设备故障或损坏的缺陷。
局放检测仪广泛应用于各种高压设备的维护和故障排除,特别是在变压器、电缆和开关设备中更为常见。
二、原理局放检测仪的工作原理是通过测量设备的局部放电强度,来确定是否需要对设备进行修理或更换。
局部放电是指高电压设备中表面或内部的缺陷,比如介质损伤、气泡、金属毛刺或者分层等,导致电场的非均匀分布,形成放电,有可能导致设备的故障。
局放检测仪通过检测设备中的电流、电压、频率等信号来判断设备内是否有局部放电现象,进而确定设备的安全状态。
三、应用局放检测仪通常用于以下几个方面:1.变压器检测:变压器是电力系统中非常重要的设备,因此及时检测其局部放电现象对于确保设备运行的可靠性和长寿命至关重要。
局放检测仪通过检测变压器的绝缘介质,可以判断其是否受到了损伤。
2.电缆检测:电缆的绝缘也是很容易受到损坏的。
因此,通过局放检测仪检测电缆的绝缘可以提早发现绝缘缺陷,并及时维修。
3.开关设备检测:开关设备在电力系统中用于接通、分离或切断电线路。
正常工作的开关设备是保护电力系统正常运行的重要组成部分。
但是如果开关设备内发生局部放电现象,就会导致设备失效或者运行不稳定。
局放检测仪通过检测开关设备的绝缘介质是否损坏来判断设备是否损坏。
四、局放检测仪的类型局放检测仪的类型有很多,一般可以根据其工作原理分为以下几种类型:1.电容式局放检测仪:在接地电极和设备感应电极之间加上电容,测量局部放电时的电容变化。
2.磁耦合式局放检测仪:利用磁耦合构造测量局部放电信号。
3.微波式局放检测仪:使用微波相干技术来检测局部放电现象。
五、局放检测仪的优缺点局放检测仪的优点是其便于使用且可以精确地检测设备的局部放电现象,从而及时确定设备是否需要维修或更换。
此外,它也可以提高电压设备的安全性。
但它的缺点是价格较高,需要比较高的维护成本,以及对检测人员的要求很高,需要有专业的技能才能操作。
特高频局部放电检测技术知识讲解

特高频局部放电检测技术知识讲解电力设备的局部放电是一种常见的电气现象,它预示着设备的绝缘状况可能出现问题。
特高频局部放电检测技术是一种先进的检测技术,能够有效地检测和识别电力设备的局部放电。
本文将详细介绍特高频局部放电检测技术的原理、应用及优势。
一、特高频局部放电检测技术原理特高频局部放电检测技术主要利用局部放电产生的电磁波进行检测。
当电力设备发生局部放电时,放电产生的电流会激发出电磁波,这些电磁波的频率通常在数吉赫兹到数百吉赫兹之间。
特高频局部放电检测设备能够捕捉到这些特高频电磁波,并对其进行处理和分析。
二、特高频局部放电检测技术的应用特高频局部放电检测技术在电力设备检测中具有广泛的应用。
例如,它可以用于变压器、电缆、断路器等电力设备的检测。
通过对特高频电磁波的分析,可以判断出设备的绝缘状况,发现潜在的故障,从而预防设备故障的发生。
三、特高频局部放电检测技术的优势特高频局部放电检测技术相比传统的检测方法具有以下优势:1、高灵敏度:特高频局部放电检测技术对局部放电产生的电磁波非常敏感,可以检测到非常微弱的放电信号,从而能够发现潜在的设备故障。
2、宽频带:特高频局部放电检测设备具有宽频带的接收能力,可以接收到的电磁波频率范围很广,从而能够获得更全面的设备信息。
3、抗干扰能力强:特高频局部放电检测技术对噪声的抑制能力较强,可以有效地避免干扰信号对检测结果的影响。
4、非接触式检测:特高频局部放电检测技术可以采用非接触式的方式进行检测,无需接触设备,从而不会对设备的正常运行产生影响。
四、结论特高频局部放电检测技术是一种先进的电力设备检测技术,具有高灵敏度、宽频带、抗干扰能力强和非接触式检测等优势。
通过对电力设备的特高频电磁波进行检测和分析,可以有效地发现潜在的设备故障,预防设备故障的发生。
在未来的电力设备检测中,特高频局部放电检测技术将会发挥越来越重要的作用。
随着电力系统的不断发展,人们对电力设备的安全与稳定性要求越来越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
局部放电测试仪使用手册武汉四维恒通科技有限公司目录安全注意事项 (3)警告 (3)操作注意事项 (4)一、非侵入式局部放电活动检测 (5)二、技术参数 (7)三、结构布局 (9)四、使用操作 (11)4.1 主界面 (11)4.2 超声波测量程序 (12)4.3 TEV测量程序 (13)4.4 历史数据查看 (14)五、TEV读数说明 (16)六、使用条件 (25)七、符合声明 (25)8.1 保修 (26)8.2 范围 (26)九、售后服务 (27)安全注意事项本仪器用来检测中高压(MV/HV)设备中的局部放电源。
如果没有检测到放电,并不意味着中高压设备无放电活动。
放电源往往具有潜伏期,且绝缘性能也可能会由于局部放电以外的其它原因而失效。
如果检测到与中高压电力系统相连的设备中有相当大的放电,应该立即通知设备维护部门。
警告●本产品仅可用在地电位上使用。
●测试过程中,在启用探头之前应该确保电气仪器金属外壳接地。
●随时确保高压部分与仪器、探头和操作员之间的安全距离。
●严格遵守电力系统安全规则。
●闪电时切勿使用本产品。
●请勿在开机后立即进行测量。
●如环境改变,请通过重启来去除环境背景值●切勿对设备及探头进行机械撞击、振动、高温加热等操作。
●切勿在易爆环境中操作本产品。
●使用中如有不正常现象或使用上的疑问,切勿开启仪器,请直接联系厂家或代理商处理。
操作注意事项在使用TEV型产品时,必须遵守以下几点:1、从手机、RF 发射机、视频显示器以及无屏蔽的电子设备所产生的直流至1 GHz 频率范围内的强烈电磁干扰会影响读数。
将本产品放在离开任何导体表面至少1米处自由空间即可测量本地电磁场值。
2、在空间窄小的角落中使用时必须小心谨慎,因为临近其它的接地平面可以影响读数的精度。
尽可能在离金属体30cm 以上的距离(垂直距离)使用。
一、非侵入式局部放电活动检测1.1 概论局部放电不会使电极完全短路的电气放电。
这种放电的幅值通常都很小。
但是它们确实会导致绝缘层性能的不断下降,最终导致电气设备的故障。
非侵入式局部放电检测提供了既快速又简单的方法,用于识别可能会引起停电或造成人员伤害的潜在绝缘故障。
局部放电会以下述的方式放射能量:电磁能量:无线电波、光、热声能:声波、超声波气体:臭氧、氮氧化物。
非侵入式检测最实用的技术都是基于检测电磁频谱中的高频部分以及超声波信号。
本产品是专用于检测电磁波及超声波活动的仪器。
2.2 空气传播的超声波放电活动局部放电活动中的声波辐射会出现在整个声谱范围中。
听声音是可能的,但是要取决于各人的听觉能力。
使用仪器来检测声谱中的超声波具有几个优点。
仪器比人耳更敏感,与操作员无关,且工作在音频以上的频率,并且具有更强的方向性。
最敏感的检测方法是使用中心频率为40 ~200kHz 的超声波传感器。
该方法可以非常成功地检测局部放电活动。
2.3 空气传播的超声波放电活动当局部放电活动出现在高压开关柜绝缘层中时,它会产生高频电磁波,它只可以通过金属外壳上的开孔从开关柜内泄漏到外表面。
这些开孔可以是外壳缝隙或密封垫圈及其它绝缘部件周围的间隙。
当电磁波传播到开关柜外面时,它会在接地的金属外壳上产生瞬态电压。
瞬态地电压( TEV) 在几个毫伏至几伏的范围内,存在时间很短,具有几个纳秒的上升时间。
可采用非侵入方式将探头放在开关柜的外面来检测局部放电活动。
二、技术参数图一、产品外形1、适用范围:采用非侵入式检测方式,对高压电气设备的局部放电缺陷进行检测及定位。
2、检测原理:超声波法(UA)及地电波法(TEV)。
3、检测频带:超声波: 40~200KHz地电波: 70MHz4、测量范围:地电波:-30~70dB超声波:0~90dB。
5、灵敏度:最小10pC(具体取决于传感器与放电源之间的距离)。
6、传感器:①超声波传感器②地电波7、地电波、超声波二合一传感器;8、软件功能:①连续检测地电波及超声波信号,判断是否存在局部放电;②实时显示被测信号的变化趋势、可对局部放电信号的发展作出较为直观的判断;③具备数据的现场存储功能。
9、仪器特征:①屏幕显示:高对比度3.5 英寸TFT彩屏。
②数据存储:可保存1000 组测试数据。
③工作电源:内置8.4V 锂电池,可连续工作8 小时。
④电源:输入100-240VAC,输出8.4V/3A,充电时间3~4小时。
⑤外形尺寸:230 * 120 * 55(mm)。
⑥仪器重量:0.7kg。
⑦环境温度:-20℃~45℃。
⑧存储温度:-25℃~60℃。
10、成套配置:主机、传感器、交流适配器、连接电缆及运输箱。
三、结构布局面板布置本产品采用便携式结构,内含信号接收及数据处理模块,具备多种分析模式,可方便地对电气设备局部放电所产生的特高频信号及超声波信号进行测量。
与同类产品相比具有操作便捷,功能强大的特点。
本产品键盘布局如下所示:1) F1键:在测试过程中按下“F1”键用于存储当前的测量数据;2) F2键:通过“F2”键可以调出主机存储器内的历史数据;3) F3键:在测量界面时F3键用于切换传感器类型,在数据管理或设置界面中为退出键;4) 方向键:上下方向键在测试时用于增益的调节,可以在0~90dB 之间调节;在功能设置中用于调整时间等;在历史数据浏览中用于上下翻页;图二键盘布局图5) 确认键:测试中按下确认键即可进入设置菜单;6) 电源:开启和关闭仪器电源,需要长按3 秒钟方可生效;本产品主机除了内置一个超声传感器外还配备一个外部传感器接口,TEV传感器、外置超声波传感器均通过该接口连接,采用同一接口设计,使操作更为简单。
注意:外置传感器接口采用进口接插件,在插入外置传感器接头时请将接头的标志方向与插座的标志方向一致后径向插入,听到“咔擦”声后表示连接成功,切勿旋转接头,以免损坏接插件。
拔出传感器接头时只需要拿住金属外壳的接头往外拔即可,切勿拉拽连接线。
四、使用操作4.1 主界面图五主界面显示完开机界面后直接进入测量界面,如图五所示。
测试界面分为传感器状态区、波形区、数据区和柱状图区。
传感器状态区。
传感器的选择可以通过“F3”键来选择,标准配置的传感器类型有:超声波传感器(UA)、地电波传感器(TEV)等,连续按“F3”键会在以上传感器之间选择。
注意:需要连接上对应的传感器后才能测量到对应传感器的数据。
波形区主要显示仪器采集到的放电信号波形,此波形在超声测量模式下以射频信号的方式显示,而在地电波模式下则以电平的方式显示。
TEV地电波测量界面如图六所示:图六TEV模式测量界面柱状图区。
柱状图是用来表明当前局部放电的严重程度,用绿色、橙色及红色表示,绿色表示局部放电比较轻微,黄色表示有放电现象,设备需要检查,红色表示局部放电比较严重,设备需要检修。
数据显示区。
针对传感器的不同,数据区现实的意义也不同。
在超声波测量模式下,数据以dBuV(分贝微伏)来表示,而在TEV 测量模式下则以dB(分贝)来表示,仪器内部已经预置了常用电气设备的阈值数据,因此用户不需要自行设置。
4.2 超声波测量程序使用超声波传感器测量信号时,需要选择对应的传感器类型,本产品具有记忆上一次状态设置的功能,开机时会自动调用上次关机时传感器的状态,并测量环境值,准备就绪后即可测量局部放电值,因此,在开机时请勿将传感器指向被测区域,以免将被测区域的放电信号误测为环境值。
开启仪器,按“F3”键进入超声波模式,如果读数太大,比如超过15dBuV,说明此事背景噪声太大,可以按左方向键滤除背景噪声。
背景噪声滤除后正式进入测量程序,此时插入提供的耳机,读数会在显示屏上连续更新。
开始时,应该将增益调整到较大位置,当读数变得太大时,则应该减少增益。
也可以根据右下侧的箭头标志来确定是增加增益还是减小增益,绿色箭头表示此时增益可以增加,如果显示的是红色箭头则说明信号过大,需要减小增益。
若要检查开关柜,应该将超声波传感器指向开关柜(尤其是断路器的端口、充气式电缆盒、电压互感器以及母排室)上的任何空气间隙。
在任何情况下,都应该确保遵守安全距离的要求。
背景以上的超声波活动是很重要的。
真正的放电可以根据耳机中发出的咝咝声(尤如煎锅中发出的丝丝声)来识别。
4.3 TEV测量程序背景噪声开关柜外部的一些信号源发出的电磁信号也可能在开关柜的外部产生瞬时接地电压。
这些源可以是架空线绝缘子、变压器进线套管、无线电信号甚至是附近高速公路的车流量。
这些也可以在不连接到开关柜的金属体如变电站房门或围栏等金属体上产生瞬时接地电压信号。
因此在对开关柜进行检测之前,就应该测量这些表面上的背景噪声。
测量不属于开关柜组成部分的金属体如金属门、金属围栏等的背景噪声。
记下三次连续的有关金属体的分贝值和计数,并取中间幅值的读数作为背景测量的读数。
图八TEV传感器进行测量仪器开启,确保TEV传感器处在离开金属体的自由空间中,否则会影响自检。
选择TEV模式。
为了准确测量,应该使TEV探头垂直地与在其上面要进行测量的金属体接触,(最好是保持仪器主机本体远离邻近的金属体)。
一旦TEV探头从金属体上拆下后读数就不再在显示屏上继续显示。
您可能会因为确保数据一致性,可能需要重复测量几次。
对开关柜的测量是在每一个面板的每一个部件如电缆盒、电流互感器室、母排室、断路器以及电压互感器等的中心位置进行的。
断路器以及其它中高压开关仪器的位置都要记录下来,因为如果这些设备处于断开的位置,则某些部件就不会带电,因此这些部件上不会测到读数。
记录每一个位置上的第一组读数。
但是如果测到的幅值比背景干扰水平高出10dB, 本身幅值大于20dB时,就应该连续记录三组读数。
4.4 历史数据查看在测量界面下按“F1”键用于数据保存,磁盘图标右侧的数字表明当前存储数据的组数,您可以保存1000组数据。
如需查看只需要按下“F2”键即可,通过上下键实现数据的翻页,按下“F3”键可以回到测试界面。
如果您想清空所有数据可以在历史数据页面下按下右键,选择“确定”后按确认键即可清除数据,操作如图九所示:图九数据清除五、TEV读数说明相关说明1)读数(dBuV)与放电量(pC)之间的关系传统的按照IEC60270 标准进行的局部放电检测都是测量放电时高压导体产生的视在电荷量。
因此,放电幅值一般用皮库(pC)来标示,在传统的局放检测仪的检测频率(一般为10~300kHz)上,各种高压设备(除长电缆外)都可以等效为集中电容。
高频传感器测量则是在3~100MHz 的频率范围内进行的,在这些频率上,高压电力设备更近似接近传输线而不是集中电容,电压/时间曲线下的区域面积与放电过程中的电荷转移量成正比。
高频传感器测量瞬态过程中的电压,因此它不是直接测量电荷,另外,所测的是金属面板外表面的波峰,这只是面板内部信号的一部分而已,当脉冲沿着金属铠甲的表面传播时,它就会散开即在时域上展开,同时曲线下方的区域面积保持不变,这样脉冲幅值就会减小,因此,脉冲被检测到的地方离放电源越远其衰减越大。